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Abstract: The Qinghai–Tibet Plateau (QTP) is a crucial component of the global climate system,
influencing the regional and global climate through complex thermal and dynamic mechanisms. The
high-altitude region, which is the largest part of the extra-polar cryosphere, encompasses extensive
mountain glaciers, permafrost, and seasonally frozen land, making it highly sensitive to global climate
change. However, the challenging environmental conditions, such as the harsh terrain and high
altitude, coupled with sparse weather station distribution and weak observatory representation, make
it difficult to accurately quantify the atmospheric conditions and land–atmosphere coupling systems
and their effects on the surrounding areas. To address these challenges, we utilized the Weather
Research and Forecasting (WRF) model and a three-dimensional variational (3DVAR) assimilation
method to create a high-resolution assimilated dataset (HRAD). The QTP-HRAD, covering the spatial
range of 70 to 110◦E and 25 to 40◦N, was validated using both surface weather station observations
and the European Center for Medium-Range Weather Forecasts Reanalysis V5, and can now be
utilized for further studies on land–atmosphere interactions, water cycling and radiation energy
transfer processes, and extreme weather events in the region.

Keywords: Tibetan Plateau; assimilation dataset; land–atmosphere interaction; WRF model

1. Introduction

The Qinghai–Tibet Plateau (QTP) is widely recognized as the world’s highest and
largest plateau, with a highly complex terrain that includes mountain ranges, vast plains,
and numerous lakes and rivers. This unique geographical region, sometimes referred to
as the “Roof of the World,” is situated in the heart of Asia and covers an area of over
2.5 million square kilometers. Due to its high elevation, harsh climate, and unique ecology,
the QTP is often referred to as the “third pole” of the Earth, after the North and South
Poles. The region plays a crucial role in global climate, as it is a major source of freshwater
and a key driver of atmospheric circulation patterns that affect weather patterns around
the world [1]. It serves as the origin of numerous major Asian rivers, making it a vital
“hydrological tower” in Asia [2,3]. However, the plateau is particularly susceptible to
the impacts of global climatic alteration, exhibiting a heightened rate of temperature
amplification in comparison to other regions [4,5]. The impacts of global warming on
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the Tibetan Plateau have become a subject of great scientific interest in recent years [6–8].
Multiple observational and monitoring projects were implemented on the QTP. To better
understand the mechanism of the land–atmosphere interaction and land surface processes
on the Plateau, researchers have conducted numerical simulation studies [6].

The Tibetan Plateau’s thermal impact on the atmosphere significantly impacts the
land–atmosphere circulation of China, East Asia, and the entire world [9–16]. The Plateau’s
cryospheric processes, such as the absorption of solar radiation and seasonal variations
in surface heat and water fluxes, lead to complex interactions between the land surface
and atmosphere that make it challenging to fully understand and simulate the energy and
water cycle of the QTP and its impact on global climate change [10,12,17]. Although there
has been a growing amount of research on land–atmosphere interactions over the QTP,
observational experiments to determine terrestrial and atmospheric parameters are limited
by the harsh environmental conditions, high altitudes, and sparse distribution of weather
stations. Additionally, most observational experiments are conducted only in summer at a
few locations, leaving gaps in our quantitative understanding of the local land–atmosphere
coupling systems and their effects on the surrounding areas [18].

A series of atmospheric field experiments have been conducted over the Tibetan
Plateau (TP) since the 1970s. Notable examples include the first Qinghai–Xizang Plateau
Meteorology Experiment (QXPMEX) [19], the Global Energy and Water Cycle Exchanges
(GEWEX) Asian Monsoon Experiment (GAME)/Tibet intensive observation [20], and the
Coordinated Enhanced Observing Period (CEOP) Asia–Australia Monsoon Project on the
Tibetan Plateau (CAMP/Tibet) [21]. Through these experiments, several field observa-
tional stations were established and kept in operation. After decades of effort and with an
optimized scientific design and layout, the level of atmospheric observation has greatly im-
proved with respect to observation infrastructure, technology, and meteorological elements
observed. Since 2014, the third Tibetan Plateau Atmospheric Science Experiment (TIPEX-III)
has been underway. As part of this experiment, routine automatic sounding systems were
deployed in the western plateau region, filling the gap of routine operational sounding stations
previously lacking in this area. Additionally, observational networks for soil temperature and
moisture in the central and western TP were established. TIPEX-III also conducted plateau
and regional-scale boundary layer observations, measured cloud–precipitation microphysi-
cal characteristics through the use of multiple radars and aircraft campaigns, and collected
tropospheric–stratospheric atmospheric compositions at multiple sites [22].

With the development of numerical simulations and data assimilation techniques,
regional numerical models have become widely used for studying climate change over
the QTP [23–26]. However, existing numerical models have defects in reflecting the earth–
atmosphere coupling process, particularly the physical process of clouds and precipitation,
and their influence on complex terrain conditions [27–29]. The simulation of the 2 m
temperature over the QTP using regional climate and global circulation models tends to
have a consistent underestimation or cold bias. This systematic error affects the accuracy
of the climate model simulations for the QTP region [30], and the cold bias of different
regional models over the QTP is between −11 ◦C and −0.3 ◦C [31–35]. At present, there
are large uncertainties in the numerical simulation data of the precipitation in high-altitude
mountainous areas. The rugged and steep terrain, location of observation sites, wind-blown
snow, and low-temperature environments hinder the establishment of high-quality grid
precipitation data [36]. Because of the coarse resolution, model physics, and dynamics, the
global climate model showed a substantial bias over the QTP, and the simulated precipita-
tion was significantly overestimated over this area. The dynamic downscaling simulation
of precipitation is better than that of the global climate model, but the overestimation of
precipitation still exists, with the highest value of 35% [34]. Atmospheric reanalysis data
and various remote sensing products in the QTP region also have significant uncertain-
ties [37–40]. These factors cause a low accuracy of regional numerical models in the QTP
region, which seriously affects the assessment of climate change in this region [41].
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With advances in computational resources, dynamic downscaling has become a candi-
date for climate studies with small-scale information, which can now be simulated over
decades at a 1–10 km resolution [42,43]. The regional model can generate high spatial
and temporal resolutions and climate-relevant long-term series of local climatic factors.
In addition, the consistency of model physical processes can be used to generate datasets
across different climatic scales [44]. Therefore, with the continuous improvement of model
resolution and the establishment of a rapid assimilation update cycle system [45], ground,
radiosonde, satellite, and aerial observation data with high spatial and temporal resolutions
are playing an increasingly important role in assimilation systems [46,47].

