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Abstract: Nitrogen is one of the most important macronutrients and plays an essential role in the
growth and development of winter wheat. It is very crucial to diagnose the nitrogen status timely and
accurately for applying a precision nitrogen management (PNM) strategy to the guidance of nitrogen
fertilizer in the field. The main purpose of this study was to use three different prediction methods to
evaluate winter wheat plant nitrogen concentration (PNC) at booting, heading, flowering, filling, and
the whole growth stage in the Guanzhong area from unmanned aerial vehicle (UAV) hyperspectral
imagery. These methods include (1) the parametric regression method; (2) linear nonparametric
regression methods (stepwise multiple linear regression (SMLR) and partial least squares regression
(PLSR)); and (3) machine learning methods (random forest regression (RFR), support vector machine
regression (SVMR), and extreme learning machine regression (ELMR)). The purpose of this study was
also to pay attention to the impact of different growth stages on the accuracy of the model. The results
showed that compared with parametric regression and linear nonparametric regression, the machine
learning regression method could evidently improve the estimation accuracy of winter wheat PNC,
especially using SVMR and RFR, the training set of the model at flowering and filling stage explained
93% and 92% of the PNC variability respectively. The testing set of the model at flowering and filling
stages explained 88% and 91% of the PNC variability, the root mean square error of the validation
set (RMSEtesting) was 0.82 and 1.23, and the relative prediction deviation (RPD) was 2.58 and 2.40,
respectively. Therefore, a conclusion was drawn that it was the best choice to estimate winter wheat
PNC at the flowering and filling stage from UAV hyperspectral imagery. Using machine learning
methods, SVMR and RFR, respectively, could achieve the most outstanding estimation performance,
which could provide a theoretical basis for putting forward the PNM strategy.

Keywords: winter wheat; plant nitrogen concentration; unmanned aerial vehicle; machine learning
methods; hyperspectral remote sensing

1. Introduction

Winter wheat is one of the staple food crops in the world. Nitrogen is one of the
most essential macronutrients and plays an essential role in the growth and development
of winter wheat. The precision nitrogen management (PNM) strategy is committed to
accurately guiding the most reasonable nitrogen fertilizer consumption of crops at an
appropriate time and place [1–3]. Therefore, it has become a prerequisite for precision
agriculture (PA), which is significant for improving crop yield [4] and quality [5] and
reducing environmental pollution [6]. Thus, it is very crucial to diagnose the nitrogen
status of winter wheat timely and accurately for applying the PNM strategy to the guidance
of nitrogen fertilizer in the field.

Previous evaluations of crop nitrogen status mainly focused on the estimation of leaf
nitrogen content (LNC) [7–9]. However, Fageria [10] showed that plant nitrogen concen-
tration (PNC) was widely used as an effective indicator of crop nitrogen diagnosis, which
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had a close relationship with crop yield [11,12]. Therefore, researchers tried to estimate
crop PNC through different methods, which would be taken as a reference for establishing
crop nitrogen nutrition diagnosis methods and set different PNC thresholds according to
the differences in crop varieties and growth stages [13–15]. However, the determination
of PNC requires destructive sampling in the field and chemical analysis, which is not
only expensive but also has a certain lag. The development of remote sensing makes it
possible to diagnose crop nitrogen status without damage and at low cost. Researchers
tried to monitor the crop nitrogen index using proximal remote sensing sensors such as
Dualex 4 (Force-A, Orsay, Paris, France) [16–18], GreenSeeker (Trimble, Westminster, CO,
USA) [3,19,20], Multiplex®3 (Dynamax, Elkhart, IN, USA) [21], and RapidSCAN CS-45
(Holland Scientific Inc., Lincoln, NE, USA) [22,23] and achieved encouraging research
results. Although the proximal sensing technology has incomparable advantages, such as
being free from the interference of background factors such as light and soil [15], it still
needs to repeat a lot of measurement work in crop canopy and can only obtain single point
information of field crops, which is difficult to achieve regional scale nitrogen nutrition
monitoring. At the same time, satellite remote sensing technology has been gradually
applied to diagnosing crop nitrogen status in a large area and has yielded a lot [24–26].
Nevertheless, the satellite sensors have fixed transit dates, so it is not very flexible to obtain
satellite remote sensing imagery.

