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Abstract: Distributed radar systems promise to significantly enhance target localization by virtue of
the superiority of multi-view observations from widely separated radars, compared to their monos-
tatic counterparts. Nevertheless, when the radar number is limited, performing target localization
bears the brunt of the parameter identifiability requirement that the parameter number must be no
less than the number of independent measurements. In this way, the canonical two-stage target local-
ization method, as well as its developments, is no longer appropriate for direct application. Hence, in
this paper, we propose a novel target localization method using time-difference-of-arrival (TDOA)
measurements with the minimum number of radars under platform position uncertainties. The
referred distributed system is a bistatic multi-receiver system, where the primary signal is transmitted
by a geostationary Earth orbit (GEO) satellite while receivers are equipped on several unmanned
aerial vehicles (UAVs). In the first stage, the reference range from the reference radar to the target is
estimated by a quadratic function, and then the weighted least squares (WLS) solution of the target
location is updated by substituting the range estimate back into it. In the second stage, we invoke
the Taylor series approximation to further refine the target localization obtained by the first stage.
It can be foreseen that the developed method is beneficial for scenarios with a limited number of
radars, including engineering projects such as fire control, surveillance, and guidance, to support
high-accuracy target localization. The simulation results show the superiority of the localization
performance of the proposed method over other existing methods.

Keywords: weighted least squares (WLS); time difference of arrival (TDOA); platform position error;
target localization

1. Introduction

Target localization with spatially distributed radars has drawn more and more at-
tention to provide a location for the effective implementation of information-snooping
electronic countermeasures (ECM) and even-final precision strikes in the background of
modern warfare [1–3]. Generally, target localization with multiple radars can be catego-
rized into direct methods and indirect methods. For the former type, target parameters are
directly estimated from received echo signals [4–6]. For the latter type, the target measure-
ments are extracted from the returns followed by solving linearized equations to acquire
those parameters [7–10]. Although the direct approach seems to have a more intuitive
formulation, solving the direct localization problem is more difficult. Moreover, the direct
approach is vulnerable to parametric model mismatch and bears a heavy computational
burden. Therefore, we resort to the indirect approach for our work in this paper.

Similar to the application of satellite navigation and positioning [11,12], the key to
both problems lies in determining the location of the target of interest using received target
echoes or obtained target measurements. However, satellite navigation and positioning
are different from target localization in that the relationship between the radar system and
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the object is cooperative. In this case, the ground observation station sends the precise
satellite ephemerides to the user, and then the user calculates its current location itself by
combining the ephemerides and the received echoes/measurements, or by saying that the
user obtains its 3D coordinates in an active way. For the target localization, this relationship
is noncooperative. The target is detected first and then localized using the received data at
the processing center in a passive manner.

Before performing target localization, whether or not target parameters are identifiable
is a required prerequisite. If time-of-arrival (TOA) measurements are employed to localize
an aerial target, there are at least three radars required excluding pathological configura-
tions. On the other hand, if time-difference-of-arrival (TDOA) measurements are used,
the number should be no less than four [2]. Furthermore, it is worthwhile to note that the
parameter identifiability condition does not necessarily satisfy the localization accuracy. If
one stipulates a localization accuracy, the radar network should be optimized involving
more radars [13–15].