In the assimilation process, the assimilation of large amounts of ground observation
data not only makes the ground elements of the model closer to the actual ground observa-
tions, but also affects the simulation of the boundary layer and above the boundary layer,
as well as the vertical motion and structure related to the surface features observed by
these ground elements [46,48]. Therefore, effectively integrating multi-source observational
data into the numerical model system improves the numerical simulation results of the
complex underlying surface of the QTP, enhances the simulation accuracy of the numerical
model, and uses the assimilation data results to analyze the occurrence and evolution of
extreme temperature and precipitation events. Understanding and exploring the formation
mechanism and response to global warming of extreme weather and climate events in the
southeastern plateau of the QTP is of significant importance.

For the first time, we generated high spatial and temporal resolution (horizontal
5 × 5 km, once every 1 h) assimilation data in the QTP (QTP-HRAD) over 11 years
(2010–2020). The assimilation data include 28 near-surface meteorological variables, includ-
ing the radiation and energy field variables. The hourly values of the 2 m temperature,
land surface temperature, relative humidity, surface pressure, water vapor mixing ratio,
10 m U and V wind components, precipitation, and dew point temperature at 5 × 5 km are
available online [49].

Our compiled QTP-HRAD is expected to help more users to understand the spatial–
temporal characteristics of key attributes in the QTP region of China and be applied in
different fields. In addition, the QTP-HRAD can provide data references for the compre-
hensive evaluation of plateau ecological environment, extreme weather, and climatology.
The flowchart for constructing the QTP-HRAD is shown in Figure 1.
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2. Methods
2.1. Introduction to WRF Model Configuration

This dataset is generated and produced by the Weather Research and Forecasting
(WRF) model version 4.2.2 and the three-dimensional variation (3DVAR) module. The
atmospheric vertical layer has 35 layers, the atmospheric pressure at the upper boundary
of the WRF model is 50 hPa, and the “CONUS” physics suite was selected as the parame-
terization series scheme of the simulation and assimilation. The “CONUS” series scheme
is a combination of physical options that are highly tested and show reasonable results.
The configuration is as follows: The microphysics was characterized using the Thomp-
son scheme [50], and the Rapid Radiative Transfer Model for General Circulation Models
(RRTMG) [51,52] was utilized to determine the calculation of longwave and shortwave
radiations and their atmospheric transfer. The cumulus clouds were modeled using the
“Tiedtke and Zhang” convection scheme [53,54]. The Noah land surface model (Noah-LSM)
is particularly effective in simulating soil temperature and moisture in multiple layers,
which allows for a more precise representation of the vertical structure of the land surface
within the WRF, taking into account soil temperature and moisture in four layers, fractional
snow cover, and frozen soil physics. This helps to accurately represent processes over
ice sheets and snow-covered areas [55]. The Mellor–Yamada–Janjic (MYJ) scheme was
utilized to resolve planetary boundary layer processes [56]. The thermal roughness length
and standard similarity functions were obtained from look-up tables in the surface layer
scheme, which is based on the Monin–Obukhov theory with Zilitinkevich and used in the
Eta model [57]. During long simulations, the model offers the option to input time-varying
data and continuously update these fields [58,59]. The 12-month values of vegetation
fraction and albedo were obtained from the geogrid program to be used in the WRF model,
but it does not have the capability of predicting sea surface temperature, vegetation fraction,
albedo, or sea ice. To overcome this limitation, time-varying sea surface temperature (SST)
and sea ice fields must be read into the model, allowing for updates of these fields during
long simulations.

The WRF configuration is presented in Table 1. In this study, a double-nested grid
system was utilized, with a horizontal grid spacing of 25 km in domain 1 and 5 km
in domain 2 (Figure 2). The two domains used the geographic data resolution of the
“usgs_lakes + default” option. The central latitude and longitude of domain 2 are 87.76◦E
and 33.41◦N, and the latitude and longitude of domain 2 ranges from 72.3 to 103.2◦E
and from 25.9 to 40.3◦N, respectively. The National Centers for Environmental Prediction
(NCEP) Final Analysis with a 6-h resolution and 1 degree × 1 degree spatial resolution
were used as the initial and lateral boundary conditions for the WRF model. The data
were obtained from the Global Forecast System (GFS). The simulation covered a period
of 10 years, starting on 1 January 2010, at 00:00 UTC and ending on 31 December 2020, at
23:00 UTC.

2.2. Introduction to NCEP_ADP Data and Assimilation Methods

For the assimilation data source, global observation data from the National Centers
for Environmental Prediction (NCEP) Automated Data Processing (ADP) was utilized.
The timeframe of this data spans from 1 January 2010 to 31 December 2020, and was
incorporated into the WRF-3DVAR system for assimilation.

The NCEP-ADP data contain surface synoptic observations (SYNOP), radio-sounding
data (SOUNDING), satellite observations (SATOBs), and a few aircraft reports (AIRREPs)
and the Meteorological Terminal Air Report (METAR). Satellite observations (SATOBs) track
cloud and wind data using cloud motion obtained using space-borne infrared derivations
or water vapor imagers. These data and reports include air pressure, geopotential height,
air temperature, dew point temperature, wind direction, and wind speed, with up to
20 layers of upper-air observations available ranging from 1000 to 10 hPa. The reporting
intervals range from hourly to 12 h (https://rda.ucar.edu/datasets/ds461.0/, accessed on
31 December 2020).

https://rda.ucar.edu/datasets/ds461.0/
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Figure 2. The schematic diagram of simulated region, underlying land use/vegetation types, and
the distribution of the NCEP_ADP observation data. There are a total of 10 stations (Qamdo, Garz,
Hotan, Nyingchi, Nagqu, Pulan, Qumacai, Zoige, Tuotuohe, and Yushu) at different locations With
the blue triangle in and around the QTP as representative stations. The Hotan station stands on
the northwest side of the QTP, located in the northwest arid region, and represents the simulated
situation in the arid region north of the plateau. Nyingchi and Qamdo stations are located in the
semi-humid and humid regions of the southeastern plateau, representing a simulated situation in the
humid region of the southeastern plateau. Except for the Hotan station, which has a lower altitude of
1370 m, all other stations are located in the hinterland of the QTP at an altitude of over 3000 m.
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Table 1. Summary of the WRF configuration.

