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Abstract: In February 2023, Mw 7.8 and Mw 7.7 earthquakes struck southeastern Turkey. Generating
a coseismic 3D deformation field that can directly reflect the characteristics of surface deformation
is important for revealing the movement mode of a seismogenic fault and analyzing the focal
mechanism. Optical image sub-pixel correlation (SPC) only captures deformation in the horizontal
direction, and SAR image pixel offset tracking (POT) obtains range deformation that is not sensitive
to north–south deformation signals. Thus, neither of them can capture the complete 3D deformation
alone. Combining them may be able to allow the monitoring of 3D deformation. In this study, we
used Sentinel-2 optical images to obtain the horizontal deformation (east–west and north–south)
and Sentinel-1 and ALOS-2 data to extract the range and azimuth offsets. The least-squares method
was used to fuse the optical and SAR offsets to obtain the 3D deformation field of the 2023 Turkey
earthquake sequence, which indicates that the two events were both left-lateral strike-slip earthquakes.
The surface deformation caused by the two large earthquakes is mainly in the east–west direction.
In the vertical direction, the two earthquakes caused a small-magnitude uplift and subsidence. The
findings in this paper can be used as a reference for the study of coseismic 3D deformation.

Keywords: Turkey earthquake; optical image correlation; pixel offset tracking; 3D deformation monitoring

1. Introduction

On 6 February 2023, two powerful earthquakes struck southern Turkey near the Syrian
border. The first earthquake, an Mw 7.8, occurred at 1:17 a.m., followed by an Mw 7.7 nine
hours later at 10:24 a.m. The first earthquake, with a source depth of 14.9 km, ruptured
the southwestern segment of the East Anatolian Fault (EAF), and the second earthquake,
located near the Cardak Fault to the north of the first earthquake, ruptured two secondary
faults, with a source depth of 13.5 km (GCMT, https://www.globalcmt.org/, accessed on
1 April 2023). They were both left-lateral strike-slip earthquakes. Two strong earthquakes
in a short period were rare for the EAF. The earthquake sequence caused an obvious rupture
on the surface and led to devastating damage, with over 44,000 casualties reported on the
20th day after the earthquake and numerous buildings collapsing within a 300 km radius
of the epicenter (https://en.afad.gov.tr/, accessed on 10 April 2023). Accurate coseismic
deformation fields are important for earthquake research [1]; understanding seismic haz-
ards, fault geometry, energy release, and deformation trends; and providing guidance and
references for earthquake emergency relief and post-disaster reconstruction [2–4].

Many efforts have been made to monitor coseismic deformation after this earthquake
sequence. The Geospatial Information Authority of Japan used Advanced Land Observing
Satellite 2 (ALOS-2) data to reveal the spatial distribution characteristics of the surface
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deformation (https://www.gsi.go.jp/, accessed on 26 February 2023) and observed over
5 m displacements on the EAF and over 4 m displacements on the Cardak Fault. The China
Earthquake Administration used Sentinel-1 data to obtain the interferometric synthetic
aperture radar (InSAR) line-of-sight (LOS) deformation and range offset of the two earth-
quakes (https://www.cea.gov.cn/, accessed on 22 March 2023), which showed that the two
earthquakes produced rupture zones of more than 300 km and 150 km, respectively, and
the LOS deformation is seriously decoherent in the near field. Sentinel-1 images provide
high-accuracy range offsets but low-accuracy azimuth offsets. ALOS-2 images have high-
precision azimuth offsets. Combining these two data sources can provide high-accuracy
range and azimuth offsets. Optical images, such as Sentinel-2 images, are very sensitive to
horizontal deformation [5]. The sub-pixel correlation (SPC) of optical images combined
with SAR pixel offset tracking (POT) can address the decoherence due to large deformation
gradients [6,7]. Fusing the optical and SAR offsets to obtain the 3D deformation field allows
for more effective signals in the near field, which can help to interpret the deformation
characteristics of the earthquake and understand the motion of the fault. This is also an
important way to obtain the location and intensity of the rupture fault.