The TDOA target localization problem has been intensively investigated in the
fields of communication, radar, and sonar. Although the measurements obtained are
distinct, their localization processes are analogous. In early times, Fang et al. developed
a closed-form solution [16] for when the number of TDOA measurements is equal to
the target parameter number, whereby an additional piece of information is invoked.
The more general case was researched by Smith [7], Friedlander [17], and Schau [18].
However, their developments were not optimum. With an initial guess, the Taylor series
method [19,20] is a good candidate, but its estimates suffer from local minima once the
initial guess deviates from the true values to some extent. The two-stage hyperbolic
location estimator [21] proposed by Chan and Ho is one of the most efficient methods
for target localization using TDOA measurements. In the first stage, the target location,
as well as the reference range, i.e., the range from the reference radar to the target, is
collected as a parameter vector to be estimated, and the arranged parameter vector is
resolved by transforming the group of nonlinear equations into linear equations. In
the second stage, the target location can be refined by a combination of the estimated
reference range and the obtained statistics of target location estimates in the first stage.
Although the case of three sensors was considered in this study, the sensor positions
were exactly known. To take the platform position uncertainty into account, at the 2004
International Symposium on Circuits and Systems (ISCAS) conference, Ho and Parith
further improved the two-stage method to dispose of the problem related to erroneous
positions [22]. Accordingly, a two-stage target localization method using both TDOA
and frequency-difference-of-arrival (FDOA) measurements [23], where positions are
imprecisely known, was developed by Ho and Lu to improve target location accuracy to
a certain extent, in addition to the extra ability to acquire the target velocity estimation
using FDOA measurements. However, the introduction of the stated nonlinear rela-
tionships led to a notable degradation of the localization accuracy with the increase in
platform position errors. Moreover, the authors of [24,25] applied the first-order Taylor
series approximation process, instead of the refinement in the second stage, to avoid a
nonlinear operation for the target location. As a result, the localization accuracy was
ameliorated even with large position errors. Another improved method was proposed
in [26], dedicated to improving target localization accuracy by directly exploiting the
connection between the reference range and the target location in the first stage. How-
ever, it was designed for the case of absent position errors, while also lacking the target
location refinement in the second stage. Furthermore, TDOA localization for locating
multiple disjoint sources was studied in [27], where the fact that TDOA measurements
from different targets produce the same position displacements was exploited to improve
performance. Furthermore, Sun dealt with this problem using both TDOA and FDOA
measurements in [28], while Lu improved the technique in [29] via new second-stage
processing. To handle robust target localization, Cheung and Ma established a network
of sensors within the framework of maximum likelihood estimation (MLE) [30]. By
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converting the original nonconvex problems into convex ones, the SDP solver was em-
ployed to yield a satisfying solution. The authors of [31,32] further tackled this problem
from the perspective of convex optimization, and the estimation results matched the
optimal performance. Additionally, in a similar way, TDOA-based target localization
was extensively investigated in distributed multiple-input multiple-output (MIMO)
systems by Amiri and Behnia [33–36], and they also extended their research to the case
of clock synchronization errors [37].

In summary, the stated localization techniques involve a variety of system pertur-
bations in practical scenarios. However, the fact that the number of deployed radars is
limited was ignored during their design. Actually, the radar number is extraordinarily
valuable, especially for some military applications. Therefore, it is desired to achieve the
required localization accuracy by reducing the radar number as much as possible. In this
regard, we find out that the state-of-the-art two-stage methods add the reference range into
the parameter vector of interest; thus, the required minimum number of deployed radars
decreases to five, which brings about an additional burden of required radars. Therefore, in
this paper, a novel two-stage aerial target localization method using TDOA measurements
with a minimum number of receiving radars is proposed. By exploiting the relationship
between the reference range and target location, as well as a priori statistics of platform
position errors, we update the reference range and the target location in an iterative way to
avoid the estimation of the reference range. As a result, the required minimum number
of radars is reduced. Lastly, the effectiveness of our proposed methods is verified by
simulation results.

The remaining sections are structured as follows: in Section 2, the multi-radar localiza-
tion model and the proposed two-stage method using TDOA measurements are discussed
in detail; numerical results are presented in Section 3 to verify the effectiveness of the
proposed method, and the corresponding advantages are summarized in Section 4; lastly,
we draw a brief conclusion in Section 5.

Notation: In this paper, vectors are denoted by boldface lowercase letters and matrices
are represented by boldface uppercase letters. Superscripts T and H on a matrix or a
vector denote the transpose and Hermitian transpose operations, respectively. E{·} is
used to denote the statistical expectation operator, and ()−1 the inverse operator. Im is
an m×m identity matrix, while 1m×1 is a vector of all ones. Lastly, || · || represents the l2
Euclidean norm.