Domain Configuration Domain 1 Domain 2

Horizontal grid spacing 25 km 5 km
Grid dimensions 370 × 270 544 × 304
Time step 180 s 30 s
Central longitude–latitude 103◦E, 38◦N 87.76◦E, 33.41◦N
Geog data resolution usgs_lakes + default usgs_lakes + default

Model physics

Microphysics Thompson scheme
Cumulus parameterization Tiedtke scheme
Longwave and shortwave radiation RRTMG scheme
Surface layer Eta-similarity scheme
Land surface Noah land surface model
Planetary boundary layer Mellor–Yamada–Janjic scheme

Other physics options for long simulations
tmn_update: update deep soil temperature

sst_skin: calculate skin SST based on Zeng and Beljaars [60]
sst_update: update sea-surface temperature, vegetation fraction, albedo

The NCEP-ADP was used in the NCEP-FNL analysis. However, due to the resolution
of FNL data being 1 × 1 degree, it is difficult to reconcile multiple observation data within
a grid when assimilating these dense observation data. Therefore, when using the WRF
model with 3DVAR method for assimilation, we not only increase the grid resolution, but
also consider some control and constraint options when setting assimilation parameters to
better iterate and converge. For example:

(1) The multi-level q adjustment should be made while ensuring the conservation of
column-integrated water vapor, considering the need to verify the supersaturation
(RH > 95%) and the minimum relative humidity (RH < 11%) requirements.

(2) The assimilation of surface observations will rely on the surface similarity theory within
the planetary boundary layer instead of using the lowest model level’s first guess.

(3) Any stations where the model’s interpolated height differs from the actual observation
station’s height by more than 100 m will be deemed invalid and excluded.

(4) This specifies the method used to interpolate the background into the observation
space. The method involves selecting the neighboring model grid point with the
smallest height difference, while disregarding the grid points over water.

Figure 2 shows a schematic diagram of the simulated region, underlying land use/vegetation
types, and distribution of the NCEP_ADP observation data. It can be seen that the surface
SYNOP and SOUNDING sites are mostly distributed in the eastern part of the QTP, whereas
there are only a few ground and radio-sounding sites in the western part of the plateau.
SATOBs were evenly distributed in the entire simulated region. A few AIRREPs and the
METAR are available for the areas south of the Himalayas.

The three-dimensional variational assimilation theory entails the minimization of the
cost function as follows [61,62]:

J =
1
2

{[
H(x)− y0

]T
R−1

[
H(x)− y0

]
+
(

x − xb
)T

B−1
(

x − xb
)}

(1)

where y0 is the observed data, x is the model state, xb is the background guess, and B is
the background error covariance matrix. The first term of the cost function represents the
difference between the observed data and the model state, and the second term represents
the difference between the model state and the background. The purpose of the assimilation
process is to minimize the cost function, which means that the difference between the
observed data and the model state is reduced as much as possible, and the background error
is controlled [63]. The last stage involves updating the lower boundary and inserting the
analysis obtained from the WRF data assimilation system into the WRF model. This study
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utilizes a cycling assimilation approach that incorporates a quasi-isentropic coordinate
for the analysis increment. By utilizing the potential temperature structure around the
observation, this method dynamically adjusts the impact of observations. The 6 h update
cycle guarantees that the analysis and short-term forecast remain current [46].

Every 6 h, the cycling 3DVAR technique assimilates recent observations by utilizing
the previous 6 h model output as a reference to generate a fresh estimate of 3D atmospheric
fields. The approach involves analyzing the observation-minus-simulation residuals, or
innovations, to obtain a 3D multivariate error field estimate known as the analysis in-
crement. This increment is then combined with the 6 h forecast background to produce
the updated analysis. Through the model’s filter, the 6 h forecast incorporates insights
from previous observations into the current analysis [46]. The 3DVAR system operates in
cycling mode, which allows the background cloud water and rainwater from the previous
cycle to be incorporated into the current cycle. By including these variables in the 3DVAR
system, their information can be transferred to the subsequent cycle, reducing the time
required for the model’s cloud water and rainwater spin-up during the integration from
the analysis stage [64]. At the same time, the “SST update” option is turned on to update
the lower boundary conditions in the WRF model, including sea surface temperature
(SST), background albedo (ALBBCK), green vegetation fraction (GVF), and underlying soil
temperature (TMN) once every 6 h. These variables are updated to the forecast file via
“warm start” after the assimilation.

A schematic diagram of the cycling assimilation process is shown in Figure 3.
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Figure 3. The schematic diagram of cycling assimilation data in the WRF model. The bottom brackets
mean every cycle of assimilation, and the bold arrows mean the observations are assimilated from
the time window “00”, “06”, “12”, and “18”.

2.3. Introduction to Observational Data and ERA-5 Data

The National Meteorological Information Center (NMIC) of the China Meteorolog-
ical Administration (CMA) published the China surface climatic daily dataset (V3.0) on
http://data.cma.cn/, accessed on 29 March 2023. This dataset comprises daily meteorologi-
cal observations from 91 stations located in the simulated QTP region. This dataset includes
the daily averaged surface pressure (hPa), 2 m temperature (◦C), 2 m relative humidity (%),
precipitation (mm), evaporation (mm), 10 m wind direction (◦), wind speed (m/s), and
ground surface temperature (◦C) from 1 January 2010 to 31 December 2019. Before being
utilized, the NMIC conducts quality control and inspection on the data. We used these
observation data for the model evaluation.

