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Abstract: Aboveground biomass (AGB) mapping using spaceborne LiDAR data and multi-sensor
images is essential for efficient carbon monitoring and climate change mitigation actions in heteroge-
neous forests. The optimal predictors of remote sensing-based AGB vary greatly with geographic
stratification, such as topography and forest type, while the way in which geographic stratification
influences the contributions of predictor variables in object-based AGB mapping is insufficiently
studied. To address the improvement of mapping forest AGB by geographic stratification in hetero-
geneous forests, satellite multisensory data from global ecosystem dynamics investigation (GEDI)
and series of advanced land observing satellite (ALOS) and Sentinel were integrated. Multi-sensor
predictors for the AGB modeling of different types of forests were selected using a correlation anal-
ysis of variables calculated from topographically stratified objects. Random forests models were
built with GEDI-based AGB and geographically stratified predictors to acquire wall-to-wall biomass
values. It was illustrated that the mapped biomass had a similar distribution and was approximate to
the sampled forest AGB. Through an accuracy comparison using independent validation samples,
it was determined that the geographic stratification approach improved the accuracy by 34.79%
compared to the unstratified process. Stratification of forest type further increased the mapped
AGB accuracy compared to that of topography. Topographical stratification greatly influenced the
predictors’ contributions to AGB mapping in mixed broadleaf–conifer and broad-leaved forests,
but only slightly impacted coniferous forests. Optical variables were predominant for deciduous
forests, while for evergreen forests, SAR indices outweighed the other predictors. As a pioneering
estimation of forest AGB with geographic stratification using satellite multisensory data, this study
offers optimal predictors and an advanced method for obtaining carbon maps in heterogeneous
regional landscapes.

Keywords: stratification by forest type; GEDI LiDAR; multi-sensor images; object-based mapping;
random forests; forest aboveground biomass

1. Introduction

Forest biomass serves as an essential factor in determining the status of ecosystem
functions and terrestrial carbon stock [1]. Regional wall-to-wall estimations of forest
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aboveground biomass (AGB) are in great demand for the rational utilization of forest
resources and alleviating climate change [2,3]. Consequently, decreasing the uncertainty
and upgrading the efficiency of precise forest AGB mapping is an urgent matter.

Satellite remote sensors for monitoring forests in an efficient and spatiotemporally
consistent way have become a fundamental technology for wall-to-wall AGB estimation [4].
Passive or active remote sensing techniques exhibit both strengths and weaknesses in
retrieving forest AGB; reflectance and spectral indices from optical sensors are sensitive
to the chlorophyll content and horizontal structure of vegetation cover, but are subject to
climate and saturation problems [5]. Backscatters with different polarization and pene-
trability from radar sensors, especially from SAR, directly relate to AGB in water-cloud
models [6,7]. Moreover, topographic indices from interferometric SAR (InSAR), on behalf
of the local hydrothermal condition, are conventional variables for forest AGB prediction.
However, fine-resolution satellite radar images are relatively inaccessible and still suffer
from signal saturation in heterogeneous forests with a biomass above 150 Mg/ha [8,9].
LiDAR has earned a reputation for excellent penetrability into dense canopy cover and pro-
vides three-dimensional structure features to facilitate biomass prediction [10,11]. Because
of the coverage, LiDAR variables are conventionally integrated with optical and radar
images [12,13]. Satellite GEDI LiDAR with assistance from series of Sentinel and ALOS
has become the primary efficient, spatiotemporally uniform method for AGB estimation,
owing to its open-access global coverage and finer spatiotemporal resolution [14,15].

A point–line–polygon framework is generally constructed to achieve the above-
mentioned integration of spaceborne footprint LiDAR signals and images to yield accurate
biomass maps [16]. Indeed, field-measured AGB points calculated from ground samples
are predicted by LiDAR variables. Polygon-level biomass prediction is then conventionally
modeled based on a pixel-size relationship between the LiDAR AGB lines and predictors
from multi-sensor images [12,17]. In other words, the values of multi-sensor variables and
predicted AGB are the exact values within the pixel. Meanwhile, LiDAR-estimated AGB
lines are subsequently modeled by predictor variables from SAR and optical imagery based
on an object’s size for lessening uncertainty in the positional discrepancy and local het-
erogeneity [17]. Different from the pixel-based approach, multi-sensor variable values are
calculated as the mean values within optimal objects during object-based mapping, and the
final modeling unit is also the object. This modeling is commonly conducted using machine
learning methods, due to the complex nonlinear relationships between remote sensing
indices and forest AGB [1,12]. In contrast, AGB estimations of heterogeneous forests are
still a massive challenge due to the uncertainty that results from significant variation in
optimal predictors with geographic stratification such as topography and forest type [18,19].
In spite of a few studies on the influence of geographic stratification on pixel-based AGB
mapping, how geographic stratification influences the uncertainty of object-based AGB
mapping deserves further exploration. Hence, the comparative development of geographic
stratification with the unstratified approach enables precise object-based AGB mapping.

