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Abstract: Rice false smut (RFS) is a late-onset fungal disease that primarily affects rice panicle in
recent years. Severe RFS can decrease the yield by 20–30% and severely affect rice quality. This
research used hyperspectral remote sensing data from unmanned aerial vehicles (UAV). On the basis
of genetic algorithm combined with partial least squares to select the feature bands, this paper creates
a new method to use the Pearson correlation coefficient method and Instability Index between Classes
(ISIC) method to further select characteristic bands, which further eliminated 27.78% of the feature
bands when the model monitoring accuracy was improved overall. The prediction accuracy of the
Gradient Boosting Decision Tree model and Random Forest model was the best, which were 85.62%
and 84.10%, respectively, and the monitoring accuracy was improved by 2.22% and 2.4% compared
with that before optimization. Then, based on the UAV hyperspectral data and the combination of
characteristic bands selected by the three band optimization methods, the sensitive band ranges of
rice false smut monitoring were determined, which were 698–800 nm and 974–997 nm. This paper
provides an effective method of selecting characteristic bands of hyperspectral data and a method of
monitoring crop diseases’ using unmanned aerial vehicles.

Keywords: feature band optimization; hyperspectral data; rice false smut; Instability Index between
Classes (ISIC); UAV

1. Introduction

Agriculture is the lifeline to all countries and the guarantee of food security for people
around the world. In agriculture, rice is one of the most important crops and accounts for
about 70 percent of global consumption. Rice is also considered one of the most important
grains of every meal [1]. China is not only the world’s largest rice producer but also
consumes and imports more rice than other countries, which means that the stability
of Chinese rice production has a big impact on the global rice market [2]. Insect pests
and diseases are the major causes of grain yield loss and quality decline in agricultural
production. In addition to economic losses, insect pests and diseases also threaten global
food security [3,4]. Rice will be exposed to various fungi during its growth and development
which will lead to a serious decline in quality and yield. Rice false smut (RFS) is a late
fungal disease caused by the ascomycete fungus which uses rice panicles as the primary
host [5]. Recently, RFS has become a devastating disease in a good deal of major rice-
producing countries including China, Japan, India and the United States [6,7]. RFS will
consume the whole panicle nutritional of rice and result in a serious decline in rice quality
and huge losses [8]. RFS reduces “thousand seed weight” and seed germination (by up to
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35%). In wet weather, RFS may cause a production loss of up to 25%. After rice planting,
the bacteria still survive in the soil and infect the seedlings [9]. Although RFS is mainly
concentrated on small areas around the original disease source area, the common practice
is still to spray pesticides indiscriminately on the entire field [10]. In order to minimize
the economic losses and environmental pollution caused by pesticides, it is necessary to
accurately assess the distribution and prevalence of RFS [11]. Therefore, an automated, non-
destructive, fast, sensitive and selective method is urgently needed to quickly detect plant
diseases and reduce the use of pesticides and fertilizers to support sustainable agricultural
production [11,12].

Remote sensing technology [13,14] has shown unique advantages in crop disease and
pest stress monitoring on account of its characteristics of accuracy, rapidity, extensive area
and no damage [15]. Recently, remote sensing technology has made important contribu-
tions to large-area agricultural resource monitoring, crop to yield forecasting, agricultural
situation forecasting, etc. [16,17]. In recent years, with the rapid development of the UAV
industry, remote sensing of the UAV clothing industry has played an important role in the
application of crop disease and pest stress monitoring on account of its characteristics of
high spatial resolution of image, high timeliness of data acquisition and low cost [15,18].
Therefore, UAV hyperspectral photogrammetry is an effective method for rapid and ac-
curate monitoring of small and medium-sized crop pests and diseases. In the literature,
many researchers use UAV remote-sensing images to monitor crop pests and diseases. For
example, high spatial resolution aerial images were used to monitor the invasion degree of
yellow leaf spots on banana crops and the Support Vector Machine method was used to
achieve good accuracy [19]. Multi-spectral cameras and unmanned aerial vehicles are used
to get time series band aerial multispectral images, study spectral data on crops in different
periods and get an effective method of monitoring early crop diseases and insect pests [20].
Apart from using high-resolution and multispectral images to monitor crop diseases and
pests, hyperspectral images are also an important means to detect crop diseases and pests.
Some researchers used hyperspectral imaging technology to identify tomato yellow leaf
disease and used spectral characteristic parameters and spectral bands such as the first
derivative reflectance spectrum and absolute reflectance difference spectrum to accurately
monitor the disease situation of crops [21]. Some researchers also select characteristic
spectral bands of hyperspectral bands to reduce the dimensions of hyperspectral data and
get high accuracy [22–24]. However, in the research of monitoring crop pests and diseases
based on hyperspectral images, most of the data acquisition methods are to use a ground
hyperspectral imager to collect crop hyperspectral images which is difficult to achieve
extensive area, rapid and accurate monitoring of crops.