The European Center for Medium-Range Weather Forecasts Reanalysis V5 (ERA-5)
reanalysis data were used to provide additional information on atmospheric variables
such as temperature, humidity, wind speed, wind direction, and precipitation in the QTP
region [65,66]. These data were used in conjunction with the China surface climatic daily
dataset to evaluate the performance of the WRF model simulations. To encompass the
timeframe from January 2010 to December 2020, monthly mean data from ERA-5 were
employed in this investigation. These data cover a 30 km grid and span 137 atmospheric
levels, up to 80 km in altitude from the surface [67].

http://data.cma.cn/
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The QTP-HRAD from the WRF model was averaged to a daily time scale for compari-
son and error analysis with observations from meteorological stations. We also compared
the QTP-HRAD with the gridded dataset of ERA-5, comparing variables such as tem-
perature, 2 m temperature, surface temperature, surface pressure, 2 m specific humidity,
10 m wind speed, and total precipitation. We used patch interpolation and the Earth
System Modeling Framework (ESMF) re-gridding toolbox in the National Center for At-
mospheric Research (NCAR) Command Language (NCL) (https://www.ncl.ucar.edu/
Document/Functions/ESMF/ESMF_regrid.shtml, accessed on 8 June 2022) and calculated
the difference between the two datasets.

3. Results
3.1. Comparison of Observations and QTP-HRAD Simulations from 10 Weather Stations

We selected 10 stations (Qamdo, Garz, Hotan, Nyingchi, Nagqu, Pulan, Qumacai,
Zoige, Tuotuohe, and Yushu) at different locations in and around the QTP as representative
stations to compare the daily mean values of the 2 m temperature, relative humidity,
precipitation, and evaporation.

Figure 4 shows the time series comparison of the 2 m temperature and relative humid-
ity observations and the QTP-HRAD data at 10 stations from 2010 to 2019. It can be seen
that the observed values of the 2 m temperature at the Garz, Nyingchi, and Pulan stations
are all higher than the simulated values throughout the year, and the observed values at
the other stations are in good agreement with the QTP-HRAD values. It can also be seen
from the error analysis table (Table 2) that the RMSE between the observed and simulated
daily mean 2 m temperatures of the Garz, Nyingchi, and Pulan stations are higher than
6.8 ◦C, and the bias is below −6.6 ◦C. The RMSE and bias of the other stations between
the observations and simulations were lower in the Hotan, Nagqu, Zoige, and Tuotuohe
stations, at approximately 2 ◦C (RMSE)and between −1 and 1 ◦C (bias), respectively. The
correlation coefficients of the 2 m temperature between the observed and simulated values
were all from 0.95 to 0.99 at these 10 stations, which all passed the 95% significance test.

The simulated value of the relative humidity also varied annually. Except for the
Hotan station, the simulated values of the other stations showed that the relative humidity
peaks in the summer and valleys in the winter, mainly due to the higher temperature in
the summer and more water vapor evaporating into the air. The Hotan station is located
at the edge of the Taklimakan Desert. Owing to the lack of adequate water supply on the
underlying surface, less water vapor evaporates into the atmosphere in the summer. The
relative humidity increases in the winter when the temperatures are lower, and therefore,
the annual variation in the relative humidity and temperature is reversed. Both the observed
and simulated results reflect this trend. The average annual relative humidity and specific
humidity at the Hotan station are 37% and 4.1 g/kg, respectively, which are much lower
than those at the other stations. The statistical error results (Table 2) show that the RMSE and
bias of the specific humidity in the Hotan station are the lowest among the 10 observation
stations (0.75 and 0.26 g/kg, respectively). The Garz station, located in southeast Tibet, has
the highest annual average relative humidity of 79% and a specific humidity of 5.1 g/kg.

In general, the WRF model showed a good simulation effect on the 2 m temperature
and relative humidity in the QTP region. The daily averaged simulated values were
consistent with the observed values, and accurately reflected the annual and interannual
variations in the temperature and humidity. For some stations located in the complex
terrain area, the simulation errors for the temperature and humidity were slightly larger
than those in the flat terrain area. As the Garz and Nyingchi stations are located in the
Hengduan Mountains in the southeast of the QTP, and the Pulan station is located in the
Ali Plateau in the southwest of the QTP, the complex and steep terrain caused a large 2 m
temperature simulation error. Other stations such as Hotan are located in the Tarim Basin
north of the Kunlun Mountains on the northern side of the QTP. The Zoige station is located
in the flat Zoige Wetland in the east of the QTP, and the Nagqu station is positioned in the

https://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF_regrid.shtml
https://www.ncl.ucar.edu/Document/Functions/ESMF/ESMF_regrid.shtml
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northern QTP on hilly terrain that lies between the Tanggula Mountains, Nyainqentanglha
Mountains, and Gangdise Mountains. The terrain of the area gently slopes.
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Figure 4. Comparison of observations and QTP-HRAD simulations for daily averaged 2 m tempera-
ture (◦C) and relative humidity (%) of 10 weather stations in QTP region from 2010 to 2019. The left
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Table 2. RMSE, bias, and correlation coefficient of the daily averaged 2 m temperature, specific
humidity, surface pressure, and 10 m wind speed values between observations and QTP-HRAD from
10 weather stations; * means the correlation coefficient passed the significance t-test level of 0.05.