Aiming to facilitate full-cover forest AGB estimation, this study established geograph-
ically stratified object-based mapping using satellite data from LiDAR, SAR and MSI.
Specific objectives were targeted: (1) quantifying the connections between forest AGB
and multi-sensor variables using geographical stratification or an unstratified process by
optimal predictors and attribute importance; (2) contrastively analyzing geographically
stratified and unstratified object-based estimation by modeling comparison; (3) mapping
heterogeneous forest AGB by geographical stratification.

2. Materials and Methods
2.1. The Study Area

As part of the Changbai Mountains mixed forests ecoregion within eastern Jilin
Province in Northeast China, this heterogeneous mountainous area includes eight for-
est farms and covers 54,040.79 ha of forests (Figure 1). It has a monsoon-affected moist
continental climate with four distinct seasons. This area’s distribution is mainly deciduous
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broad-leaved forest (82.59%) and mixed broadleaf–conifer forest (11.61%). The typical
regional species are Quercus mongolica Fisch. ex Ledeb. and Betula platyphylla Suk. for
the deciduous broad-leaved forests, Pinus koraiensis Siebold et Zuccarini for the evergreen
coniferous forests, Larix gmelinii (Rupr.) Kuzen for the deciduous coniferous forests, and
Betula and Picea asperata Mast. for the mixed broadleaf–conifer forests.

Figure 1. The study area and ground measured sites (a), with a preprocessed remote sensing dataset,
including filtered global ecosystem dynamics investigation (GEDI) light detection and ranging
(LiDAR) L2B products (b), a yearly mosaic image of 2019 from advanced land observing satellite-2
(ALOS-2) synthetic aperture radar (SAR) (c), mosaic images during May to September of 2019
from Sentinel-1 (S1) SAR (d), and Sentinel-2 (S2) multispectral instrument (MSI) L2A (e), as well as
advanced land observing satellite-1 (A1) digital surface model (DSM) data (AW3D30) (f).

2.2. Data
2.2.1. Ground-Sampled Measurements

The forest type map was provided by the local forestry bureau in a vector format, as
shown in Figure 1a. The sampling sites, randomly covering forest areas, were generated in
the lab. Then, the field campaign across the study area began in May 2019 and continued
for four months, with unavailable samples being substituted by the nearest homogeneous
plots for the measurements. Then, 1111 samples with a square of approximately 25 m on
one side were observed (Figure 1a), including 826, 143, 116, and 26 plots in deciduous
broad-leaved, mixed broadleaf–conifer, deciduous coniferous, and evergreen coniferous
forests, respectively. Calculating from the measured diameter at breast height and tree
height and from allometric equations (Table 1), the values of field-based AGB were the sum
of the trunks, branches and leaves.
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Table 1. The allometric growth equation [20] of field-based forest aboveground biomass (AGB) based
on diameter at breast height (D, 1.3 m above the ground) and tree height (H).

Tree Species/Family/Types Trunk Branch Leaf

Betula platyphylla Suk. 0.0789 × (D2 × H)0.8607 0.0090 × (D2 × H)0.8742 0.0051 × (D2 × H)0.7552

Betula dahurica Pall. 0.0842 × (D2 × H)0.7965 0.0033 × (D2 × H)1.0630 0.0035 × (D2 × H)0.8603

Pinus koraiensis Siebold et Zuccarini 0.0204 × (D2 × H)0.9822 0.0119 × (D2 × H)0.7457 0.0594 × (D2 × H)0.5125

Quercus mongolica Fisch. ex Ledeb. 0.1131 × (D2 × H)0.8631 0.0049 × (D2 × H)1.1016 0.0156 × (D2 × H)0.7295

Populus davidiana Dode 0.1281 × (D2 × H)0.6952 0.0234 × (D2 × H)0.7496 0.0103 × (D2 × H)0.8309

Pinus sylvestris var. mongolica Litv. 0.0995 × (D2 × H)0.7656 0.0464 × (D2 × H)0.6778 0.0422 × (D2 × H)0.6372

Picea asperata Mast./Abies fabri (Mast.)
Craib/Abies nephrolepis (Trautv.) Maxim. 0.0408 × (D2 × H)0.9020 0.0953 × (D2 × H)0.6714 0.1049 × (D2 × H)0.6249