In this study, we processed optical images from Sentinel-2 and SAR data from Sentinel-
1 and ALOS-2 by using POT and SPC technology, respectively, to obtain the 2D deformation.
Then, we fused the 2D deformation results by using the weighted least-squares method to
obtain the 3D deformation field of the 2023 Turkey earthquake sequence. By analyzing the
rupture and deformation of the seismic sequence, we obtained the geometric characteristics
and deformation magnitude of the rupture fault and compared them with GPS data. The
3D deformation provides crucial information about the deformation trend and geometric
characteristics of the coseismic deformation field, supporting the interpretation of surface
ruptures caused by earthquakes and the analysis of seismogenic structures.

2. Methods and Processes

POT applies the registration method of amplitude correlation [8,9] and fringe visibility
to overcome the limitations of InSAR in one-dimensional LOS monitoring [10]. POT has an
accuracy of between 1/10 and 1/30 pixel size, so it can capture signals with large defor-
mation magnitudes [11]. A common method for SAR offset acquisition is the correlation
technique based on image intensity information. It uses the intensity relationship between
two images and is suitable for monitoring large gradient deformations. The registration
process involves coarse registration and sub-pixel registration. Coarse registration uses
the Normalized Correlation Coefficient (NCC) method to determine the initial offset of the
homonymous points in the image. After sub-pixel fine matching, the offset still contains
the orbital error, terrain error, etc., which can be eliminated by polynomial fitting as well
as terrain-assisted matching. The specific process is shown in Figure 1, and it includes
four steps: (1) selecting master and slave images for coarse alignment; (2) accurate reg-
istration; (3) offset tracking and error removal; (4) geocoding, distance extraction, and
azimuth deformation.

SPC is able to accurately capture the ground deformation in the horizontal direc-
tions (E-W, N-S). Its accuracy and reliability in wide-area and large-scale deformation
detection [12] are ensured by the image sub-pixel correlation matching algorithm, which
captures deformation information by comparing changes in surface texture information,
with a theoretical accuracy of 1/20 to 1/50 pixel size [13]. Optical correlation has been
widely applied to glacier velocity extraction [14], dune migration monitoring [15], land-
slide deformation measurement, and coseismic deformation extraction [16]. By providing
accurate deformation monitoring in the horizontal dimension [17], optical imagery has
become an important data source in the field of surface deformation monitoring. The
mainstream optical image correlation computation platform is the COSI-Corr software,
which is based on the sub-pixel phase correlation algorithm published by the California
Institute of Technology (http://www.tectonics.caltech.edu, accessed on 26 February 2023).
The main process is shown in Figure 1 and includes (1) the selection of master–slave image
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pairs; (2) pre-processing and sub-pixel correlation matching; (3) post-processing and error
post-processing; (4) coordinate transformation and output of east–west and north–south
deformations.
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Figure 1. The workflow for solving three-dimensional surface deformation by combining optical and
SAR offsets.

Processed by POT and SPC, respectively, SAR and optical images provide an accu-
rate 2D deformation field. However, the single-observation geometry of SAR and optical
imaging cannot obtain the complete three-dimensional deformation alone. Combining
ascending and descending SAR data [18] and multi-directional D-InSAR observations [19]
with different incident angles and azimuth angles can capture the 3D deformation. Nev-
ertheless, the near-polar orbit operation mode of the SAR satellite limits its sensitivity to
north–south deformation signals [20]. Thus, fusing SAR and optical offsets is an important
way to estimate the 3D deformation. The 3D deformation field offers key information
on the seismogenic structure and deformation magnitude [21]. The offsets from optical
and SAR images can be fused to generate the 3D deformation field by using the weighted
least-squares method as follows:

P


1 0 0
0 1 0

−sinαcosβ sinαsinβ cosα
sinβ cosβ 0

. . .


x

y
z

 = P


dew
dns
dran
dazi
. . .

 (1)

where α and β represent the incident angle and azimuth angle of the SAR sensor, respec-
tively. x, y, and z are the E-W, N-S, and vertical deformations, respectively. P is the weight
matrix. We consider the mean square error of the stable region to determine the weight (ex-
cluding null values and outliers). dew, dns, dran, and dazi are E-W, N-S, range, and azimuth
deformations, respectively.
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Equation (1) can be written in the form of a matrix:

PAX = PL (2)

Using the weighted least-squares method to calculate Equation (2), the 3D deformation
field can be obtained as follows:

X =
(

AT PA
)−1

AT PL (3)

SAR and optical images have different spatial resolutions and coverages, so we have
to unify the spatial resolution and coverage before estimating the three-dimensional defor-
mation, as shown in Figure 1.