In the research of monitoring crop pests and diseases using hyperspectral remote
sensing images, usually people inoculate healthy crops with related diseases and pests to
infect crops more evenly, which can do more detailed research on each stage of crop disease.
However, in nature, pests and diseases infect crops from a few points to gradually infect
nearby healthy crops, and the disease situation of crops is more complex. Therefore, in
order to establish a more accurate monitoring model of crop pests and diseases, in addition
to actively studying the changes of spectral characteristic curves of crop pests and diseases
at various time periods, we also need to pay attention to the study of crops infected with
diseases and pests in the natural environment. In the existing research, some use the
machine learning classification method Support Vector Machine (SVM) and histogram
analysis method [1,8,23] to select features, some use the neural network (CNN) to build
models [25] for the whole band or use genetic algorithm [23,24] to extract feature bands.
Many more researchers use the Random Forest (RF) model [3,11,20,22] to establish crop
disease and pest detection models and achieve high accuracy. In summary, spectral analysis
of hyperspectral images and calculation of spectral parameters are the primary methods for
pest and disease monitoring, and the use of machine learning models and deep learning
networks is a hot research direction.
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Using hyperspectral remote sensing images to monitor crop pests and diseases and
selecting bands of hyperspectral data is the direction to improve the accuracy of pest and
disease monitoring. Some studies have been conducted to screen characteristic bands of
hyperspectral bands based on the genetic algorithm and partial least squares method [26],
some use the Guided Regularized Random Forest (GRRF) to screen hyperspectral bands [22]
or use genetic algorithm combined with Support Vector Machine (SVM) to select hyper-
spectral bands [23]. Except for using model calculations to select characteristic bands, some
researchers also select characteristic bands by processing raw spectral data. For example,
some researchers use the principal component analysis method to reduce the dimension-
ality of the raw, inverse logarithmic, first and second derivative reflectance spectra [27].
Some researchers also select characteristic bands based on the hyperspectral characteristic
band selection method established based on the instability index and improved stable
zone unmixing [24]. Some researchers have also proposed a spectral feature extraction
algorithm based on the linear discriminant analysis (LDA) and texture feature extraction
based on integral images [28]. The minimum noise fraction algorithm (MNF), canonical
correlation analysis (CCA), projection pursuit, orthogonal subspace projection (OSP) and
discrete wavelet transform (DWT) are also classical hyperspectral data feature extraction
algorithms [12]. However, the method used in the above studies only preliminarily selects
the optimal feature bands, and the combination of feature bands is the local optimal combi-
nation. Therefore, this paper is pioneering in selecting the best combination of characteristic
bands of a variety of band selection methods to improve the monitoring accuracy of rice
false smut.

In summary, few studies have applied UAV hyperspectral data to rice false smut mon-
itoring, and no effective monitoring method based on UAV hyperspectral photogrammetry
has been developed. Therefore, the main objectives of this study are in two aspects: (1) To
develop a band selection method of hyperspectral data to get the optimal combination of
characteristic bands and (2) to develop a rapid and accurate monitoring method for rice
false smut based on UAV hyperspectral photogrammetry.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Experimental Design and UAV Photogrammetry

The UAV flight platform (see Figure 1) used in this study was developed by Shenzhen
DJI Innovation Technology Co., Ltd. (Shenzhen, China) with the model of Matrix 600 Pro.
The UAV is equipped with three Inertial Measurement Unit (IMU) and Global Navigation
Satellite System (GNSS) modules. This redundant system design can ensure the reliability
and stability of the flight platform. In order to provide a stable working environment
for the hyperspectral sensor and reduce the geometric distortion of the image caused by
the vibration of the motor, the acceleration of the aircraft and the change of direction and
route of the aircraft, a gimbal system equipped with a high-precision IMU (see Table 1,
Figure 1) is used in this study. The gimbal system used in this study is also the Ronin-MX
developed by Shenzhen DJI Innovation Technology Co., Ltd. The hyperspectral imagery
used is a visible near-infrared push-sweep hyperspectral imagery developed by Head Wall
Company (Boston, MA, USA) in the United States, and the model is Nano-Hyperspec® (see
Table 2, Figure 1).