Betula 0.1040 × (D2 × H)0.7926 0.0087 × (D2 × H)0.8855 0.0064 × (D2 × H)0.7453

Larix gmelinii (Rupr.) Kuzen. 0.0242 × (D2 × H)0.9445 0.0040 × (D2 × H)0.9272 0.0091 × (D2 × H)0.7482

Populus L. 0.0340 × (D2 × H)0.9160 0.0090 × (D2 × H)0.9150 0.0060 × (D2 × H)0.7890

Other broad-leaved trees 0.0256 × (D2 × H)0.9553 0.0119 × (D2 × H)0.7566 0.0477 × (D2 × H)0.5390

Other coniferous trees 0.1295 × (D2 × H)0.8076 0.0062 × (D2 × H)0.9587 0.0139 × (D2 × H)0.7245

Mixed broadleaf–conifer forests 0.0768 × (D2 × H)0.8563 0.0085 × (D2 × H)0.8707 0.0219 × (D2 × H)0.6526

2.2.2. Pre-Processing of Multi-Sensor Data

The canopy cover and height from spaceborne LiDAR signals have been widely
verified in previous research, which generalized linearly related to AGB [21,22]. The GEDI
level 2B canopy cover and vertical profile metrics product (GEDI L2B) was derived from
each original waveform based on the directional gap probability profile, which provided
accurate location, height, and canopy cover data. Using the rGEDI R Package [23], the
canopy cover and height were extracted from downloaded GEDI L2B data from the NASA
Earthdata Search as reported in Table 2, spatiotemporally in line with the field campaign.
Then, 15,893 valid pairs of canopy cover and height were obtained (Figures 1b and 2).

Table 2. The adopted remote sensing data.

Source Level Spatial Resolution Date Compositions

GEDI 2B 25 m 20190507, 0514, 0521, 0526, 0620,
0627, 0716, 0821, 0829, 0912, 0921

T00592, 04708, 04555, 01522, 01675,
01862, 04368, 00286, 04062, 00745, 00099

A2 Yearly mosaic 25 m 2019 N44E128

S1
Ground Range
Detected (GRD)

scenes
10 m

20190504, 0511, 0523, 0604, 0616,
0628, 0710, 0722, 0803, 0815, 0827,

0901, 0908, 0913, 0920

S1A_030CEC_BAD6, 3104D_D943,
315C5_02E2, 31B36_1AB8, 3207F_6ECF,
325B7_5070, 32B0B_A562, 33052_8A6E,
335A7_6B96, 33B72_1513, 34189_C444,

34415_C219, 3479D_8BE2/597F,
34A27_6CE3, 34DA7_F7A5

20190503, 0508, 0515, 0520, 0527,
0601, 0608, 0613, 0620, 0625, 0702,
0714, 0719, 0726, 0731, 0807, 0812,

0819, 0831, 0905, 0912, 0917,
0924, 0929

S1B_1E41C_0156, 1E671_A592,
1E9A3_82B7, 1EBD2_6809, 1EEFF_609F,
1F128_409B, 1F438_BCD5, 1F65C_83E3,
1F96F_D10F, 1FB87_7017, 1FE9A_FD21,
203C2_FF18, 205CF_82EE, 208D7_1E72,
20B01_ED20, 20E22_CBD8, 2105F_16BB,
21398_3093, 21909_FCDD, 21B40_B939,
21E81_83FB, 220BA_9277, 223E8_5B7B,

2261D_6C27

S2

2A,
orthorectified

atmospherically
corrected
surface

reflectance

10 m

20190503, 0506, 0513, 0516, 0523,
0526, 0602, 0605, 0612, 0615, 0622,
0625, 0702, 0705, 0712, 0715, 0722,
0725, 0801, 0804, 0811, 0814, 0821,
0824, 0831, 0903, 0910, 0913, 0920,

0923, 0930

There is one image on each date as
S2A_T52TDP.
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Table 2. Cont.

Source Level Spatial Resolution Date Compositions

20190501, 0508, 0511, 0518, 0528,
0531, 0607, 0610, 0617, 0620, 0627,
0630, 0707, 0710, 0717, 0720, 0727,
0730, 0806, 0809, 0816, 0819, 0826,

0829, 0905, 0908, 0915, 0918,
0925, 0928

There is one image on each date as
S2B_T52TDP.

A1 DSM 30 m Derived from A1 SAR data from
2006 to 2011 N043E128

Figure 2. The outlines of object-based AGB mapping with geographic stratification by topography
and forest types using spaceborne LiDAR data and multi-sensor imagery.
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A total of 891 training points contained in the valid pairs were chosen from the
1111 field-measured AGB samples for the biomass modeling. The remaining 220 samples
served as validation points for comparing the model performance (Figure 1).