3. Data Processing
3.1. Geodynamic Setting of the Study Area

Turkey is highly prone to earthquakes due to its location at the intersection of multiple
tectonic plates [22], including the Arabian, African, Eurasian, and Anatolian plates. The
geological movements in Central Turkey are characterized by the counter-clockwise rotation
and westward displacement of the Anatolian plate [23]. The Anatolian plate was formed
and extruded by the North Anatolian Fault (NAF) and Eastern Anatolian Fault (EAF) and
is affected by the collisional compression of the Arabian plate and the Eurasian plate and
the subduction of the African plate [24]. The NAF and EAF together cause the westward
compressional tectonic motion of the Anatolian plate, which is also controlled by the
northwestward subduction of the Arabian plate. The counter-clockwise movement of
the Arabian plate causes the Anatolian plate to move westward. The Anatolian plate is
decoupled from the Eurasian continent along the right-slip NAF [25,26]. Seismic activity
is particularly high around the NAF, especially in south-central Turkey [27]. The EAF,
on the other hand [28], experiences fewer earthquakes [29,30]. However, the February
2023 Turkey earthquake sequence occurred mainly in the southwest segment of the EAF,
with two mainshocks ≥ Mw 7.7 and four aftershocks (as of 20 February 2023). These are
double-shock-type earthquakes of the swarm earthquake. The two mainshocks occurred
near the Pazarcik Fault and the Cardak Fault, as shown in Figure 2.

3.2. Datasets

In this study, to obtain the 3D deformation field of the Turkish earthquake, we used
three datasets: Sentinel-1 C-band data in Terrain Observation by Progressive Scans (TOPS)
mode, ALOS-2 L-band data in Scanning SAR (ScanSAR) mode, and optical image data
from the Sentinel-2 satellite in the 8-band. GPS data were used to verify the deformation
trends. The spatial coverage of these images is shown in Figure 2.

The Sentinel series comprises two satellites, A/B, in repetitive orbits. Sentinel-2 carries
the Multi-Spectral Imager (MSI) in push-sweep imaging mode with a spatial resolution of
up to 10 m across 13 multi-spectral bands. The near-infrared band (Band 8) has the widest
bandwidth (115 nm), which is more suitable for surface deformation monitoring than
several other bands (Bands 2/3/4) at the equivalent resolution [31]. The Sentinel-1 satellite
is equipped with a C-band SAR sensor with four imaging modes. All Sentinel-1/2 image
data are available from the Copernicus Center managed by the European Commission
(https://www.copernicus.eu/en, accessed on 22 March 2023). ALOS-2 is an L-band SAR
satellite, and its data can be obtained from the Japan Aerospace Exploration Agency.

https://www.copernicus.eu/en
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Figure 2. Overview of the study area and image coverage on a color-shaded elevation map. The
red pentagram indicates the hypocenter of Turkey’s strong February 2023 earthquake sequence
from GCMT. Black lines indicate active faults in the region, and the red circles are GPS stations in
the region.

Sentinel-2 images excel in capturing horizontal deformation. The ALOS-2 satellite is
sensitive to azimuth deformation signals. To obtain a complete 3D deformation field for
this seismic sequence, we combined Seninel-2 (Band 8) optical data (9 covers) with the SAR
data from Seninel-1 and ALOS-2 to calculate the 3D deformation. The satellite image data
information is shown in Table 1.

Table 1. Information for the selected SAR and optical data.

Sensor Master Image Cloud Slave Image Cloud Frame Number Data Processing
Method

Sentinel-2

20 January 2023 0.001 1 March 2023 16.88 T37SBC

SPC

25 January 2023 0.075 1 March 2023 6.188 T37SBB
25 January 2023 0.106 1 March 2023 0.280 T37SBA
10 January 2023 0.018 9 February 2023 0.056 T37SCC
25 January 2023 0.165 1 March 2023 5.402 T37SCB
20 January 2023 0.438 19 February 2023 5.924 T37SCA

13 November 2022 0.794 16 February 2023 13.63 T37SDC
22 January 2023 0.105 21 February 2023 0.582 T37SDB
22 January 2023 12.08 16 February 2023 0.104 T37SDA