Weather Stations
2 m Temperature (◦C) Specific Humidity (g/kg) Surface Pressure (hPa) 10 m Wind Speed (m/s)

RMSE Bias R RMSE Bias R RMSE Bias R RMSE Bias R

Qamdo 4.88 −4.51 0.96 * 1.07 −0.51 0.95 * 59.9 −59.86 0.89 * 0.22 1.65 0.22 *
Garz 8.39 −8.11 0.96 * 1.14 −0.82 0.96 * 93.9 −93.84 0.85 * 1.72 1.29 0.22 *

Hotan 1.35 0.36 0.99 * 0.75 −0.26 0.96 * 11.56 −11.45 0.96 * 1.73 1.34 0.51 *
Nyingchi 6.84 −6.61 0.95 * 0.90 −0.48 0.97 * 74.93 −74.89 0.79 * 1.151 0.536 −0.15

Nagqu 2.01 −0.54 0.97 * 0.77 −0.39 0.97 * 9.08 −9.03 0.97 * 1.54 1.16 0.54 *
Pulan 8.66 −8.24 0.95 * 0.81 −0.46 0.97 * 62.48 −62.44 0.85 * 1.259 0.117 0.003

Qumacai 4.97 −4.43 0.96 * 1.18 −0.89 0.96 * 52.21 −52.16 0.95 * 2.59 2.0 0.23 *
Zoige 2.24 −0.31 0.96 * 0.73 −0.22 0.97 * 8.24 −8.153 0.96 * 1.67 1.25 0.33 *

Tuotuohe 2.19 −1.00 0.97 * 1.24 −0.93 0.95 * 20.48 −20.46 0.97 * 1.38 0.44 0.56 *
Yushu 3.68 −2.95 0.96 * 1.08 −0.78 0.97 * 39.50 −39.47 0.90 * 1.67 1.41 0.39 *

Figure 5 shows a comparison of the daily total precipitation and the daily mean actual
evaporation at 10 stations in the QTP region. The red and blue column lines represent the
observed and simulated daily total precipitation, respectively, and the gray line represents
the actual simulated daily evaporation. As no actual evaporation was observed, only the
simulated evaporation was plotted on the graph. It can be seen that the annual variations of
the simulated and observed precipitation were relatively consistent, with more precipitation
in the summer and less in the winter. Except for the Hotan station, the maximum daily
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precipitation of the other stations can reach between 30 and 40 mm in the summer, or even
50 mm, which indicates heavy rain and rainstorm. The simulated value reflects the peak
value of summer precipitation. At the Pulan station, more precipitation days were observed
than those that were simulated. At the Nyingchi station, the observed precipitation in
the winter was slightly greater than the simulated value. The annual evaporation was
positively correlated with the precipitation. The daily average value of evaporation in the
summer is approximately 2–4 mm/d, and the evaporation in the winter tends to be zero.
In general, the stations in the eastern and southern parts of the QTP, such as the Qamdo,
Garz, Nyingchi, and Zoige stations, have more precipitation and evaporation, while the
western stations and the stations in the arid region on the north side of the plateau, such
as Hotan and Tuotuohe, have less precipitation and evaporation. The variation trend of
precipitation was simulated well by the WRF model, which was in good agreement with
the observed values.
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The observed and simulated hourly values of 2 m air temperature, dew point temper-
ature, and precipitation at 10 representative stations on the plateau were also compared
(figure omitted). The hourly simulated values of some stations are closer to the observed
values, such as in the Hotan, Nagqu, Zoige, Tuotuohe, and Yushu stations, but the simu-
lated values of some stations are higher than the observed values by about 3 to 5 ◦C, such
as the Garz, Nyingchi, and Pulan stations. The simulated hourly precipitation can also
reflect sporadic precipitation events over the plateau in the summer. At the Hotan and
Pulan stations, precipitation events rarely occur, and the simulated value is almost zero.
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The large bias between the hourly simulation values and the observation values at stations
such as Garz, Nyingchi, and Pulan is caused by the large difference between the model
grid altitude and the station altitude under complex terrain. Therefore, it is recommended
to make corrections to the “pressure-altitude” height difference in order to make better
comparisons between the assimilation data and the station observation data.

It can be seen from Table 2 that the RMSE between the observed and simulated 2 m
temperatures at the Garz, Pulan, and Nyingchi stations are higher at 8.39, 8.66, and 6.84 ◦C,
respectively, and the bias is negative, indicating that the simulated values are lower than the
observed values. Nevertheless, the correlation coefficient was above 0.95 at these 10 stations
and passed the 95% confidence test, indicating that the daily variations in the simulated and
observed values are in good agreement. The RMSE between the observed and simulated
values of the specific humidity at the 10 stations was all below 1.24 g/kg, and the bias was
also negative. The minimum bias value appeared in Zoige (−0.22 g/kg). The error statistics
of the surface pressure show that the observed and simulated values of the RMSE and bias
in the Nagqu, Hotan, and Zoige stations are lower than those at the other stations, which
are approximately 10 hPa, and the RMSE and bias between the simulated and observed
values of the 2 m temperature and specific humidity were also lower in these three stations.
The RMSE between the simulated and observed surface pressure in the Garz, Pulan, and
Nyingchi stations were higher, which was above 60 hPa, and the simulated 2 m temperature
and specific humidity also showed a larger bias compared with the observations. This
may be due to the large difference in altitude between the observation site and the grid
corresponding to the model, which increases the simulation errors of other meteorological
elements, such as temperature and humidity. The simulated value can be corrected using
the actual altitude of the observation site to reduce the errors. From the simulation error
results of the 10 m wind speed, the correlation coefficient of only two sites failed the
95% confidence test, and the RMSE and bias of the simulated and observed values of the
10 sites were between 1 and 2 m/s. For high altitude complex terrain mountain areas,
the location and orientation of the weather stations, as well as the type of underlying
surface, can significantly impact the simulation accuracy of the temperature, humidity,
wind direction, and wind speed. Table 2 shows that the root mean square error (RMSE)
and bias of the temperature, humidity, and wind speed are also significant when there is a
large difference between the simulated and observed atmospheric pressure values at the
stations. For instance, the bias of the observed and simulated surface pressure values at the
Garz, Nyingchi, and Pulan stations reaches −93.84, −74.89, and −62.44 hPa, respectively.
Meanwhile, the bias of the observed and simulated 2 m temperature values at the three
stations also reached −8.11, −6.61, and −8.24 ◦C, respectively, with the RMSE values of
8.39, 6.84, and 8.66 ◦C. This may be due to the significant difference in elevation between the
simulated grid and the observation site. Despite generating 5 × 5 km horizontal simulation
data in the QTP region, the grid distance of 5 × 5 km is still relatively coarse compared to
these sites. At the Hotan, Nagqu, and Zoige stations, there was little difference between
the simulated surface pressure and observed values, and the simulated 2 m temperature,
relative humidity, and wind speed were also consistent with the observed values. The
RMSE and bias of the 2 m temperature and humidity were the lowest among the ten
representative stations. This is likely because the three stations are not obstructed by high
mountains and the terrain is relatively flat, and the elevation of the observation stations
is close to that of the model grid points. When using these simulation data, it is better to
correct the altitude to reduce the error.