2. Materials and Methods
2.1. Basic Signal Model

Consider a space–air integrated distributed radar system composed of a geostationary
Earth orbit (GEO) spaceborne radar, served as a transmitter and K unmanned aerial vehicle
(UAV) airborne radars as receivers, as shown in Figure 1. When the measurement error and
the satellite orbit error are considered, we can obtain the GEO satellite navigation position
¯
s =

[
sx, sy, sz

]T by invoking the imprecise information from the Global Navigation Satellite

System (GNSS). However, the actual position s =
[
sx, sy, sz

]T is unknown and is expressed

by s =
¯
s + ∆s, where ∆s =

[
∆sx, ∆sy, ∆sz

]T represents the three-dimensional (3D) GEO
satellite position error. Without loss of generality, ∆s obeys Gaussian distribution with zero
mean and the following covariance matrix:

Qs = E
{

∆s∆sT
}

. (1)
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Figure 1. The space–air integrated TDOA localization.

Likewise, the actual position of the k-th UAV position uk =
[
uxk, uyk, uzk

]T
is per-

turbed from the navigation position uk =
[
uxk, uyk, uzk

]T
by its 3D platform position error

∆uk =
[
∆uxk, ∆uyk, ∆uzk

]T
due to the measurement uncertainty and nonstationary flight

motion. Here, position errors among different UAVs are assumed uncorrelated with each
other, and the k-th UAV position error is Gaussian distributed with zero mean and the
following covariance matrix:

Qu = E
{

∆u∆uT
}

, (2)

where ∆u =
[
∆uT

1 , ∆uT
2 , · · · , ∆uT

K
]T.

To cater to a more practical localization scenario, the range measurements from the
GEO satellite to an aerial target of interest, to UAVs are gathered to perform the target
localization, with the assistance of the prior statistics of position errors, in our designed
framework. In view of the relationship between the TDOA and the range difference of
arrival (RDOA), τ = r/c, where c is the speed of light. It is worthwhile to note that
we interchange the terms TDOA and RDOA hereafter for their equivalence. The aerial
target to be located is at the coordinate p =

[
xp, yp, zp

]T; then, the bistatic range between
the navigation position from the GEO satellite and the k-th UAV navigation position is
expressed as

ro
Tk = ro

T + ro
k = ‖s− p‖2 + ‖uk − p‖2. (3)

Furthermore, the corresponding bistatic pseudo-range for the transmit/receive pair (T, k),
where T denotes the transmitter, is given by

rTk = rT + rk, (4)

where rT = ||s− p||2 represents the noiseless range from the GEO satellite to the target,
and rk = rk + nk indicates the noisy range measurement from the target to the k-th receiv-
ing radar; rk = ||uk − p||2 is the noiseless range, and nk is the measurement noise. By
differencing the range measurement rTk to the reference one, i.e., rT1, we can obtain the k-th
TDOA measurement as follows:

rk1 = rTk − rT1 = ‖uk − p‖2 − ‖u1 − p‖2 + nk1, (5)
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where nk1 = nk − n1 is the TDOA noise measurement. Collecting the TDOA measurements
from all receiving radars into a vector, Equation (5) can be written as

r1 = [r21, · · · , rK1]
T = r1 + n1, (6)

where r1 = [r21, · · · , rK1]
T represents the TDOA measurement vector for the navigation

position with rk1 = ||uk − p||2− ||u1− p||2, and n1 = [n21, · · · , nK1]
T represents the TDOA

noise measurement vector obeying the zero-mean Gaussian distribution with the following
covariance matrix:

Qn1 = E
{

n1nT
1

}
. (7)

The TDOA noise measurement vector n1 and the position error vector ∆u are mutually
uncorrelated.

The objective of this paper is to perform 3D target localization with the number of
receiving radars as low as possible in the presence of the GEO satellite and UAV position
uncertainties. In the next section, we propose a two-stage WLS solution to tackle this
problem. It should be emphasized that our localization method is not difficult to extend to
the case of multiple transmitters, without needing many modifications.