Sentinel-1
29 January 2023 — 21 February 2023 — Frame 471 Path 21

POT
29 January 2023 — 21 February 2023 — Frame 465 Path 21
29 January 2023 — 21 February 2023 — Frame 460 Path 21

ALOS-2 16 September 2022 — 17 February 2023 — Row 2850 Path 77
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3.3. Optical Image Processing

We selected Sentinel-2 8-band images with minimal cloud interference acquired before
and after the strong earthquake for the experiment. Using the COSI-Corr software, we
processed these data based on SPC. The processing parameters are as follows: initial
sliding window of 64 × 64, final sliding window of 32 × 32, move step size of 3 pixels
(30 m), 2 iterations, and mask threshold of 0.90. The optical offset results cover the whole
earthquake sequence but have significant decorrelation noise, orbital error, stripe artifacts,
and satellite attitude distortions (Figure 3a,c), which need further processing.
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This earthquake occurred in February, so the optical images were heavily disturbed by
snow and cloud cover, resulting in a large amount of decorrelation noise on the northern
side of the Cardak Fault, which can be removed by setting a signal-to-noise ratio threshold.
The Sentinel-2 image without rigorous ortho-rectification and geometric correction will
introduce an orbital error, and they can be eliminated by establishing a polynomial surface
fitting model. The linear stripe artifacts that show a uniform distribution along the orbital
direction can be canceled by mean-sum subtraction [32]. The satellite attitude distortions
uniformly distributed along the cross-track direction can be reduced by using the improved
mean subtraction method. The initial offset fields in Figure 3a,c display jumps in the
individual inter-coverage errors, which are caused by discontinuities in the acquisition
time of each image pair.

After removing the errors, the optical offset results contain only the deformations
caused by the two strong earthquakes, with positive values denoting the east and north
deformation and negative values denoting the west and south deformations. The north–
south offset is disturbed by the terrain shadow, and the interpretation of the overall
deformation is not affected. The deformation field of the second Mw 7.7 earthquake is
weakened to a certain due to interference by snow and clouds, resulting in a signal loss
on both sides of the fault when the decoherence point is removed. By splicing the optical
offset results of 9 coverages (the overlap area was averaged), we found the rupture range
and displacement magnitude caused by the two strong earthquakes. The two strong
earthquakes have obvious left-lateral strike-slip characteristics, as shown in Figure 3b,d.
We assume that the deformation in the far-field region is close to 0. For the selected areas,
the root-mean-square error (RMSE) values of the east–west and north–south deformations
(as shown in the black rectangle in Figure 3a) are 0.27 m and 0.38 m, respectively, meeting
the accuracy level of SPC.

3.4. SAR Image Processing

We used GAMMA software to process the Sentinel-1 data and ALOS-2 data to extract
the range and azimuth offsets. For the Sentinel-1 data, we first coarsely registered the
data and set the multi-look ratio as 20:4 (range × azimuth) to suppress noise. The search
window size was 300 × 60, and the sliding step size was 20 and 4 pixels. The 30 m resolution
digital elevation model was used to correct the terrain phase component. To obtain a high
signal-to-noise ratio in the interferogram, we used the improved Goldstein filtering method
to filter the interferogram [33]. Polynomial fitting was employed to remove the offsets
caused by orbital errors. After that, the results were geocoded. For ALOS-2 data, we set the
multi-look ratio as 3:16 (range × azimuth), the search window size as 60 × 320, and the
sliding step size as 3 and 16 pixels.

The results show that the azimuth offset of Sentinel-1 is seriously disturbed by iono-
spheric errors, but the range offset captures the deformation characteristics of the ruptured
fault. The fault rupture trend and deformation magnitude align with the offset obtained
from Sentinel-2 optical images. Combining the range offset with the optical offset can
improve the accuracy of the 3D deformation estimation. In addition, introducing ALOS-2
data can compensate for the defects of Sentinel-1. Thus, we did not consider the Sentinel-1
azimuth offset. We selected the far-field region (the black rectangle in Figure 4a) to calculate
the RMSE and obtained 0.08 m. The results for the ALOS-2 offset are 0.15 m and 0.22 m for
the range and azimuth offsets, respectively, meeting the POT accuracy level.
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Figure 4. Coseismic deformation obtained from Sentinel-1 (S1) and ALOS-2 (A2) images. Images
in (a,b) represent the range offsets, and the image in (c) represents the azimuth offset. Black lines
indicate seismogenic faults. The dotted rectangle in (a) was selected to calculate RMSE.