The adopted multi-sensor images are as shown in Table 2. All mosaic images were
pretreated with topographical correction and obtained using the Google Earth Engine (GEE)
platform [24]. Specifically, an ALOS-2 yearly mosaic image in 2019 (Figure 1c) was selected,
masked, and transformed to a normalized backscatter coefficient [25]. The Sentinel-1 mo-
saic (Figure 1d) was produced from 40 images at a ground-range-detected level from May
to September 2019 using Lee filtering, masking, converting and mosaicking [24]. The S2
mosaic was composited after the disposal of cloud and noise, as the median of multispectral
bands from 61 Sentinel-2A L2A images (Figure 1e). The ALOS-1 DSM products were down-
loaded from the GEE (Figure 1f) for calculations of topographic indicators (Figure 2). After
that, the preprocessed images were converted to the same projection and spatial resolution.

On the basis of the predictor variables in correlational research on AGB modeling [26,27],
a total of 53 variables were elected, including 4, 24, 19, and 6 from A2, S1, S2, and DSM,
respectively (Table 3). Taking advantage of the reflections of forest structures but insus-
ceptibility to terrain, multi-frequency SAR-estimated normalized backscatter coefficients
and their calculations, as well as texture features from S1, were generated from the mosaic
images in SNAP software [28]. The reflectance and vegetation indices from the S2 mosaic,
the commonly used variables for AGB modeling, were calculated [29,30]. Topographic
indicators, as proxies of potential solar radiation and moisture distribution for the partial
explanation of spatial patterns in AGB, were extracted from DSM [31].

Table 3. Modeling variables for forest AGB estimations.

Images Variables Explanation

A2 mosaic Backscatter

HH Normalized backscatter coefficient of the
horizontal transmit-horizontal channel in dB

HV Normalized backscatter coefficient of the vertical
transmit-vertical channel in dB

RFDI Radar forest degradation index
V/H_L HV/HH

S1 mosaic

Backscatter

VV Normalized backscatter coefficient of the vertical
transmit-vertical channel in dB

VH Normalized backscatter coefficient of the vertical
transmit-horizontal channel in dB

NP Normalized polarization
V/H_C VV/VH

Texture

VV/VH_CON Contrast
VV/VH_DIS Dissimilarity

VV/VH_HOM Homogeneity
VV/VH_ASM Angular second moment
VV/VH_ENE Energy
VV/VH_MAX Maximum probability
VV/VH_ENT Entropy
VV/VH_MEA Gray-level co-occurrence matrix (GLCM) mean
VV/VH_VAR GLCM variance
VV/VH_COR GLCM correlation
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Table 3. Cont.

Images Variables Explanation

S2 mosaic

Multispectral bands

B2 Blue
B3 Green
B4 Red
B5 Red edge
B6 Red edge
B7 Red edge
B8 Near-infrared

B8a Near-infrared
B11 Short-wave infrared
B12 Short-wave infrared

Vegetation indices

RVI Ratio vegetation index
DVI Difference vegetation index

NDVI Normalized difference vegetation index
EVI Enhanced vegetation index

S2REP Sentinel-2 red-edge position index
REIP Red-edge infection point index
SAVI Soil adjusted vegetation index
MTCI Meris terrestrial chlorophyll index

MCARI Modified chlorophyll absorption ratio index

DSM Topographic indicators

H Elevation
β Slope
A Aspect
M Surface roughness

TWI Topographic wetness index
SPI Stream power index

2.3. Methods

For enhancing forest AGB mapping with geographic stratification, the methodology
comprised three main elements (Figure 2). The improvement was quantified with an
accuracy comparison among four models, i.e., the stratification of geography, topography,
forest type, and the unstratified process. Indeed, these models’ processes were different, as
were the units of variable calculation and AGB prediction.

The geographically stratified mapping included two-step stratification of topography
and forest type: (1) the variable calculated as an average in each object was segmented
from DSM and S2, which was defined as a step of topographical stratification, and the pre-
diction unit was also this object; (2) predictor selection and AGB modeling were conducted
separately among deciduous broad-leaved, evergreen coniferous, deciduous coniferous,
and mixed broadleaf–conifer forests, which was a step of stratification by forest type. The
final geographically stratified prediction was the mosaic of four AGB maps from four forest
types. In unstratified mapping, the variables’ values and predicted AGB were the mean
values inside each object segmented only from S2, and the predictor selection and modeling
were based on the whole forests.