2.2. Stage 1: Estimation of the Reference Range and the Target Location in an Iterative Way

The noiseless TDOA measurement rk1 = rTk − rT1 and the bistatic range rTk = rT + rk
can be combined, yielding

rk1 = rk − r1. (8)

From Equation (8), we show that the influence of the GEO satellite position error on
target localization can be removed by employing TDOAs. Rearranging Equation (8) as
rk1 + r1 = rk and squaring both sides, we can get the following [21]:

r2
k1 + 2rk1r1 = Sk − S1 − 2(uk − u1)

Tp, (9)

where Sk = uT
k uk. Moreover, substituting uk = uk +∆uk and rk1 = rk1− nk1 into Equation (9)

and ignoring the second-order error terms [22,23], the equation error of Equation (9) is
approximately expressed as

ςk1 , 2nk1ro
1 − 2(uk − p)T∆uk + 2(u1 − p)T∆u1 ≈ r2

k1 − Sk + S1 + 2(uk − u1)
Tp + 2rk1ro

1, (10)

where Sk = uT
k uk. Stacking Equation (10) for all transmit/receiver pairs in a matrix

form yields
ς1 = h1 −G1ϕ1, (11)

where ϕ1 =
[
pT, ro

1
]T, ς1 = [ς21, · · · , ςK1]

T, and

h1 =

 r2
21 − S2 + S1

...
r2

K1 − SK + S1

, (12)

G1 = −2


(u2 − u1)

T r21
...

...
(uK − u1)

T rK1

. (13)

Note that the number of unknown parameters in ϕ1 is four, while the obtained TDOA
measurement number is (K− 1) . As a result, if we apply the canonical Chan-Ho technique
to solve the problem directly, then K ≥ 5 receiving radars are deployed to meet the
requirement of the parameter identifiability. Otherwise, the larger number of unknown
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parameters than TDOA measurements would induce a trivial localization result. Hence,
we rewrite Equation (11) as

ς1 = h1 + 2r1ro
1 −

^
G1p, (14)

where

^
G1 = −2


(u2 − u1)

T

...
(uK − u1)

T

. (15)

Invoking the Gauss–Markov theorem [38] in Equation (14), we can obtain the WLS
estimate of p by minimizing ςT

1W1ς1 as

p̂ = (
^
G

T

1 W1
^
G1)

−1^
G

T

1 W1(h1 + 2r1ro
1), (16)

where W1 = E
{

ς1ςT
1
}−1 is the weighting matrix. Similar to the techniques in [21,26], we

substitute p̂ in Equation (16) back into the reference range ro
1, yielding∥∥∥∥∥(^GT

1 W1
^
G1)

−1^
G

T

1 W1(h1 + 2r1ro
1)− u1

∥∥∥∥∥
2

≈ ro
1. (17)

After some mathematical manipulations, we obtain

Aro
1

2 + Bro
1 + C = 0, (18)

where

A = 4

∥∥∥∥∥(^GT

1 W1
^
G1)

−1^
G

T

1 W1r1

∥∥∥∥∥
2

2

− 1, (19)

B = 4

[
(
^
G

T

1 W1
^
G1)

−1^
G

T

1 W1h1 − u1

]T

(
^
G

T

1 W1
^
G1)

−1^
G

T

1 W1r1, (20)

C =

∥∥∥∥∥(^GT

1 W1
^
G1)

−1^
G

T

1 W1h1 − u1

∥∥∥∥∥
2

. (21)

The weighted matrix W1 can be derived as a function of the statistics of position error
in the a priori information. From Equation (10), rearranging ς1 yields

ς1 = A1n1 + B1∆u =
[
A1 B1

][n1
∆u

]
, (22)

where

A1 = 2

ro
2 · · · 0
...

. . .
...

0 · · · ro
K

, (23)

B1 = 2


(u1 − p)T −(uk − p)T · · · 01×3

(u1 − p)T ...
. . .