Recently, unmanned aerial vehicle (UAV) remote sensing has shown great prospects
in PA due to its advantages of small size, flexibility, low cost, and high spatial and tem-
poral resolution, which has been successfully applied to the prediction of leaf area index
(LAI) [27], chlorophyll [28], biomass [29], yield [30], etc. For example, Zheng et al. [31]
studied the PNC of rice from UAV imagery, and the results showed that narrow-band
spectral indices with texture information of UAV might be a promising method for crop
growth monitoring. Furthermore, Zha et al. [32] successfully estimated the nitrogen nutri-
tion index (NNI) of rice by combining multi-spectral remote sensing and machine learning
regression of fixed-wing UAV; Wang et al. [33] estimated NNI of grass crops based on
the multi-spectral camera, and the research results showed the red edge vegetation index
was the best among all vegetation indexes. However, previous studies on the assessment
of the nitrogen status of these crops mostly focused on a single growth stage. Although
the assessment of nitrogen status in the early stage of winter wheat vegetative growth is
very important for the guidance of fertilization in the later stage [34,35], the assessment of
nitrogen status in the late maturity stage can provide an essential indicator for the yield of
crops in the next year [36]. Thus, it is very important to continuously diagnose the nitrogen
status in the stages of winter wheat growth and development, which may contribute to the
improvement of economic benefits [36,37].

Machine learning regression methods have been widely applied in crop parameter es-
timation and achieved encouraging research results [35,38–40]. For example, Yang et al. [41]
combined the optimized spectral index (OSI) and machine learning methods to estimate
the nitrogen status of crops, and the research results showed that the OSI-based RF is a
robust and effective model to predict crop PNC at the vegetative growth stage. In addition,
the work of Shah et al. [42] revealed that random forest regression (RFR) could reduce the
root mean square error (RMSE) better than standard linear regression. However, when
using machine learning methods to estimate winter wheat PNC, the influence of different
growth stages on model accuracy has not been fully explored.

The main purpose of this study was to use three different prediction methods to eval-
uate winter wheat PNC at booting, heading, flowering, filling and the whole growth stages
in the Guanzhong area based on hyperspectral reflectance data of UAV imaging, including
(1) the parametric regression method; (2) linear nonparametric regression methods (step-
wise multiple linear regression (SMLR) and partial least squares regression (PLSR)); and
(3) machine learning methods (random forest regression (RFR), support vector machine
regression (SVMR), and extreme learning machine regression (ELMR)), and pay attention
to the impact of different growth stages on the accuracy of the models.
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2. Materials and Methods
2.1. Experimental Design

The experiment was conducted in Qian County (108◦07′E, 34◦38′N. average altitude:
830 m) in Shaanxi Province, China (Figure 1). A total of 36 plots were set up and involved a
common local winter wheat cultivar Xiaoyan 22. The plot area was 9 m × 10 m = 90 m2,
and 6 levels of nitrogen treatment (0, 60, 120, 180, 240, 300 kg ha−1), phosphorus treatment
(0, 30, 60, 90, 120, 150 kg ha−1) and potassium treatments (0, 30, 60, 90, 120, 150 kg ha−1)
were set, respectively. Each treatment was repeated twice, and nitrogen, phosphorus
and potassium fertilizers were applied in the form of urea, phosphate (P2O5), and potash
chloride (K2O), respectively. Potassium and phosphorus fertilizers were not applied in
nitrogen fertilizer treatment. Phosphate fertilizer treatment did not apply potassium
fertilizer; nitrogen fertilizer was applied with 1/2 standard nitrogen fertilizer (60 kg ha−1);
potassium fertilizer treatment did not apply phosphorus fertilizer; and nitrogen fertilizer
was applied with 1/2 standard nitrogen fertilizer (60 kg ha−1). All fertilizers shall be
applied as base fertilizer at one time, and no additional fertilizer will be applied. The
management method is the same as that of local conventional winter wheat.
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Figure 1. (a) Geographic location of Shaanxi Province, China; (b) geographical location of the study
area in Shaanxi Province; (c) 3D view of the experimental field; and (d) standard false color synthetic
display of the experimental field.

2.2. Data Acquisition
2.2.1. Acquisition and Processing of UAV Hyperspectral Image

A six-rotor UAV (DJI M600Pro, SZ DJI Technology Co., Shenzhen, Guangzhou, China)
as the platform (Figure 2) and a Cubert S185 (S185, Cubert GmbH, Ulm, Germany) hyper-
spectral imager were used to obtain winter wheat growth stages canopy hyperspectral
images in the study area. S185 is a lightweight (470 g), full frame, and real-time imaging
spectrometer. It can acquire 125 channels of hyperspectral imagery in the wavelength range
of 450 nm to 950 nm. It only takes 1/1000 s to obtain each spectral cube, and the spectral
sampling interval is 4 nm. Before acquiring hyperspectral data, calibrate the reference plate
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and dark current of the S185 imaging spectrometer, plan the flight route, and set a sampling
interval of 1 ms for data acquisition, the flight height at 100 m, and the speed at 6 m s−1.
The spectrometer lens is vertically downward, and the field angle is 30◦. Therefore, 80% of
the heading overlap and 70% of the lateral overlap are guaranteed.
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Figure 2. Platform (DJ M600 Pro) with UAV sensor, sensor S185, and white reference board with 100%
reflectivity.