2.3.1. GWR Modeling for GEDI-Derived AGB Lines

The substantial literature indicated the potential for AGB estimations based on solving
generalized linear models and spaceborne LiDAR-derived canopy cover and height [32,33],
but their relationships change according to the location. Therefore, geographically weighted
regression (GWR) was adopted in this study, as shown in Figure 3 [34]. As an extension
of orthogonal least squares, the GWR incorporated geographic information into GEDI-
based AGB modeling, with individual calculation of the local parameters that followed
the distance attenuation [35,36]. GWR4 software was used to establish a GWR model to
estimate GEDI-based AGB by quantifying parameters, such as the types of model and
kernel, as well as the method and criteria of bandwidth selection [37].
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Figure 3. Illustration of estimating AGB lines from GEDI LiDAR data using geographically weighted
regression (GWR) modeling. W(u, v) is a weight matrix to ensure that those observations obeyed the
distance decay principle.

2.3.2. Filtering Predictors for Different Forest Types from Topographically Stratified Objects

The object-based approach, minimizing positional discrepancy and local heterogeneity
issues, was adopted to acquire variable values and conduct forest AGB mapping [16]. The
object was conventionally obtained based on optical images [17,38], which was used as a
comparison in this study, i.e., non-topographical stratification (Figure 2). For acquiring the
object in the topographical stratification, multiresolution segmentation was performed on
images combining S2 and DSM by assigning 0.1, 0.5, and 25 to the shape, compactness, and
scale, respectively, with eCognition software. The conventional objects from a segmented
S2 mosaic image, as a non-topographical stratification, were also obtained by setting the
same parameter values. Then, the variable calculation was the mean inside an object linked
to an AGB plot.

The predictor variables of AGB object-based mapping were determined using correla-
tion analysis. The candidate was chosen from the significantly related variables (p < 0.05).
Due to the influence of redundancy on the prediction precision of random forests (RF),
the candidate’s collinearity was disposed (r ≥ 0.8), and the predictors were the most
related [39,40].

2.3.3. Prediction Stratified or Raw AGB Polygons by RF

Owing to its lower sensitivity to the noise of training samples, RF is extensively
employed in remote sensing-based AGB mapping and exhibits higher precision through the
contrastive analysis [41,42]. Four groups of object-based RF models were built after setting
the number of features and trees, and the variable importance was identified according
to the mean-variance decrease [43,44]. For an explicit comparison of the contributions of
the predictor variables, the relative variable importance was calculated as Xi/Xmax, where
“Xi” and “Xmax” were the mean variance of predictor i and the maximum values of all
predictors in an RF model, respectively. The AGB value was predicted as the average of
all trees (Figure 4). Then, the precision was compared using the root-mean-square error
(RMSE), mean error (ME), coefficient of determination (R2), and the relative improvement
(RI) from 220 independent validation points [45,46]. A final AGB map was drawn using
object-based RF mapping with geographic stratification.
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Figure 4. Delineation of AGB mapping with geographic stratification by random forests (RF) object-
based modeling.

3. Results
3.1. GEDI LiDAR-Extracted AGB Lines Using GWR

The sampled AGB was 0.35–548.22 Mg/ha, and the majority were less than 200 Mg/ha
(Figure 5a). To visually display the distribution similarity of the mapped results with the
measured values, the sampled AGB was divided by five levels at an equal frequency. The
average, median, and standard deviation (SD) values were 140.56, 126.93, and 83.76 Mg/ha,
respectively (Figure 5b). Among the different forest types, the mean of the sampled
AGB had a peak of 154.64 Mg/ha in the mixed broadleaf–conifer forests, and a low of
72.92 Mg/ha in deciduous coniferous forests.

Figure 5. The AGB profiles of the observed samples from Plot 1 to 1111 (a) and values of different
forest types (b). The boxes depict values in the range of the mean ± standard deviation (SD), the lines
in the boxes are the medians, and the squares denote means with the dash as a whisker of 5–95%, as
well as crosses as the minimum and maximum values. The abbreviations DB, EC, DC and MBC refer
to deciduous broad-leaved, evergreen coniferous, deciduous coniferous, and mixed broadleaf–conifer
forests, respectively.

The GEDI-derived canopy cover values were 0.001–0.99, and those of canopy height
were 1.35–54.39 m (Table 4). Based on the 891 training samples, a GWR model was
established with the GEDI-derived canopy cover and height using a Gaussian approach
weighted by a fixed Gaussian kernel, which achieved a smaller RMSE value than adaptive
bandwidth. The optimal bandwidth was 2.36, determined by the golden selection method
and small sample bias corrected Akaike information criterion (AICc). The AGB lines from
15,893 spaceborne LiDAR pairs ranged from 4.51 to 544.90 Mg/ha (Table 4). The mid-value
was 142.53 Mg/ha and the SD value was 38.22 Mg/ha.
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Table 4. Statistics of the GEDI-extracted AGB, and canopy cover (C) and height (Ht).