...
(u1 − p)T 01×3 · · · −(uk − p)T

, (24)

In this way, the weighted matrix W1 is

W1 =
(

A1Qn1AT
1 + B1QuBT

1

)−1
. (25)
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Nevertheless, the nominal ranges and directions from the target to the receiving radars
in A1 and B1 are unknown for the WLS solution in Equation (16). Here, we would introduce
an iterative way to update W1 and p̂ alternatively. For the first iteration, we assume that the
target ranges and directions are approximately equal; then, A1 and B1 can be simplified to

A1 ≈ IK−1, (26)

B1 ≈

11×3 −11×3 · · · 01×3

11×3
...

. . .
...

11×3 01×3 · · · −11×3

. (27)

Solving the quadratic Equation (18) to produce the estimate of reference range r̂o
1 and

substituting it back into Equation (16), we obtain the first-stage target localization estimate:

p̂I = (
^
G

T

1 W1
^
G1)

−1^
G

T

1 W1(h1 + 2r1r̂o
1). (28)

Most importantly, we emphasize here that there must be only four radars participating
in the first stage even though excess radars are available.

2.3. Stage 2: Refinement of the Target Location Using Taylor Series Approximations

Since the aerial target localization is implemented by a lower number of receiving
radars, the target localization accuracy can be further improved by applying the first-order
Taylor series expansion [24,25,39] to rk1 at the first-stage estimate of the target location, i.e.,

rk1 ≈ ‖uk − p̂I‖2 − ‖u1 − p̂I‖2 + (αk −α1)
T∆pI +α

T
k ∆uk −αT

1 ∆u1 + nk1, (29)

where ∆pI = p− p̂I is the estimation bias of the target location in the first stage, and
αk = (uk − p̂I)/||uk − p̂I ||2 is the unit steering vector from the target to the k-th receiving
radar. Similar to Equation (10), the equation error of Equation (29) is

ςk2 = nk1 +α
T
k ∆uk −αT

1 ∆u1 = rk1 − ‖uk − p̂I‖2 + ‖u1 − p̂I‖2 − (αk −α1)
T∆pI . (30)

Once again, stacking Equation (30) leads to

ς2 = h2 −G2∆p, (31)

where ς1 = [ς21, · · · , ςK1]
T,

h2 =


r21 −

∥∥∥u2 − p̂I
∥∥∥

2
+
∥∥∥u1 − p̂I

∥∥∥
2

...
rK1 −

∥∥∥uK − p̂I
∥∥∥

2
+
∥∥∥u1 − p̂I

∥∥∥
2

, (32)

G2 =


(α2 −α1)

T

...
(αK −α1)

T

. (33)

Then, the WLS solution of ∆pI remaining in the first stage is

∆p̂I =
(

GT
2 W2G2

)−1
GT

2 W2h2, (34)
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where W2 = E
{

ς2ςT
2
}−1. Now, let us calculate the weighted matrix W2. By rearranging ς2,

we get

ς2 = A2n1 + B2∆u =
[
A2 B2

][n1
∆u

]
. (35)

Similarly, the iteration technique is used again, and the initial guesses of A2 and B2
are given by

A2 = A1, (36)

B2 =

−α
T
1 αT

2 · · · 01×3

−αT
1

...
. . .

...
−αT

1 01×3 · · · αT
K

. (37)

Hence, the weighted matrix W2 is

W2 =
(

A2Qn1AT
2 + B2QuBT

2

)−1
. (38)

Lastly, we combine Equations (28) and (34), and the second-stage target localization
becomes

p̂II = p̂I + ∆p̂I . (39)

Furthermore, the flowchart of the proposed TDOA-based target localization method is
shown in Figure 2.

Figure 2. The flowchart of two-stage target localization method using TDOA measurements.
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2.4. Cramer–Rao Lower Bound (CRLB)

The CRLB is commonly used as a benchmark to place a lower bound of any unbiased
estimator for the parameter of interest [38]. In this section, the CRLB for target localization
is derived in order to evaluate the performances of different methods.