3.2. Comparison of Observations and QTP-HRAD over QTP Region

We selected 91 meteorological stations located in the QTP from 2010 to 2019 to compare
the statistical errors between the simulated and observed daily mean values of the 2 m
temperature, surface temperature, surface pressure, relative humidity, and 10 m wind
speed, and plotted the regional distribution of the correlation coefficients, RMSE, and bias.
Since most observation stations are located in the eastern part of the plateau, with fewer in
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the north of the Kunlun Mountain and Altun Mountain, there are almost no meteorological
observation stations in the central and western parts of the plateau.

It can be seen from Figure 6a that the correlation coefficients of the 2 m temperature
between the observed and simulated values are all above 0.9, and those in the north of the
plateau are above 0.97. The RMSE ranged from 1.4 to 12 ◦C. The RMSE of some stations
in the eastern and northern parts of the QTP was lower, while the RMSE of stations along
the Himalayan Mountains, Tanggula Mountains, and Qilian Mountains was higher. This
may be caused by the large difference between the station altitude and the model grid
altitude owing to the complex topography of the mountains. A total of 70% of the stations
(64 stations) had negative bias values, indicating that the simulated values were lower
than the observed values, and only some stations in the southeastern plateau and north
of the Kunlun Mountains had a positive bias. The statistical error distribution of the land
surface temperature was similar to the 2 m temperature (Figure 6b), and the correlation
coefficient between the simulations and the observations was slightly lower than that of
the 2 m temperature. However, the correlation coefficient for almost all stations exceeded
0.9. The RMSE and bias of the surface temperature were larger than those of the 2 m
temperature. The RMSE of 70% of the stations (64 stations) was above 4 ◦C, and the bias
of 85% of the stations (76 stations) was negative. This may be due to the underestimation
of the air and surface temperatures in the QTP by the NCEP data of the forcing field in
the WRF model. Studies have shown that the temperature in the QTP is underestimated
in the NCEP data [68,69]. According to the research conducted by Frauenfeld et al. [70],
there was an approximate difference of 7 ◦C between the ERA-40 reanalysis data and
the observations. Similarly, Baolin et al. [71] discovered that the NCEP reanalysis data
significantly underestimated the observational data for the QTP.

As shown in Figure 6c, the correlation coefficient between the observed and simulated
values of the surface pressure was above 0.9. There were 17 stations with the RMSE
exceeding 80 hPa, accounting for 19% of all stations, and only 15 stations had an RMSE
between 1 and 10 hPa, accounting for 16.7% of the total. The distribution of bias also
showed that the values of the simulated surface pressure at 68 stations were lower than
the observed values, and 50% of the stations had a bias between −20 and −75 hPa. The
low simulated surface temperature values can be explained by the simulation error of the
surface pressure. The average elevation of the model grid cell was higher than the elevation
of the observation station point, which led to a low simulated surface pressure and low
simulated 2 m and surface temperatures.

The correlation coefficients between the observed and simulated values of relative
humidity between 0.35 and 0.9, all passing the 95% significance level test, are illustrated in
Figure 6d. The RMSE with 60 stations (66.7%) was less than 15%, and only 14 stations had
an RMSE between 17% and 30%. The bias of stations along the Himalayan Mountains and
near the Hengduan Mountains was positive (30 stations, accounting for 33%), indicating
that the simulated value was higher than the observed value. The simulation error of the
10 m wind speed showed that the simulated value of the wind speed at most stations was
approximately 2 m/s higher, and 21 stations had a correlation coefficient higher than 0.5,
accounting for 24% of the total (Figure 6e). The RMSE ranged between 0.5 and 3.2 m/s, and
the bias error statistics showed that the bias in most of the stations was positive (60 sites),
and the simulated value was higher than the observed value. The simulated wind speed
in the WRF model was high, possibly because the model underestimated the roughness
of the underlying surface. This is because the simulation of the wind speed requires the
consideration of many parameterization schemes, such as turbulence parameterization
schemes and boundary layer parameterization schemes, and the inaccurate estimation
of parameters, such as surface roughness, within these schemes can cause errors. Due
to the uncertainty and randomness of atmospheric turbulence, the current mesoscale
meteorological models have a lower simulation accuracy for the wind speed compared to
other variables such as temperature, humidity, and atmospheric pressure [72]. Due to the
complex terrain and the limited data input into the meteorological model, the deviation
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of the average wind speed between the simulation and observation can reach 2 m/s, and
the RMSE can be as high as 6 m/s. Even with better models, reducing uncertainties in
the simulations of near-surface wind speed and direction can be challenging, as they stem
from random or turbulent fluctuations. Furthermore, the randomness is compounded by
variations in sub-grid topography and land use [72–74].
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Overall, the QTP-HRAD showed good results for the QTP. Except for the wind speed,
the correlation coefficients between the simulated and observed values of the temperature,
humidity, and surface pressure were higher than 0.8. However, the QTP-HRAD underesti-
mated the air temperature and surface temperature in the QTP region, and underestimated
the surface pressure at most observation stations, with simulated biases ranging from
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−20 to −180 hPa. The model overestimated the relative humidity at the southern and
southeastern stations and underestimated the relative humidity in the northern part of the
plateau. The simulated wind speed value of the QTP-HRAD was higher, and the bias was
between 1 and 2.8 m/s.