Variables Minimum Maximum Mean Medium SD

C 0.001 0.99 0.60 0.73 0.31
Ht (m) 1.35 54.39 18.17 19.66 9.62

AGB (Mg/ha) 4.51 544.90 137.33 142.53 38.22

3.2. Predictor Variables for Different Forest Types from Topographically Stratified Objects

In total, 10 groups of predictor variables were obtained for RF modeling, after filtering
by significant relations to AGB and disposing the redundancy, marked as “Yes” in Table S1.
Overall, the related MSI variables had the highest redundancy, followed by variables from
C and L band SAR. The 26 predictors were filtered out, including four from A2, eight from
S1, 11 from S2, and three from DSM. Among them, HH was extensively chosen by seven
groups; then B2 and red-edge vegetation indices that red-edge bands were involved in;
RVI, EVI, VV_VAR, and NP; finally, the topographical indices followed.

With the topographical stratification, 31 variables were significantly related to the sam-
pled AGB; 13 predictors were selected, including two from L band SAR, three from C band
SAR, five from MSI, and three from DSM. In the unstratified process, VV_MEA additionally
correlated significantly with AGB, and the 14 chosen predictors were also different from
the topographical stratification. In detail, VV_ENT was included in the topographically
stratified process but was replaced by VV_MAX in the unstratified approach, and EVI was
extra filtered out as predictors without topographical stratification.

As for the stratification by forest type, the predictors were separately selected as
shown in Table S1. On the whole, in both the topographically stratified and unstratified
processes, optical variables were in the majority in predicting the AGB of deciduous forests,
while SAR variables were dominant for evergreen coniferous and mixed broadleaf–conifer
forests. Topographical stratification primarily distinguished the relationships between the
measured AGB and SAR variables for deciduous broad-leaved and mixed broadleaf–conifer
forests. In detail, with the topographical stratification, A2 predictors at a coarser resolution
were replaced by S1 variables. For deciduous broad-leaved forests, HH was significantly
related to AGB without redundancy in the unstratified process, which was replaced by VV
in the topographically stratified process. In addition, VV_MEA was a substitute predictor
for RFDI in mixed broadleaf–conifer forests with topographical stratification.

3.3. RF Models for AGB Prediction

The number of randomly chosen attributes as numFeatures in Weka software was set
as the default, i.e., the integer value of (log2 M + 1), with ”M“ as the attribute number [47].
The tree number as numTrees was 500 in all RF models.

The results of the relative attribute importance showed that among the 26 predictors
of the 10 RF models, optical variables were prominent, among which RVI was the most
impressive (Figure 6). For whole forests, the sensors sorted by attribute importance were
MSI from S2, InSAR from DSM, C band SAR from S1, and L band SAR from A2. The top
five predictors of RF modeling with topographical stratification were RVI, MCARI, H, B2
and A. The change that non-stratification brought was the addition of EVI, filtered out
in the topographically stratified predictor selection. In deciduous broad-leaved forests,
the modeling contributions of sensors differed from whole forests. Specifically, C band
SAR from S1 had a greater impact on AGB modeling than InSAR from DSM, and the
vast majority of MSI—which derived all top-five variables, i.e., MCARI, RVI, MTCI, EVI,
and SAVI—were outstanding. Moreover, the overwhelming majority of the MSI variables
were enhanced by topographical stratification, with all optical predictors obtaining higher
importance than the variables from S1. As for evergreen coniferous forests, L band SAR
was the most contributive, and the predictors ranked by the attribute importance were
V_H_L, HH, and VV_COR. In deciduous coniferous forests, the order was RVI, B3 and
MTCI for the topographically stratified AGB modeling, but S2REP, B3, MTCI and EVI for
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the unstratified RF model. For mixed broadleaf–conifer forests, the attribute importance
was considerably different between the topographically stratified and unstratified AGB
modeling. In the topographically stratified modeling, S2 was more critical than S1, DSM,
and A2, consistent with the sensor sorting in deciduous broad-leaved forests. Nonetheless,
without topographical stratification, the predictors from A2 had a greater influence than S2,
DSM and S1.

Figure 6. The relative attribute importance of multi-sensor predictor variables for RF modeling
with geographic stratification by topography and forest type. The postfix of “_DSM” represents
topographical stratification.
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Overall, the vegetation indices from S2 MSI, the texture features from VV backscatters,
and elevation were the primary variables for forest AGB prediction. The topographical
stratification increased the advantages of optical predictors, but required finer-resolution
SAR variables. The predictor variables, as well as their importance, largely varied according
to forest type.