The parameter vector of interest is defined as follows:

θ ,
[
pT, uT

]T
, (40)

which is collected from the actual position of receiving radars. The logarithmic version of
the probability density function (PDF) is constructed by utilizing TDOA measurements
and a priori statistics of position errors:

u =
[
uT

1 , uT
2 , · · · , uT

K

]T
, (41)

ln f (θ) = −1
2

(
r1 −

¯
r 1

)H
Q−1

n1

(
r1 −

¯
r 1

)
− 1

2
(u− u)HQ−1

u (u− u), (42)

where all UAV navigation positions are arranged into a vector as follows:

u =
[
uT

1 , uT
2 , · · · , uT

K

]T
. (43)

Then, the CRLB of parameter vector θ, calculated by the inversion of the Fisher
information matrix (FIM), is given by

CRLB(θ) = J−1(θ) = −E
[

∂2 ln f (θ)
∂θ∂θT

]−1

=

[
X Y

YT Z

]−1

, (44)

where

X = −E
[

∂2 ln f (θ)
∂p∂pT

]−1

=

∂r1

∂p

T

Q−1
n1

∂r1

∂p

, (45)

Y = −E
[

∂2 ln f (θ)
∂p∂uT

]−1

=

∂r1

∂p

T

Q−1
n1

∂r1

∂u

, (46)

and

Z = −E
[

∂2 ln f (θ)
∂u∂uT

]−1

=

∂r1

∂u

T

Q−1
n1

∂r1

∂u

+ Q−1
u , (47)

with the Jacobian transformation matrices∂r1

∂p

 =

[
u2 − p
||u2 − p||2

− u1 − p
||u1 − p||2

, . . . ,
uK − p
||uK − p||2

− u1 − p
||u1 − p||2

]
, (48)

and

∂r1

∂u

 =



u1−p
||u1−p||2

. . . u1−p
||u1−p||2

− u2−p
||u2−p||2

0
. . .

0 − uK−p
||uK−p||2

. (49)
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Furthermore, we apply the matrix inverse lemma [40] to Equation (44). The CRLB for
target localization is modified as follows [16]:

CRLB(p) = X−1 + X−1Y
(

Z− YTX−1Y
)−1

YTX−1. (50)

Lastly, the minimum variance of the target location error is calculated by the matrix
trace in Equation (50).

3. Results

This section provides two cases of experiments, where the minimum number of
receiving radars for TDOA aerial target localization, i.e., K = 4 is evaluated first, followed
by the results for the cases of more receiving radars. The WLS-Ho method [22,23] and the
WLS-Mao method [25] are introduced as the compared methods. It is assumed that the
radar transmitter is equipped on a GEO satellite, with an altitude of 36,000 km. Unless
otherwise specified, the signal carrier frequency is 1.25 GHz. The unequal target SNRs
are measured with respect to different bistatic ranges. Here, the 3D position errors of
the satellite transmitter and receiving radars are both Gaussian-distributed. For each
dimension, both types of position errors are zero mean, while their variances are fixed as
100 m and 0.25 m, respectively. All results are averaged over 2000 independent Monte
Carlo trials.

3.1. TDOA Target Localization with the Minimum Number of Radars

First, we consider the target localization in the absence of position errors. The
UAV navigation positions are at the coordinates [100 × 103, 100 × 103, 23 × 103]T

m, [200 × 103, 300 × 103, 22 × 103]T m, [−400 × 103, 100 × 103, 23 × 103]T m, and
[200 × 103, 300 × 103, 25 × 103]T m, respectively. Under the minimum number of four
receiving radars, the RMSEs of the target location versus the relative SNR are depicted
in Figure 3. The relative SNR is defined as the SNR calculated relative to the reference