After acquiring hyperspectral data, the pan sharpens fusion function in the UAV
image professional processing software Cubert Utils Touch program is used to fuse hy-
perspectral and grayscale images. Then, a single gray image is spliced with the aid of the
image processing software AgisoftPhotoScan 1.2.4. Next, the Georeferencing function in
Arcmap10.6 software combines with the corresponding research area image in Google Earth
software to perform geographic registration for the spliced gray image. Finally, according
to the geographic coordinate information of the ground sampling points, the Region of
Interest (ROI) tool in ENVI 5.3 (The Environment for Visualizing Images) software is used
to draw the 30 × 30 cm range limit of the sampling points, then calculate and extract the
canopy hyperspectral average reflectance of the target area. The Savitzky–Golay (S–G)
smoothing method was used to eliminate the noise information attached to the UAV canopy
hyperspectral. UAV imageries were obtained at the booting, heading, flowering, and filling
stages of winter wheat.

2.2.2. PNC Determination

The aboveground plants of winter wheat with an area of 30 × 30 cm were collected
at each plot. Meanwhile, the position information of each sampling point was recorded
by Real-time kinematics (RTK). Winter wheat plant samples were placed in an oven at
105 ◦C for 30 min and dried at 80 ◦C for about 48 h until the weight of the sample no longer
changed. Then the dry sample was crushed, weighed at about 0.2 g, and digested with
concentrated H2SO4 in the presence of a catalyst. The modified Kjeldahl digestion method
was used to determine winter wheat PNC.

2.3. Analytical Methods

The spectral index (SI) is composed of the reflectivity of specific bands, which can
partly eliminate the interference of soil, weather, and other factors, and improve the
sensitivity of target parameters. In this study, 10 spectral indexes closely related to crop
nitrogen status were used to establish the winter wheat PNC estimation model. The
relevant spectral indexes and their calculation formulas are shown in Table 1.
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Table 1. Spectral index selected in this study and calculation formula.

Spectral Index Formula Reference

NDVI (R800 − R670)/(R800 + R670) [43]
SAVI 1.5 ∗ (R800 − R670)/(R800 + R670 + 0.5) [44]
NRI (R570 − R670)/(R570 + R670) [45]

NDRE (R790 − R720)/(R790 + R720) [46]
OSAVI 1.16 ∗ (R800 − R670)/(R800 + R670 + 0.16) [47]
GNDVI (R750 − R550)/(R750 + R550) [48]

mND705 (R750 − R705)/(R750 + R705 − 2R445) [49]
CIre (R750)/(R720) − 1 [50]

MTCI (R750 − R710)/(R710 − R680) [51]
CIgreen (R800)/(R560) − 1 [50]

Note: Ri is the reflectance of band i nm. If the reflectivity of S185 cannot correspond to Ri in the calculation
formula, replace it with the average of the reflectivity values of the adjacent bands.

First of all, parameter regression was used to explore the relationship between the
independent variable and the dependent variable (linear, power function, exponential
function, logarithmic function, and unitary quadratic function, etc.) and then establish the
PNC estimation model of the whole and single growth stage. Then, stepwise multiple linear
regression (SMLR), partial least squares regression (PLSR), random forest regression (RFR),
support vector machine regression (SVMR), and extreme learning machine regression
(ELMR) models based on SIs were constructed.

As a linear nonparametric regression method, SMLR was often used to evaluate crop
nitrogen status [52,53]. Generally, SMLR uses a set of given explanatory variables to subtract
or add a variable from all explanatory variables according to specific criteria to determine
whether the prediction performance of the model will change [54]. In this study, Akaike’s
information criterion (AIC) was used as the evaluation standard, and the prediction model
was the best when the AIC value was the smallest [55]. The MASS package in the statistical
software R was used to accomplish the SMLR modeling and parameter optimization.

PLSR was used to build winter wheat PNC estimation models. PLSR is an innovative
bilinear regression approach [56] for assessing multivariate statistical data. For a detailed
description of PLS, please refer to our previous work [57]. The plsmod package in the sta-
tistical software R was used to accomplish the PLSR modeling and parameter optimization.

RFR was proposed by Breiman [58] in 2001. For a detailed description of RFR, please
refer to our previous work [59]. The predicted results were averaged by integrating decision
trees after the samples were constantly regressed and sampled several times to generate
a training set. The algorithm must primarily optimize two essential parameters: ntree
(number of decision trees) and mtry (number of segmentation nodes). In this study, ntree
was set to 500, and mtry was set by grid search. The random forest package in the statistical
software R was used to accomplish the RFR modeling and parameter optimization.