Table 5 shows the model accuracy calculated from 220 validation samples. The ME and
RMSE are also expressed as a percentage in order to contrastively evaluate the accuracy to
related studies, after being divided by the mean value of the measured AGB. The absolute
values of ME denoted that four groups of RF modeling underestimated forest AGB. The
validation results also demonstrated that geographic stratification by topography and forest
type improved the prediction accuracy compared to the unstratified approach (Figure 7).
The geographically stratified prediction lowered the RMSE values by 34.79%.

Table 5. Accuracy comparison between geographic stratified and unstratified approaches for AGB
prediction by independent validation samples.

Group
ME RMSE

R2 RIRMSE (%)
Mg/ha % Mg/ha %

Stratified by topography and forest types 12.29 8.74 32.72 23.28 0.92 34.79
Stratified by topography 14.15 10.07 48.48 34.49 0.81 3.40
Stratified by forest types 15.29 10.88 37.94 26.99 0.90 24.40

Unstratified 13.69 9.74 50.19 35.70 0.79 0

Figure 7. Estimated AGB versus observations from geographically stratified modeling.
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3.4. Forest AGB Map Predicted by Geographic Stratification

The forest AGB was illustrated using geographically stratified RF models (Figure 8a)
and symbolized the same as the sampled AGB (Figure 5a). Generally, the mapped AGB
had a similar value distribution to the measured biomass and was approximate to the
observed values, described by the same pattern at each level. From the object-based RF
model with multi-sensor data and geographical stratification, the mapped forest AGB
ranged from 8.41 to 504.82 Mg/ha and had an average of 142.58 Mg/ha with an SD of
90.21 Mg/ha. The western and northern deciduous broad-leaved forests with a median
elevation of 600–800 m had the largest AGB values, ranging from 190.58 to 504.82 Mg/ha.
The deciduous coniferous forests with an altitude above 800 m exhibited the smallest AGB
of 8.41–79.49 Mg/ha.

Figure 8. Mapped forest AGB (a) and its statistical diagram (b).

4. Discussion
4.1. Role of Topographical Stratification in AGB Estimation

The topographical stratification improved the prediction accuracy by modifying the
objects of variable extraction and the AGB mapping (Figure 2). In other words, when the
topographic variations are also taken into consideration, the segmented object as the basic
unit can better relate predictors from multi-sensor images to AGB lines. The influence of
the topographically stratified mapping was reflected in the selection of finer-resolution
predictors and their contributions in mixed broadleaf–conifer and broad-leaved forests,
but slightly impacted coniferous forests (Table S1). Indeed, the variables from the A2
predictors were replaced by the S1 variables, and the contributions of the S2 predictors
were enhanced (Table S1 and Figure 6). The greater impact of topographical stratification on
the AGB predictors of broad-leaved forests was possible because of more complex habitats,
whereas conifer forests are chiefly located at higher altitudes with pure stands and simple
structures [48]. In addition, selecting predictors with a finer resolution rather those with
a stronger penetrability infers that vertical heterogeneity was reduced by topographical
stratification, highlighting the horizontal variations in the broad-leaved forests. These
relationships between forest type and topography are also called as the vertical zonality. In
other words, the role of topographical stratification can be enhanced through application to
other regions with distinguished vertical zonality.

The topographically stratified mapping was slightly more accurate than the unstrat-
ified prediction with an RIRMSE value of 3.40% (Table 5 and Figure 7). This implies that
finer-resolution topographic data enhances the contribution. The precision of topographi-
cally stratified and unstratified mapping was less than the major regional maps of forest
AGB, with RMSE values ranging from 21% to 67% [49], which may be explained by the
benefits of multi-sensor integration and fine resolution. This is consistent with previous
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studies, which concluded that the integration of GEDI and series from ALOS and Sentinel
was adequate for biomass mapping on a large scale [50].

In short, topographical stratification lowers vertical heterogeneity and is particu-
larly essential for AGB mapping in broad-leaved forests. It should be emphasized that
topographic data with higher spatiotemporal resolution are crucial for increasing the
contribution of topographical stratification.