4. Coseismic 3D Deformation Field
4.1. 3D Deformation Solution

Since SAR and optical images have different coverages and spatial resolutions, we
used the overlapping area of optical and SAR data as the cutting boundary, cut it to the
same coverage area, and downsampled them to obtain the same resolution (60 m) for the
data fusion calculation (Figure 5a–e). We used the optical images to capture the horizontal
deformation and combined it with the offset of the SAR data to generate the 3D deformation
of the Turkey earthquake sequence using Equation (3) (Figure 5f–h).

The results show that the two left-lateral strike-slip earthquakes caused surface rup-
tures spanning over 200 km. The Mw 7.8 earthquake caused ruptures longer than 300 km
and deformations of more than 5 m on both sides of the fault. The vertical deformation
is small. The western end of the north side of the Mw 7.7 earthquake fault has some
subsidence. The deformation field suggests that the displacements induced by these two
strong earthquakes are predominant in the east–west direction.

4.2. Accuracy Verification

We used GPS data to assess the reliability of the 3D deformation field [34,35], as there
are some GPS stations distributed in the vicinity of the earthquake faults in Turkey. Since
GPS data provide reliable results for the horizontal axis only, we focused on comparing
the deformation trends. To evaluate the system error removal and the accuracy of the
3D deformation calculation, we collected the GPS data from 7 sites (GPS data provided
by TUSAGA-Aktif system, https://www.tusaga-aktif.gov.tr/, accessed on 14 February
2023) around the fault and within the coverage of ALOS-2 and Sentinel-1/2. We extracted
the displacements caused by the earthquake from the GPS observations; Sentinel-1/2 and
ALOS-2 were not able to separate the deformations caused by the two earthquakes, so
we combined the deformations observed by GPS and plotted them as vectors to compare
with the horizontal displacement vectors, as shown in Figure 6. We found good agreement
between the vectors obtained by GPS (red vectors in Figure 6a) and the horizontal vectors
(black vectors in Figure 6a). The offsets at the ante and tuf1 points were not compared due
to residual terrain-shading errors and missing data. GPS data also show no large vertical
deformations (Figure 6b). The results demonstrate that fusing optical and SAR data is
effective in generating the 3D deformation fields, and the observations from both types of
data capture the surface motion signal well.

https://www.tusaga-aktif.gov.tr/


Remote Sens. 2023, 15, 2656 9 of 13

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

4. Coseismic 3D Deformation Field 
4.1. 3D Deformation Solution 

Since SAR and optical images have different coverages and spatial resolutions, we 
used the overlapping area of optical and SAR data as the cutting boundary, cut it to the 
same coverage area, and downsampled them to obtain the same resolution (60 m) for the 
data fusion calculation (Figure 5a–e). We used the optical images to capture the horizontal 
deformation and combined it with the offset of the SAR data to generate the 3D defor-
mation of the Turkey earthquake sequence using Equation (3) (Figure 5f–h). 

 
Figure 5. Seismic deformation field of the Turkey earthquake sequence in February 2023. Images in 
(a–e) represent the optical and SAR offsets with the same resolution and coverage. Images in (f–h) 
represent the obtained 3D deformation field, and the vector in (h) represents the horizontal displace-
ment. 

The results show that the two left-lateral strike-slip earthquakes caused surface rup-
tures spanning over 200 km. The Mw 7.8 earthquake caused ruptures longer than 300 km 
and deformations of more than 5 m on both sides of the fault. The vertical deformation is 
small. The western end of the north side of the Mw 7.7 earthquake fault has some 

Figure 5. Seismic deformation field of the Turkey earthquake sequence in February 2023. Images in (a–e)
represent the optical and SAR offsets with the same resolution and coverage. Images in (f–h) represent the
obtained 3D deformation field, and the vector in (h) represents the horizontal displacement.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

subsidence. The deformation field suggests that the displacements induced by these two 
strong earthquakes are predominant in the east–west direction. 