3.3. Comparison of QTP-HRAD and ERA-5 Data over QTP Region

We compared the QTP-HRAD data with the ERA-5 data for 2020 and calculated the
difference between the QTP-HRAD and ERA-5 data in the QTP. To calculate the differ-
ence, we used bilinear interpolation to scale up the QTP-HRAD data from 5 × 5 km to
0.25◦ × 0.25◦, corresponding to the grid size of the ERA-5 data, and then subtracted. Six
meteorological elements, including 2 m temperature, land surface temperature, surface
pressure, 2 m specific humidity, 10 m wind speed, and annual accumulated precipitation
were compared.

Figure 7 shows the spatial distribution of the QTP-HRAD and ERA-5. As can be seen
from Figure 7, the spatial distribution characteristics of the meteorological elements of the
QTP-HRAD are consistent with those of the ERA-5, which reflects the distribution of the
2 m temperature, surface pressure, specific humidity, and 10 m wind speed over the QTP.
As the spatial resolution of the QTP-HRAD is 5 × 5 km, the distribution of near-surface
meteorological elements is finer than that of the ERA-5, which can better demonstrate the
differences caused by large topographic fluctuations.

The spatial distribution of the 2 m temperature data is depicted in Figure 7a. In the
plateau, the annual average temperature at this height is below 0 ◦C, with the western
part of the plateau having a temperature of around −10 ◦C, and the eastern part having
a temperature of around 0 ◦C. The 2 m temperature of the ERA-5 is more consistent with
the spatial distribution of the QTP-HRAD, but is not as fine as that of the QTP-HRAD. The
difference diagram reveals that, with the exception of the central and western regions of
the plateau, the difference value is around −4 ◦C and negative, while the rest of the regions
show positive values. The spatial distribution of the surface temperature is comparable to
that of the 2 m air temperature. Both the QTP-HRAD and ERA-5 are capable of capturing the
extremely low surface temperatures in the western part of the plateau, near the Karakoram
Mountains, which are around −15 ◦C. As the average altitude of the Karakoram Mountains
is above 5500 m, the annual 0 ◦C isotherm is approximately the same as the 4200 m contour
line, which is caused by low temperatures throughout the year in the vast mountainous
area. From the difference map of the surface temperature, it can be seen that the difference
between the central and western parts of the plateau and the Qaidam Basin in Qinghai
Province was also found to be negative, and the lowest value was under −5 ◦C. This
value was positive in the central and northern parts of the plateau and the southeastern
Hengduan Mountains (6–10 ◦C).

The regional distribution of the annual average surface pressure is as follows: the
surface pressure in the plateau area is low (below 600 hPa), where the lowest in the
central and western parts of the plateau can reach 500 hPa, and the surface pressure in
the Qaidam Basin on the north side of the plateau is approximately 700 hPa. The areas
with significant discrepancies between the QTP-HRAD and ERA-5 are primarily located
along the southern Himalayas and the northern Kunlun Mountains, Altun Mountains,
and Qilian Mountains. The difference in surface pressure is between −50 and 50 hPa
(Figure 7c). The 2 m specific humidity of the QTP-HRAD is a high value area in the south
of the Himalayan Mountains, above 10 g/kg, while the annual average specific humidity
in the plateau area is approximately 5 g/kg. The specific humidity of the ERA-5 is lower
than that of the QTP-HRAD in the plateau area at approximately 3 g/kg, and the difference
value is positive (Figure 7d). The 10 m wind speed of the QTP-HRAD in the eastern
part of the plateau is below 3 m/s, and the wind speed in other parts of the plateau is
higher. The ERA-5 data only reflect that the wind speed in the central and western regions
of the plateau is higher than 3 m/s, whereas the wind speed in the Pamir Plateau and
Hengduan Mountains is lower than 1 m/s (Figure 7e). As there are only a few surface
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observation stations in the central and western parts of the plateau, the QTP-HRAD and
ERA-5 data have large differences in the 10 m wind speed simulation of the Pamir region,
and more observational data need to be obtained in the future for verification. The spatial
distribution of the total annual precipitation is shown in Figure 7f. Along the Himalayan
Mountains, the precipitation on the southern side can reach more than 2000 mm/year,
which occurs on the windward slope and Hengduan Mountains in the southern QTP,
while the precipitation in the hinterland of the plateau is less than 200 mm/year. There
is slightly more precipitation in the eastern part of the plateau, which is between 500 and
1000 mm/year, and the difference between these two datasets is positive in the southeastern
part of the plateau, and negative in other areas, indicating that the total annual precipitation
simulated by the QTP-HRAD is higher than that of the ERA-5 (Figure 7f).
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spatial distribution of the QTP-HRAD, but is not as fine as that of the QTP-HRAD. The 
difference diagram reveals that, with the exception of the central and western regions of 
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show positive values. The spatial distribution of the surface temperature is comparable to 
that of the 2 m air temperature. Both the QTP-HRAD and ERA-5 are capable of capturing 
the extremely low surface temperatures in the western part of the plateau, near the Kara-
koram Mountains, which are around −15 °C. As the average altitude of the Karakoram 

Figure 7. Spatial distribution of the QTP-HRAD (left column), ERA-5 (middle column), and their
difference values (right column) over QTP region in 2020. The bold black line is the zero contour
line. (a) Annual mean 2 m temperature (◦C); (b) annual mean land surface temperature (◦C); (c) sur-
face pressure (hPa); (d) specific humidity (g/kg); (e) 10 m wind speed (m/s); and (f) total annual
precipitation (mm).

4. Data Records and Availability

The assimilation data in the QTP were generated with a spatial resolution of 5 × 5 km
at a temporal resolution of once every hour from 2010 to 2020. The assimilation data
include 28 near-surface meteorological variables, including the radiation and energy field
variables. The latitude and longitude of the dataset area range from 72.3◦E to 103.2◦E and
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from 25.9◦N to 40.3◦N. This dataset began at 00:00 (UTC) on 1 January 2010 and ended at
23:00 (UTC) on 31 December 2020, which includes the 2 m temperature (K), land surface
temperature (K), relative humidity (%), surface pressure (Pa), 2 m water vapor mixing
ratio (kg/kg), 10 m U and V wind components (m/s), 10 m wind speed (m/s), wind
direction (◦), precipitation (mm), and dew point temperature (◦C), are available online
(https://doi.org/10.57760/sciencedb.01840, accessed on 31 December 2020).