4.2. Influence of Stratification by Forest Type for AGB Estimation

Stratification by forest type increased the precision by separately selecting optimal
predictors and building different RF models for the four forest types (Figure 2 and Table S1).
Specifically, the optical variables from S2 MSI had closer relationships with AGB in broad-
leaved forests, although the SAR indices had the most dominant response to forest biomass
where evergreen trees were involved. This distinction is in agreement with the principle
and characteristics of optical and SAR sensors. Optical remote sensing techniques retrieve
AGB based on the typical reflectance of leaf chlorophyll, water content, and geometric
structures [51]. Fittingly, the forest AGB of dense broad-leaved trees is closely linked to
remote sensing-based canopy horizontal variables [52]. Nonetheless, the electromagnetic
waves from SAR sensors interact with trunks and branches, generating particular indices
as proxies of volume scattering and vertical information, which constitute the principal
factors of AGB in evergreen forests [53]. The SAR predictors from A2 and S1 had different
levels of importance among the forests. Namely, S1 was obviously more important than
A2 in those forests where broad-leaved trees were involved. This can be explained by the
coarser spatiotemporal resolution of A2 imagery and the horizontal variations discussed
in Section 4.1. The independent validation showed that stratification by forest type vastly
upgraded the precision of the unstratified model with an RIRMSE value of 24.4%. Simul-
taneously, this improvement was more considerable than the topographical stratification.
Despite the above-mentioned coarse resolution of the topographic data, the independent
validation also revealed that the primary heterogeneous factor in the study area was the
forest type, whereas the vertical zonality was inconspicuous.

This study concludes that stratification by forest type is especially vital for forest AGB
mapping in regions dominated by horizontal variations among canopies. Optical variables
were required for the retrieval of deciduous forest biomass, and SAR indices were necessary
for that of evergreen forests.

4.3. Uncertainty of Geographic Stratification-Based AGB Mapping

The improvement in remote sensing-based AGB mapping is particularly reflected in
the reduction in uncertainty and increased accuracy. The independent validation revealed
that the geographic stratification approach improved the accuracy by 34.79% more than
the unstratified process when estimating the AGB of heterogeneous forests (Table 5). The
relative RMSE value of AGB estimation using geographically stratified mapping was
23.28%, which dramatically increased the accuracy.

The mapping uncertainty of remote-sensing-based AGB in this study was generated
and controlled among the ground observations, sampled AGB calculation, geographic strat-
ification, predictor selection, and modeling algorithms. By extension, the in-site measures
followed national guidelines for forest resource surveys [54], and up-to-date allometric
growth equations were adopted to calculate the measured biomass (Table 1). The topo-
graphical stratification modified the mapping objects, whose lower uncertainty depended
on the finer spatial resolution and an updated DEM. The forest type distribution was pro-
vided by the local forestry bureau, which lowered the uncertainty. The uncertainty of the
multi-sensor predictors was reduced by closely monitoring data with in-site measurements.
Selecting predictors separately and establishing RF models according to the forest type
were considered to control the mapping uncertainty in heterogeneous forests. In contrast to
the related study on object-based mapping without stratification, the geographically strati-
fied approach made great progress in solving the problems of patches and strips, which
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resulted from the coarser spatiotemporal resolution of the spaceborne LiDAR data [55].
It also revealed that geographic stratification lessened the impact of multi-sensor data of
different spatiotemporal resolutions, and linked GEDI LiDAR lines better between field
points and image objects.

On the whole, object-based mapping with geographic stratification by topography and
forest type using spaceborne LiDAR data and multi-sensor imagery is a promising approach
for improving the accuracy and reducing the uncertainty. It should be emphasized that up-
to-date DEM data with higher spatial resolution and the reality of forest-type distribution
are crucial.

5. Conclusions

To improve object-based AGB mapping, this pioneering study created a geographically
stratified methodology using GEDI LiDAR data and images from Sentinel and ALOS
series and generated a spatially explicit AGB map with relative RMSE values of 23.28%
in heterogeneous forests by exploring the contributions of geographic stratification by
topography and forest type to object-based mapping. It also elucidated the detailed
relationships among geographic stratification, multi-senor variables, and forest AGB for
large-scale carbon estimation. The following results were observed:

(1) The geographic stratification approach precisely estimated the biomass of hetero-
geneous forests, and improved the accuracy by 34.79% more than the unstratified
process. The stratification of forest types further increased the mapped AGB accuracy
compared to that of topography. Topographical data with a finer spatiotemporal reso-
lution and forests with distinguished vertical zonality may enhance this contribution.

(2) The relationships between multi-sensor variables and AGB varied within the different
approaches of geographic stratification. Generally, vegetation indices from S2 MSI,
texture features from VV backscatters, and elevation were the most important predic-
tors in AGB modeling. Topographical stratification greatly influenced the predictors’
contributions to AGB mapping in mixed broadleaf–conifer and broad-leaved forests,
but only slightly impacted coniferous forests. Optical variables were predominant
for deciduous forests, while for evergreen forests, the SAR indices outweighed the
other predictors.

(3) The mapped values from 8.41 and 504.82 Mg/ha were approximate to the ground-
observed forest AGB. The western and northern deciduous broad-leaved forests,
with elevations of 600–800 m, had the largest AGB values. The smallest values were
distributed in deciduous coniferous forests with an altitude above 800 m.
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