4.2. Accuracy Verification 
We used GPS data to assess the reliability of the 3D deformation field [34,35], as there 

are some GPS stations distributed in the vicinity of the earthquake faults in Turkey. Since 
GPS data provide reliable results for the horizontal axis only, we focused on comparing 
the deformation trends. To evaluate the system error removal and the accuracy of the 3D 
deformation calculation, we collected the GPS data from 7 sites (GPS data provided by 
TUSAGA-Aktif system, https://www.tusaga-aktif.gov.tr/, accessed on 14 February 2023) 
around the fault and within the coverage of ALOS-2 and Sentinel-1/2. We extracted the 
displacements caused by the earthquake from the GPS observations; Sentinel-1/2 and 
ALOS-2 were not able to separate the deformations caused by the two earthquakes, so we 
combined the deformations observed by GPS and plotted them as vectors to compare with 
the horizontal displacement vectors, as shown in Figure 6. We found good agreement be-
tween the vectors obtained by GPS (red vectors in Figure 6a) and the horizontal vectors 
(black vectors in Figure 6a). The offsets at the ante and tuf1 points were not compared due 
to residual terrain-shading errors and missing data. GPS data also show no large vertical 
deformations (Figure 6b). The results demonstrate that fusing optical and SAR data is ef-
fective in generating the 3D deformation fields, and the observations from both types of 
data capture the surface motion signal well. 

 
Figure 6. Comparison of the generated 3D deformation field with GPS vectors. (a) Horizontal de-
formation. Black arrows represent the horizontal vector in the 3D deformation field, and red arrows 
are the GPS vector. (b) Vertical deformation. The red vector represents uplift and blue arrow repre-
sents subsidence. 

5. Discussion 
5.1. Three-Dimensional Deformation Characteristics 

The generated coseismic 3D deformation field shows that the Mw 7.8 earthquake 
ruptured four segments of the EAF, spanning over 300 km from south to north: Pazarcik, 
Erkenek, Pütürge, and Amanos. The west and east parts of the seismogenic fault move 
southwest and northeast, respectively (Figure 5h), showing a left-slip rupture feature. The 
analysis of the east–west horizontal deformation profile shows that the horizontal defor-
mation is concentrated in the near-field area of the Pazarcik and Erkenek segments, with 
cross-fault deformation volumes reaching 6.2 m and 5.7 m, respectively. The vertical de-
formation reveals a predominant uplift in the near-field area on the east side of the 

Figure 6. Comparison of the generated 3D deformation field with GPS vectors. (a) Horizontal
deformation. Black arrows represent the horizontal vector in the 3D deformation field, and red
arrows are the GPS vector. (b) Vertical deformation. The red vector represents uplift and blue arrow
represents subsidence.



Remote Sens. 2023, 15, 2656 10 of 13

5. Discussion
5.1. Three-Dimensional Deformation Characteristics

The generated coseismic 3D deformation field shows that the Mw 7.8 earthquake
ruptured four segments of the EAF, spanning over 300 km from south to north: Pazarcik,
Erkenek, Pütürge, and Amanos. The west and east parts of the seismogenic fault move
southwest and northeast, respectively (Figure 5h), showing a left-slip rupture feature. The
analysis of the east–west horizontal deformation profile shows that the horizontal defor-
mation is concentrated in the near-field area of the Pazarcik and Erkenek segments, with
cross-fault deformation volumes reaching 6.2 m and 5.7 m, respectively. The vertical defor-
mation reveals a predominant uplift in the near-field area on the east side of the Pazarcik
and Erkenek segments, with a maximum value of 0.8 m, indicating that the earthquake
had a thrust component. The 3D deformation shows that the rupture is dominated by a
left-lateral strike-slip with a thrust component, consistent with the focal mechanism from
the GCMT (sliding angle of 11 degrees). Nalbant et al. [36] analyzed the regional Coulomb
stress changes and found that the two seismic gaps on the EAF, namely, the Pazarcik and
Erkenek segments, experienced a large stress increase in 2002. They reported that these
seismic gaps have the potential to produce earthquakes of magnitude 7.3 or above. The
occurrence of the Mw 7.8 earthquake confirmed this speculation.