SVMR is characterized by using kernel, sparse solution, and the Vapnik–Chervonenkis
theory to control the number of edges and support vectors [60]. The kernel function with
radial basis function (RBF) was used to perform SVMR, and the kernel parameters of RBF
kernel σ and regularization parameter C were determined by grid search [39]. The kernlab
package in the statistical software R was used to accomplish the SVMR modeling and
parameter optimization.

ELMR is an algorithm based on a single hidden layer feedforward neural network.
Compared with traditional neural networks, it has the advantages of fast convergence
speed and strong generalization ability [61]. The characteristic of ELMR is to initialize the
input weights and offsets randomly. By calculating the output weights of hidden layer
neurons, the learning speed of the limit learning machine is accelerated. Furthermore,
according to the solution method of linear equations, when the sample hidden layer neuron
output value matrix is full rank, only the one-time operation of matrix inversion is required
to obtain the hidden layer neuron weight. Based on this, the application of the ELMR model
usually requires multiple runs and a prediction model with high recording accuracy [62].
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The elmNNRcpp package in the statistical software R was used to accomplish the ELMR
modeling and parameter optimization.

In this paper, the data sets of the whole and single growth stages were divided into a
3:1 ratio to construct training and testing set by the caret package in the statistical software
R. The coefficient of determination (R2), root mean square error (RMSE), and relative
prediction deviation (RPD) were used to evaluate the accuracy of the winter wheat PNC
estimation models. RPD is the ratio between the standard deviation (SD) of the test set and
RMSE [63]. RPD < 1.40 represents that the model does not have prediction performance;
1.40 < RPD < 2.00 represents the rough prediction ability of the model; RPD > 2.00 represents
the excellent prediction ability of the model. In the construction process of winter wheat
PNC estimation models, grid search is used to determine the super parameters, and 10-fold
cross-validation repeated 5 times is used to identify the optimal relevant parameters of
each model on the calibration set.

3. Results
3.1. Statistical Description of Winter Wheat PNC

The statistical description of the winter wheat whole and single-growth stage PNC is
shown in Table 2. A total of 144 samples were obtained in the whole growth stage. The
variation range of PNC is 5.39~34.69, with a mean of 12.41, an SD of 4.80, and a CV of
38.65%. Samples were obtained from the booting stage, with a max of 34.69, a min of 11.28,
a mean of 17.91, an SD of 4.97, and a CV of 27.74%. The PNC ranges from 7.82 to 18.96,
with a mean of 12.49, an SD of 2.88, and a CV of 23.03% during the heading stage, with
a max of 15.52, a min of 6.27, a mean of 10.20, an SD of 2.55, and a CV of 25.01% during
the flowering stage. The PNC varies from 5.39 to 14.11, with a mean of 9.04, an SD of 2.59,
and a CV of 28.69% during the filling stage. The mean value of PNC decreased with the
advance of the winter wheat growth stage because of the dilution effect [5].

Table 2. Statistical description of winter wheat PNC (g kg−1) for whole and single growth stage.

Growth Stages The Number
of Samples Max Min Mean SD CV (%)

Whole 144 34.69 5.39 12.41 4.80 38.65
Booting 36 34.69 11.28 17.91 4.97 27.74
Heading 36 18.96 7.82 12.49 2.88 23.03

Flowering 36 15.52 6.27 10.20 2.55 25.01
Filling 36 14.11 5.39 9.04 2.59 28.69

3.2. Performance of Prediction Models for PNC Constructed by Parameter Regression

The correlation heat diagram between the spectral index and PNC is shown in Figure 3.
Table 3 lists the performance of the prediction model for PNC constructed by two spectral
indexes with the best fitting degree in the whole and single growth stages. What needs our
attention is that the PNC prediction models based on the spectral index are all quadratic
models, and the spectral indexes selected in each growth period are MTCI and CIre. For the
whole growth stage, the PNC estimation model based on MTCI has the lowest RMSEcv, and
its accuracy is slightly higher than CIre. The best performance parameter regression model
for a single stage can explain 47%, 83%, 86%, and 77% of PNC variability in the booting,
heading, flowering, and filling stages. The performance of the PNC prediction model is
ordered as follows: flowering > filling > heading > whole > boosting. The distribution of
observed and predicted PNC (g kg−1) of prediction models in Table 3 are shown in Figure 4.
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Table 3. Performance of prediction model for PNC constructed by two spectral indexes with the best
fitting degree in the whole and single growth stage.