The structure of the dataset is as follows:
<Year-Short_name>.nc. Here, “Year” represents the data of a certain year, and

“Short_name” represents the short name of the variable as presented in Table 3. The
“Short_Name”, “Long_name”, “Missing_value”, and the “Unit” of the variables are also
summarized in Table 3. From 2010 to 2020, there are 8760 times per variable in each year,
and 8784 times in leap years (2012, 2016, and 2020), and the variables are double-precision
floating-point data (float type).

Table 3. The description and spatiotemporal variables of QTP-HRAD.

Data Description

Data type Gridded

Projection Mercator projection

Horizontal coverage The QTP region, 72.3◦E to 103.2◦E and 25.9◦N to 40.3◦N

Horizontal resolution 0.05◦ × 0.05◦, about 5 × 5 km

Vertical coverage Land surface, 2 m and 10 m above the surface level

Temporal coverage Began at 00:00 (UTC) 1 January 2010 and ended at 23:00 (UTC) 31 December 2020

Temporal resolution Hourly

File format NETCDF

Variables of QTP-HRAD

Variables Short_name Long_name Missing_value Unit

2 m temperature t2 TEMP at 2 m 1 × 1030 K

Land surface temperature tsk Surface skin temperature 1 × 1030 K

2 m relative humidity rh2 Relative Humidity at 2 m 1 × 1030 %

Surface pressure prs Sfc pressure 1 × 1030 Pa

2 m water vapor mixing ratio q2 QV at 2 m 1 × 1030 kg·kg−1

10 m U wind components u10 U at 10 m 1 × 1030 m·s−1

10 m V wind components v10 V at 10 m 1 × 1030 m·s−1

10 m wind speed ws10 Wind speed at 10 m 1 × 1030 m·s−1

10 m wind direction wd10 Wind direction at 10 m 1 × 1030 Degrees

Precipitation pre Accumulated total cumulus precipitation,
accumulated total grid scale precipitation

1 × 1030

1 × 1030
mm,
mm

2 m dew point temperature td2 Dewpoint temperature at 2 m 1 × 1030 ◦C

5. Conclusions

The WRF model and its assimilation system can precisely replicate the near-surface
meteorological parameters in the QTP region, and the simulation data time series demon-
strated good correspondence with the observed data. The simulation results reflect the
interannual variations and regional distribution characteristics of meteorological field ele-
ments such as temperature, humidity, precipitation, evaporation, air pressure, and wind
speed. A comparison between the observations and simulations shows that the simulated
values are more consistent with the observations in flat areas, whereas the statistical error

https://doi.org/10.57760/sciencedb.01840
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is larger in areas with complex terrain conditions. The main conclusions of this study are
as follows:

1. We selected 10 representative weather stations in the QTP region and compared
the observed and simulated values of the 2 m temperature, relative humidity, and
precipitation for the period 2011–2020. It was found that the simulated surface
pressure bias and RMSEs of the stations located in complex mountainous and terrain
areas on the plateau were significantly different from the observed values. The bias
between the observed and simulated surface pressure values at the Garz, Nyingchi,
and Pulan stations were −93.84 hPa, −74.89 hPa, and −62.44 hPa, respectively, and
the temperature and relative humidity bias of these sites were also large. However,
at the stations with relatively flat terrain on the plateau such as Hotan, Nagqu, and
Zoige, the disparities between the simulated and observed surface pressure values
were minor, and the simulated values of the 2 m temperature, relative humidity, and
wind speed were mostly in agreement with the observed values.

2. The annual variations in the simulated and observed precipitation are relatively
consistent. The simulated values can reflect the peak periods and magnitudes of
summer precipitation on the plateau. The daily average evaporation and precipitation
at the 10 stations show a significant positive correlation. The daily average evaporation
in the summer is about 2–4 mm/d, while in the winter, it tends to be zero. Overall,
there is more precipitation and evaporation at the stations in the eastern and southern
parts of the QTP, such as Qamdo, Garz, Nyingchi, and Zoige, while the stations in the
western and northern arid areas of the plateau, such as Hotan and Tuotuohe, have
less precipitation and evaporation.

3. An error statistical analysis was conducted on the observed and simulated values of
the 2 m temperature, surface temperature, surface pressure, relative humidity, and 10
m wind speed at all 91 meteorological stations in the QTP region. It was found that
the correlation coefficients of the 2 m temperature, surface temperature, and surface
pressure were relatively high, all above 0.9. The correlation coefficient between the
observed and simulated values of relative humidity was around 0.7 for most stations
on the plateau, with positive bias at the stations in the southern part of the plateau and
negative bias at the stations in the northern part. The correlation coefficient between
the observed and simulated values of wind speed was relatively low, around 0.5, with
positive bias at most stations on the plateau, indicating that the simulated values of
the near-surface wind speed were higher than the observed values.

4. We also compared the QTP-HRAD with ERA-5 on a regional scale and calculated
their differences. The spatial distribution patterns of the two datasets for the 2 m
temperature and surface temperature are quite consistent, with the QTP-HRAD values
slightly lower than the ERA-5 in the southwest region of the plateau. The difference
in the surface pressure between the two datasets shows clear positive and negative
differences along the plateau boundary. The QTP-HRAD simulated specific humidity
is about 2–5 g/kg higher than the ERA-5. The simulated values of the 10 m wind speed
near the ground are also higher than the ERA-5, except for the central plateau area,
with a difference of 1–3 m/s. The simulated precipitation amount shows the largest
difference along the southern side of the plateau, particularly along the Himalayan
range, and the annual total simulated precipitation amount by the QTP-HRAD is
higher than that of the ERA-5.

When using the QTP-HRAD, it should be noted that the grid data near the Himalayan
Mountains in the south, the Hengduan Mountains in the southeast, and the Kunlun
Mountains in the northwest of the plateau may be inaccurate, which is the limitation of
using this dataset.
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