The Mw 7.7 earthquake in the earthquake sequence ruptured three secondary faults
on the west side of the EAF, including the nearly east–west-trending Cardak Fault, the
northeast-trending Dogansehir Fault, and a 30 km nearly north–south-trending segment
that had not ruptured previously. The total rupture length is more than 200 km. The hori-
zontal deformation shows that the earthquake was characterized by a left-lateral strike-slip
rupture, with the south and north parts of the seismogenic fault moving southeastward and
northwestward, respectively (Figure 5h). The horizontal deformation is most pronounced
in the near-field area of the Cardak and Dogansehir segments, with the cross-fault deforma-
tion of the Cardak segment reaching 8.1 m. The vertical deformation shows subsidence
in the near-field area to the northwest of the Cardak segment, with a value of 0.7 m. The
3D deformation field shows that the earthquake rupture is dominated by a left-lateral
strike-slip with a normal dip-slip component, which aligns with the focal mechanism (slip
angle of −8 degrees) given by GCMT.

We analyzed six profiles from the horizontal deformation, as shown in Figure 7g. The
surface deformation is mainly in the E-W direction. The new rupture segment resulting
from the Mw 7.8 earthquake shows two jumps in profile F-F1, with over 3.2 m deformation
in the E-W direction (Figure 7f). Additionally, profiles A-A1 and B-B1 show that the
Mw 7.7 earthquake caused 7.8 m and 5 m deformations in the E-W direction, respectively
(Figure 7a,b). Profile E-E1 shows that the Mw 7.8 earthquake caused over 5.8 m E-W
deformation (Figure 7e).

5.2. Fusion of Optical and SAR Data

Fusing SAR and optical offsets is an important way to estimate 3D deformation. How-
ever, the accuracy of the obtained 3D deformation can be limited by the quality of SAR
and optical data, original image resolution, system error removal, and the determina-
tion of weight. Using the Sentinel-1 images in TOPS mode, we can obtain high-precision
range offsets. The ALOS-2 images in ScanSAR mode are sensitive to deformation in the
azimuth direction. Combining these two data sources offers high-precision range and
azimuth offsets. Image geodesy offers advantages over traditional methods, allowing for
large-scale, long-term, and high-accuracy observations of the Earth. The optical satellite
has a short revisit period and can provide a large amount of archive data, compensat-
ing for the deformation that large terrain undulations and terrain shadows will mask.
Multi-coverage optical images can also meet the monitoring requirements of wide-area
deformation monitoring [37]. The offsets of multiple coverages can be spliced after system-
atic error removal. With the advances made in removing remote sensing satellite system
errors, the rapid capturing of surface deformation has become possible. Image geodesy
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has become an important method for deformation monitoring, particularly in the case of
large-scale deformations caused by earthquakes, landslides, and other disasters [38,39].
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6. Conclusions

In this study, the POT and SPC methods were used to extract the coseismic deformation
field of the February 2023 Turkey earthquake sequence. The sub-pixel-level horizontal de-
formation was obtained from optical images, and the range and azimuth deformations were
extracted from SAR images. These offsets were fused by the weighted least-squares method
to generate a 3D deformation field. The results show the following: (1) Fusing SAR and
optical images can reveal the large and complex rupture and surface deformation caused by
the Turkey earthquake. Multi-coverage optical images can be used for monitoring surface
deformation over a large area. The optical image offsets are susceptible to interference from
topographic shadows, particularly in the N-S offset. The combination of Sentinel-1 and
ALOS-2 provides excellent range and azimuthal observations. (2) The generated coseismic
3D deformation field shows that the Mw 7.8 earthquake ruptured four segments of the
EAF, with a cross-fault deformation of over 5 m. The Mw 7.7 earthquake ruptured three
secondary faults on the west side of the EAF, with cross-fault deformation exceeding 8 m.
(3) The two ≥ Mw 7.7 earthquakes were both left-lateral strike-slip earthquakes, causing
predominant E-W surface deformation and slight vertical deformation. These findings can
be used to constrain sliding inversion models, evaluate dynamic stress changes, analyze
the spatial location as well as the intensity of the earthquake source, and understand the
geometric properties of the seismogenic fault. Fusing SAR and optical images enables the
rapid acquisition of deformation signals in geohazard monitoring, especially for hazards
with large deformation gradients and rupture areas.
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