Growth
Stages

Spectral
Indices Model

Calibration Set
(Cross-Validated) Testing Set

R2
cv RMSEcv R2

testing RMSEtesting RPD

Whole
CIre Q 0.70 2.73 0.64 2.71 1.56

MTCI Q 0.71 2.65 0.64 2.67 1.59

Booting CIre Q 0.49 3.60 0.15 3.94 1.08
MTCI Q 0.47 3.70 0.47 3.30 1.29

Heading MTCI Q 0.57 1.89 0.83 1.56 1.71
CIre Q 0.52 2.00 0.63 1.90 1.40

Flowering MTCI Q 0.90 0.84 0.86 0.97 2.19
CIre Q 0.78 1.22 0.80 1.07 1.98

Filling CIre Q 0.75 1.22 0.77 1.53 1.92
MTCI Q 0.74 1.24 0.75 1.55 1.91

Note: Q stands for Quadratic model.
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3.3. Performance of Prediction Models for PNC Constructed by Linear Nonparametric Regressions

Table 4 lists the PNC prediction model equations formed by SIs screened by SMLR
in the whole and single growth stages when the AIC value is the minimum. It can be
observed that the number of selected SI varies from four to seven. The performance
of prediction models for PNC constructed by SMLR and PLSR in the whole and single
growth stages are given in Table 5. The best prediction models for estimating PNC based
on linear nonparametric regression methods at booting, heading, flowering, filling, and
the whole growth stage of winter wheat are SMLR (R2

testing = 0.64, RMSEtesting = 2.69,
RPD = 1.58), PLSR (R2

testing = 0.22, RMSEtesting = 3.92, RPD = 1.09), PLSR (R2
testing = 0.60,

RMSEtesting = 1.96, RPD = 1.36), SMLR (R2
testing = 0.83, RMSEtesting = 1.17, RPD = 1.80), and

PLSR (R2
testing = 0.80, RMSEtesting = 1.50, RPD = 1.97). Figure 5 shows the distribution of

observed and predicted PNC (g kg−1) of prediction models in Table 5.

Table 4. Selection of SI in the SMLR model and AIC values.

Growth Stages Formula AIC

Whole −22.384 + 22.572 ∗ SAVI − 2.413 ∗ CIgreen + 15.364 ∗ CIre − 115.188 ∗ NDRE −
45.186 ∗mND705 + 2.270 ∗MTCI + 110.095 ∗ GNDVI 201.15

Booting 36.348 + SAVI ∗ 580.431 − 502.181 ∗ OSAVI − 3.246 ∗ CIgreen + 7.213 ∗MTCI +
67.614 ∗ NRI 63.14

Heading −13.893 + 239.041 ∗ NDVI + 562.864 ∗ SAVI − 670.480 ∗ OSAVI − 61.127 ∗
mND705 + 4.501 ∗MTCI − 33.247 ∗ NRI 33.41

Flowering 13.688 − 574.442 ∗ NDVI − 1375.346 ∗ SAVI + 1749.35 ∗ OSAVI + 3.005 ∗MTCI −5.67

Filling 11.226 − 144.715 ∗ SAVI + 173.963 ∗ OSAVI + 14.772 ∗ CIre − 3.737 ∗MTCI −
49.850 ∗ NRI − 67.265 ∗ GNDVI 9.66

Table 5. Performance of prediction model for PNC constructed by SMLR and PLSR in the whole and
single growth stage.

Growth Stages Methods
Calibration Set

(Cross-Validated) Testing Set

R2
cv RMSEcv R2

testing RMSEtesting RPD

Whole

SMLR

0.77 2.45 0.64 2.69 1.58
Booting 0.76 2.81 0.43 4.29 0.99
Heading 0.76 1.63 0.13 2.64 1.01

Flowering 0.92 0.83 0.83 1.17 1.80
Filling 0.86 1.01 0.73 1.87 1.57
Whole

PLSR

0.76 2.43 0.61 2.87 1.47
Booting 0.28 4.30 0.22 3.92 1.09
Heading 0.48 2.07 0.60 1.96 1.36

Flowering 0.90 0.82 0.85 1.19 1.79
Filling 0.70 1.34 0.80 1.50 1.97
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3.4. Performance of Prediction Models for PNC Constructed by Machine Learning Methods

Table 6 lists the performance of the prediction model for PNC constructed by RFR,
SVMR and ELMR in the whole and single growth stages. In general, the best prediction
models for estimating PNC based on machine learning methods at booting, heading,
flowering, filling and the whole growth stage of winter wheat are SVMR (R2

testing = 0.40,
RMSEtesting = 3.44, RPD = 1.24), ELMR (R2

testing = 0.91, RMSEtesting = 1.42, RPD = 1.87), SVMR
(R2

testing = 0.88, RMSEtesting = 0.82, RPD = 2.58), RFR (R2
testing = 0.91, RMSEtesting = 1.23,

RPD = 2.40), RFR (R2
testing = 0.69, RMSEtesting = 2.51, RPD = 1.69). Figure 6 shows the

distribution of observed and predicted PNC (g kg−1) of prediction models in Table 6.

Table 6. Performance of prediction model for PNC constructed by RFR, SVMR and ELMR in the
whole and single growth stage.