receiving radar. The RMSE is computed as RMSE =
√

∑U
u=1‖pu − p‖2

2/U, where pu
is the u-th target location estimation, and U is the trail number. The black solid lines
denote the CRLB, and the red dashed lines represent the proposed method, where the
cases of the target inside and outside the radar network are marked by the plus sign
and square, respectively. In Figure 3, we show that, as the relative SNR increases, the
RMSE of the target location is decreased, or the localization accuracy is improved. In
high-SNR regions, the proposed method can approach the theoretical CRLB. Compared
to other WLS methods, the proposed method additionally considers the relationship
between the target location and the reference range. Hence, by substituting the location
parameters into the reference range, the estimation progresses of the target location and
the reference range can be separated, which yields a lower required number of radars for
the localization. After the target location is estimated in Stage 1, we can further refine the
estimation results using the Taylor series approximation method in Stage 2, regardless of
whether the position of the reference radar is uncertain or not. In this way, the influence
of the position uncertainty weakens. Meanwhile, it is not difficult to demonstrate that
a more distributed radar configuration yields better localization accuracy. Owing to
the parameter unidentifiability of either the WLS-Ho method or the WLS-Mao method
under four radars, their results are trivial and are not displayed here.
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Figure 3. The RMSE of the target location versus relative SNR in the absence of position errors.

Then, we consider the case of the radar network with position errors. Still under four
radars, Figure 4 exhibits the RMSE of the localization versus the relative SNR. We employ
the plus sign and circle to represent the localization in the absence and in the presence of
the position errors, respectively. Again, in both cases, our proposed method could attain
the CRLB criteria as the relative SNR increases, implying that this method is robust enough
against the position uncertainty. Moreover, we show that the localization performance of
the former case in high-SNR regions deviates from that of the latter case, which is explained
by the result of limited position accuracy. Once the position accuracy is improved, one can
expect a more relatively accurate localization.

Figure 4. The RMSE of the target location versus the relative SNR in the presence of position errors.

Next, we study the case of the RMSE of the localization versus UAV position error
variance in Figure 5. The upward-pointing triangle, point, and downward-pointing triangle
represent the cases with error variance underestimation, exactly known, and overestimation,
where the three cases correspond to 10% of the error variance, unchanged error variance,
and tenfold the real error variance, respectively. As the position error variance increases,
we can show that the localization accuracies gradually shrink. Nevertheless, we find that
the proposed method can still approximate the performance bound to a certain extent.
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In Figure 5, the RMSEs of these three cases perform nearly the same localization; thus,
we conclude that the erroneous error variance may not play a major role in localization
performance, which paves a way for the practical engineering applications.

Figure 5. The RMSE of the target location versus the UAV position error variance under different
error variance estimation cases.

Furthermore, to evaluate the localization accuracy for a given location of the target
under a specified radar network, the GDOP metric [14,39] is invoked to address this issue.
The GDOP metric is especially applied in the GPS system which is used to measure how
the localization accuracy of an object in a fixed position can be attained. The GDOP is
defined as

GDOP =
1
c

√
σ2

x + σ2
y + σ2

z

σ2
ε

, (51)

where σ2
x , σ2

y , and σ2
z are the x-, y-, and z-dimensional estimation variances, respectively,

and σ2
ε is the TDOA noise measurement variance. From Equation (51), it is easy to conclude

that the GDOP is purely a geometric localization evaluation tool, where the SNR factor is
precluded. Under our case of the minimum number of receiving radars, the CRLB-GDOP
result and WLS-proposed-GDOP result are shown in Figure 6, where the red pentagrams are
the positions of the receiving radars, and the contours represent the localization accuracy
that a given target can obtain. A relative SNR of 20 dB is assumed in the simulation.
From Figure 6, we can see that, if the aerial target is located inside the virtual polygon
by the receiving radars in a relative way, then the proposed method enables a satisfied
TDOA localization accuracy. On the contrary, if the object is outside that polygon, the
estimation result is badly deteriorated, especially along the line formed by any two radars.
To explain this, we notice that the observation angles between the target and the radars
are quite different for the former case, whereas the angles among them appear somewhat
approximately equal for the latter. With more spatial diversity of the system, the method
can attain better localization accuracy. These different observation angles are the foundation
for the localization.
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Figure 6. GDOP results: (a) CRLB-GDOP; (b) WLS-proposed-GDOP.