Growth Stages Methods
Calibration Set

(Cross-Validated) Test Set

R2
cv RMSEcv R2

test RMSEtest RPD

Whole

RFR

0.94 1.28 0.69 2.51 1.69
Booting 0.88 1.74 0.36 3.45 1.24
Heading 0.89 1.06 0.72 1.48 1.8

Flowering 0.95 0.6 0.76 1.1 1.8
Filling 0.92 0.73 0.91 1.23 2.4
Whole

SVMR

0.89 1.68 0.64 2.83 1.5
Booting 0.93 1.61 0.4 3.44 1.24
Heading 0.51 2.16 0.72 1.9 1.41

Flowering 0.93 0.69 0.88 0.82 2.58
Filling 0.85 0.96 0.71 1.8 1.63
Whole

ELMR

0.75 2.47 0.65 2.68 1.58
Booting 0.27 4.22 0.02 11.3 0.44
Heading 0.53 1.99 0.91 1.42 1.87

Flowering 0.87 0.88 0.84 1.1 1.93
Filling 0.66 1.47 0.76 1.56 1.91
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3.5. Model Accuracy Comparison

As shown in Figure 7, the RPD was used further to evaluate the model accuracy of
winter wheat PNC based on the whole growth stage and boosting, heading, flowering,
and filling stage. In the winter wheat boosting stage, it is obvious that the winter wheat
PNC estimation model based on univariate regression, linear nonparametric regression, or
machine learning regression does not have the prediction ability (PRD < 1.40) and cannot be
used to estimate the distribution of PNC. Although the estimation model based on spectral
index MTCI has the highest accuracy (RPD = 1.29), it is superior to linear nonparametric
regression (SMLR, PLSR) models and machine learning regression (RFR, SVMR, ELMR)
models. During the heading stage, three PNC estimation models have outstanding per-
formance in the seven estimation models constructed and can be used to estimate PNC
(1.40 < RPD < 2.00). Among them, the ELMR model has the highest accuracy in predicting
PNC (RPD = 1.87), followed by the RFR model (RPD = 1.80), and finally, a univariate regres-
sion model based on spectral index MTCI (RPD = 1.71). The SMLR model and PLSR model
perform the worst, and their prediction accuracy is lower than the parameter regression
PNC estimation model based on spectral index CIre. During the winter wheat flowering
stage, it is gratifying to see that all PNC estimation models have significantly improved.
Although the PLSR model performs the worst (RPD = 1.79), the RPD values of all PNC
prediction models exceed 1.40. The estimation model based on spectral index MTCI and
machine learning SVMR has strong PNC prediction ability. The RPD value of the SVMR
model is as high as 2.58, and the RPD of the regression model based on the spectral index
MTCI is 2.19. It is worth noting that the prediction model following the SVMR model
is a parameter regression model based on the spectral index MTCI, followed by EMLR
(RPD = 1.93), SMLR (RPD = 1.80), RFR (RPD = 1.80), and PLSR (RPD = 1.79). At the filling
stage, all models have good estimation ability (RPD > 1.40). The PNC estimation model
based on RFR has the best prediction performance (RPD = 2.40). The PNC estimation model
based on SMLR has the worst prediction performance (RPD = 1.57). Rank the RPD values
of the prediction models as RFR (RPD = 2.40) > PLSR (RPD = 1.97) > CIre (RPD = 1.92) >
MTCI (RPD = 1.91), EMLR (RPD = 1.91) > SVMR (RPD = 1.63) > SMLR (RPD = 1.57). In the
whole growth stage, it seems that the distribution of RPD values is relatively concentrated,
which indicates that the prediction accuracy of all PNC estimation models is similar and
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can be used to estimate the distribution of PNC (RPD > 1.40). A conclusion can be drawn
that the prediction model based on RFR is also the best (RPD = 1.69). When predicting
PNC, the PLSR model has the lowest prediction accuracy (RPD = 1.47), which is lower
than the parameter regression PNC estimation models based on spectral index CIre and
MTCI. In general, the best prediction models for estimating PNC at booting, heading,
flowering, filling, and the whole growth stage of winter wheat are MTCI (RPD = 1.29),
ELMR (RPD = 1.87), SVMR (RPD = 2.58), RFR (RPD = 2.40), RFR (RPD = 1.69).
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4. Discussion
4.1. Estimating Winter Wheat PNC by Parametric Regression (SI)

The estimation of winter wheat PNC based on parameter regression is mainly to
build a simple empirical regression model through a narrow hyperspectral band spectral
index [9]. The spectral index (SI) is composed of the reflectivity of specific bands, which
can partly eliminate the interference of soil, weather, and other factors, and improve the
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sensitivity of target parameters. In this study, 10 spectral indexes closely related to crop
nitrogen status were used to establish the winter wheat PNC prediction model. Table 3
lists the performance of prediction models for PNC constructed by two spectral indexes
with the best fitting degree in the whole and single growth stages. For the whole and each
single growth stage, the best performance parametric regression model can explain 64%,
47%, 83%, 86%, and 77% of PNC variability in the booting, heading, flowering, and filling
stages. Except for boosting growth stage, other growth period PNC estimation models
based on SI are acceptable (RPD > 1.40). It should be noted that the best PNC prediction
model for winter wheat in each growth period in Table 2 is based on spectral indexes MTCI
and CIre. MTCI and CIre are constructed based on the reflectivity of the red edge position
(REP), which indicates the importance of REP in estimating winter wheat PNC. REP is
defined as the area where the reflectivity of vegetation increases sharply between 680 nm
and 750 nm, which is strongly related to the chlorophyll content [40,64]. Li et al. [65] also
showed that compared with other spectral indexes, the spectral index based on REP often
had a superior performance when estimating winter wheat leaf nitrogen concentration
(LNC). Mutanga et al. [29] found that the correlation coefficient between the spectral index
involving the red band and red sideband and the leaf grass nitrogen concentration was
the highest when using the field spectral data sampled by the WorldView-2 satellite to
predict the leaf grass nitrogen concentration. Similar conclusions have also been found
in previous reports [66,67], which is mainly due to the close correlation between nitrogen
and chlorophyll content in crops [68–70]. In future research, it will be a continuous trend
to estimate crop nitrogen status by building a spectral index based on the hyperspectral
remote sensing reflectance of REP.

4.2. The Performance of Linear Nonparametric Regressions (SMLR, PLSR)

In this study, two popular linear nonparametric regression models SLMR and PLSR,
are selected to predict PNC, and the results are shown in Table 5. The best prediction models
for estimating PNC based on linear nonparametric regression methods at booting, heading,
flowering, filling, and the whole growth stage of winter wheat are SMLR (R2

testing = 0.64,
RMSEtesting = 2.69, RPD = 1.58), PLSR (R2

testing = 0.22, RMSEtesting = 3.92, RPD = 1.09), PLSR
(R2

testing = 0.60, RMSEtesting = 1.96, RPD = 1.36), SMLR (R2
testing = 0.83, RMSEtesting = 1.17,

RPD = 1.80), and PLSR (R2
testing = 0.80, RMSEtesting = 1.50, RPD = 1.97). At the booting stage,

filling, and the whole growth stage, the prediction model can be used to estimate PNC
roughly (RPD > 1.40), and the accuracy of PLSR in the whole growth period is the highest
(RPD = 1.97), which almost has strong prediction ability. It shows that PLSR may have more
advantages than SMLR when the whole growth stage data are combined. On the one hand,
it may be that SMLR always chooses multiple variables at the cost of overfitting and cannot
deal with problems such as multicollinearity, resulting in low model accuracy [71,72]. On
the other hand, in addition to the positive characteristics screened by SMLR, PLSR also
considered the covariance of winter wheat biochemical characteristics at a single growth
stage [9]. However, from the perspective of PNC estimation in a single growth stage, the
estimation ability of SMLR is not all lower than PLSR, which indicates that SMLR has
certain advantages in estimating PNC concentration in a specific growth stage because
SMLR has a screening mechanism of spectral index regions of interest [73]. This is only
limited to the fact that the relationship between SI and the target variable is well-known and
in a specific growth stage. However, the relationship between the explanatory variable and
the target variable does not remain unchanged as the growth stage advances. To sum up,
the PNC estimation ability of PLSR in the whole growth cc of winter wheat is recognized,
but when it comes to each single growth stage, the model changes are diverse, and there is
no unified conclusion on which linear nonparametric regression is more advantageous.

4.3. The Performance of Machine Learning Regressions (RFR, SVMR, ELMR)

Table 6 lists the performance of prediction models for PNC constructed by RFR,
SVMR and ELMR in the whole and single growth stages. The best prediction models for
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estimating PNC based on machine learning methods at booting, heading, flowering, filling,
and the whole growth stage of winter wheat are SVMR (R2

testing = 0.40, RMSEtesting = 3.44,
RPD = 1.24), ELMR (R2

testing = 0.91, RMSEtesting = 1.42, RPD = 1.87), SVMR (R2
testing = 0.88,

RMSEtesting = 0.82, RPD = 2.58), RFR (R2
testing = 0.91, RMSEtesting = 1.23, RPD = 2.40), and