3.2. TDOA Target Localization with more Receiving Radars

Next, we consider the number of five receiving radars. The UAVs’ nominal positions
are unchanged except that a new one is added at the coordinates [0 × 103, 500 × 103,
25 × 103] T m. The RMSE of the target location versus the relative SNR is demonstrated in
Figure 7. The CRLB, WLS-Ho method, WLS-Mao method, and our WLS-proposed method
are represented by the black line, blue dashed line marked with a cross, green dashed line
marked with a right-pointing triangle, and red dash-dotted line marked with a pentagram,
respectively. We observe that the estimation accuracy of the WLS-proposed method is
slightly better than that of the WLS-Ho method and WLS-Mao method. Resulting from the
approximate error shown in Equation (17), the localization accuracy may be disappointing
with low SNRs. Nevertheless, from the view of practical engineering, the SNRs of receiving
radars would be designed to exceed 13 dB in most cases. Thus, we can conclude that the
influence of this approximation is very slight.

Figure 7. The RMSE of the target location versus the relative SNR under five radars.

In Figure 8, we show that, as the position error variance increases, the RMSEs of the
target location are larger. For the WLS-Ho method, the reference range is the nonlinear
function of the target location; hence, the deviations occur as the variance increases. The
localization accuracies of the WLS-Mao method and WLS-proposed method could nearly
attain that of the CRLB, whereas our method performed slightly better.
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Figure 8. The RMSE of the target location versus the UAV position error variance under five radars.

Lastly, we present the CRLB-GDOP, WLS-Ho-GDOP, WLS-Mao-GDOP, and WLS-
proposed-GDOP results to close the discussion. As shown in Figure 9, the proposed method
achieves better localization accuracy compared to other state-of-the-art methods. Again,
more angle divergence means better localization accuracy. As for the influence of the receiv-
ing radar selection for optimal aerial target localization, it deserves further investigation.

Figure 9. GDOP results: (a) CRLB-GDOP; (b) WLS-Ho-GDOP; (c) WLS-Mao-GDOP; (d) WLS-
proposed-GDOP.
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4. Discussions

In this paper, a two-stage target localization method using TDOA measurements was
developed with a minimum number of radars. Under position uncertainties, the novel
TDOA-based localization method is capable of locating targets under only four radars with
comparative localization accuracy in comparison to the CRLB. The localization process can
be mainly divided into two stages: (1) the 3D WLS target estimates are substituted into the
reference range equation to obtain a quadratic function of the reference range, and then the
reference range and the target coordinates are updated in an iterative manner; (2) the target
coordinates are further refined by applying the· first-order Taylor series expansion at the
estimated target location in the first stage.

It should be emphasized that only four radars must be used to localize the target in
the first stage even though the total radar number exceeds that number. Otherwise, the
target localization would badly deteriorate. All radars involved can be considered in the
second stage to improve the localization.

Compared to the WLS-Ho method, our proposal does not introduce the nonlinear
approximate error between the reference range and the target location, thus alleviating the
sensitivity to position errors. In contrast to the WLS-Mao method, we have more accurate
target estimates in the first stage, which is vital for the second-stage refinement.

In the case of multiple transmitting radars, the proposed method can also be applied
after slight modifications by taking both the measurement errors and position errors
into consideration.

5. Conclusions

For most cases of two-stage target TDOA localization methods, there are five or more
receiving radars to support the necessary parameter identifiability. However, the additional
deployment of radars is extremely expensive or impossible in some practical scenarios.
Hence, in this paper, we propose a novel two-stage WLS target localization method to
alleviate exceptional employment. We first formulate the iteration between the target
location and the reference range, and then the Taylor series approximation is made to refine
the target location. Simulation results show that the proposed method outperformed the
existing WLS techniques under four radars and was competitive with them when using
more radars. The proposed method is also applicable to localization using near-space
platforms and ground-based platforms. Our future work will concentrate on localization
involving clock synchronization errors and phase errors to generalize our development.
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