RFR (R2
testing = 0.69, RMSEtesting = 2.51, RPD = 1.69). The SVMR model based on the booting

stage has the lowest accuracy and does not have PNC prediction ability (RPD < 1.40). The
ELMR model based on the heading date and the RFR prediction model of the whole
growth stage can be used to roughly estimate PNC, which has a fair estimation ability
(1.40 < RPD < 2.00). Both the SVMR model based on the flowering stage and the RFR model
based on the filling stage have excellent PNC prediction performance (RPD > 2.00). Zha
et al. [52] showed that the accuracy of the RFR model was the best when estimating rice
nitrogen nutrition index (NNI) based on UAV remote sensing, and similar conclusions were
also found in the research of Reisi Gahrouei [40] and Osco [74]. Wang et al., found that
the SVMR model had the highest accuracy when estimating the nitrogen nutrition of tea
plants [75]. Wang et al. [8] also found that the SVMR model based on UAV hyperspectral
images performed best in estimating nitrogen accumulation in rice leaves. The research
showed the potential of machine learning regression SVMR and RFR in the quantitative
estimation of crop parameters [38,76–78]. In general, the machine learning methods (RFR
and SVMR) constructed in this paper performed best at the flowering and filling stage of
winter wheat and had the best estimation performance.

4.4. Model Recommendation for PNC

In this study, the winter wheat PNC was quantitatively estimated from UAV hyper-
spectral image by parametric regression, linear nonparametric regression and machine
learning regression, respectively. Except for the booting growth stage, other growth stage
PNC estimation models based on parametric regression were acceptable (RPD > 1.40).
Linear nonparametric regression (SMLR and PLSR) had no significant improvement in
prediction accuracy compared with parametric regression models, no matter in the whole
growth stage or single growth stage. This may be because SMLR and PLSR are more
suitable for solving some linear regression problems. Relatively speaking, the prediction
performance of machine learning regression (RFR and SVMR) is outstanding, especially
at the flowering and filling stages (RPD > 2.00). This may be because machine learning
regression is more suitable for solving some nonlinear problems, and some more advanced
super parameter adjustment methods need to be developed in subsequent research to
improve the modeling accuracy of machine learning further [79]. Wang et al. [39] studied
the prediction model of rice leaf area index (LAI), and the results showed that RFR and
SVMR models could provide more accurate LAI prediction accuracy, which is consistent
with the conclusion that SVMR and RFR can provide more accurate prediction results in
this study. The estimation of nitrogen status at the later stage of crop growth is of great
significance for predicting the yield and quality of wheat grains in the later stage and crops
in the next year [80]. The research of Li et al., showed that it was more efficient to estimate
the leaf area index at the flowering and filling stage [81]. Fan et al., also showed that the
prediction model was more efficient when estimating the nitrogen balance index during
the filling stage [67]. To sum up, it was the best choice to estimate PNC at the flowering
and filling stage of winter wheat based on hyperspectral reflectance data of UAV imaging
by machine learning methods SVMR and RFR, respectively.

4.5. Future Works

In this study, winter wheat plant nitrogen concentration (PNC) at different growth
stages was quantitatively estimated by combining UAV hyperspectral remote sensing and
advanced machine learning algorithms, and encouraging research results were obtained.
However, relevant studies have shown that the nitrogen nutrition index (NNI) is a credible
indicator for crop nitrogen status assessment, which is of great significance for the proposal
of the PNM strategy [21,52,82]. Therefore, the follow-up research work will focus on the
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prediction and modeling of winter wheat NNI in the Guanzhong region. At the same
time, factors such as climate and management that affect winter wheat growth should be
considered as independent variables in nitrogen status assessment so as to build a more
stable and reliable guidance for crop precision fertilization. Furthermore, with the gradual
maturity of the current satellite imaging and remote sensing technology, the research should
be developed from the field scale to the farm scale and a larger region.

5. Conclusions

In this study, UAV hyperspectral remote sensing was used to evaluate parametric
regression, linear nonparametric regression (SMLR, PLSR), and machine learning regression
(RFR, SVMR, and ELMR) to estimate winter wheat PNC at booting, heading, flowering,
filling, and the whole growth stages in the Guanzhong area. The results indicated that
compared with parametric regression and linear nonparametric regression, the machine
learning regression method could obviously improve the estimation accuracy of winter
wheat PNC, especially using SVMR and RFR. The calibration set of the model at the
flowering and filling stage explained 93% and 92% of the PNC variability, respectively,
and the test set of the model at the flowering and filling stage explained 88% and 91%
of the PNC variability; RMSEval was 0.82 and 1.23, RPD was 2.58 and 2.40, respectively.
Therefore, the conclusion was drawn that it is the best choice to estimate the plant nitrogen
concentration at the flowering and filling stage of winter wheat based on hyperspectral
reflectance data from UAV imaging. Using machine learning methods, SVMR and RFR,
respectively, can achieve the most outstanding estimation performance, which can provide
a theoretical basis for putting forward PNM strategies.
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