Table 1. Some technical parameters of DJI Pan-Tilt Ruying Ronin-MX.

Technical Parameter Value

Maximum load weight 4.5 kg
Endurance time 180 min

Operating ambient temperature −50 ◦C to 15 ◦C
Angular jitter ±0.02◦
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Figure 1. DJI Matric 600 Pro, Nano-HyperSpec®, Ruyin Ronin-MX.

Table 2. Some technical parameters of hyperspectral imager Nano-Hyperspec®.

Technical Parameter Value

Wavelength range 400–1000 nm
Number of pixels per row 640

Number of bands 270
Spectral resolution 2.2 nm

Operating ambient temperature 0–50 ◦C

Scientific and reasonable flight plan is the basis for obtaining high-quality data and
improving data acquisition efficiency. Terrain conditions, weather conditions, the shape
of the study area, the angle of view of the hyperspectral imager and other factors need
to be contemplated. Finally, the optimal flight speed, flight altitude, exposure time and
other parameters are determined (see Table 3). In this study, the UAV collected data on no
wind or slight wind, no cloud or little cloud, stable lighting conditions and a large solar
altitude angle (10:00–14:00). In addition, the reflectance calibration cloth is placed in the
experimental area to facilitate the radiometric correction of images. The flight altitude of
four UAV hyperspectral data acquisition experiments in this study is 100 m, and the spatial
resolution of remote sensing image is 9.2 cm. The flight speed of the UAV shall be set
according to the weather and it shall be calculated according to Equation (1).

v =
FOV·h

n·t (1)

Table 3. Specifications of four UAV campaigns in this study.

Date Speed Altitude

14 August 2020 5.8 m/s 100 m
20 August 2020 6.8 m/s 100 m
25 August 2020 6.2 m/s 100 m

2 September 2020 6.0 m/s 100 m

Here, v is the flight speed of the UAV imaging system, t is the exposure time, FOV is
the field of view, h is the flight altitude and n is the number of pixels per row.

2.1.2. Field Measurement

The research area reposes on the Modern Agricultural Science and Technology Innova-
tion Demonstration Park of the Academy of Agricultural Sciences, Chengdu Xindu District,
Sichuan Province (Figure 2a). Hyperspectral photogrammetry of rice in the research area
was carried out using the UAV flight platform equipped with remote sensing equipment.
Figure 2b,c shows the map covering the RGB top view of the rice field in the study area.
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The red box in Figure 2b shows the selected area of the study rice false smut. In Figure 2c,
two sampling areas are marked, and the location information of the diseased area and the
healthy area of rice are collected in sampling areas 1 and 2. There were among 36 exper-
imental plots and 12 rice varieties in the rice false smut research area. Each rice variety
was planted three times in duplicate and 252 litters of rice (9 rows × 28 rows) were planted
in each plot. In the experimental field, the rice planting density was 26.67 cm × 20.00 cm
and the same field management methods (such as irrigation method, fertilizer application
rate, etc.).
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Figure 2. Information map of the geographical location of the study area and the incidence of rice
false smut. (a) Geographical location of the pilot area; (b) Top view of the test plot; (c) Sampling area
selection distribution map.

The information data on the occurrence of RFS (including the diseased area and the
healthy area) were collected as shown below: First, visually identify whether rice is infected
with rice false smut or healthy, then use a tape measure to measure the distance between
each border of the diseased area (or healthy area) and the border of the rice planting area
and finally match with the UAV hyperspectral image to get the positions of healthy points
and diseased points in the hyperspectral image. The idea of data collection for infected
areas and healthy areas is to measure the infected area on the first day of data collection
(If an area is infected at this moment, it means that the area is also infected later) and
measure the healthy area on the last day (If an area is healthy at this moment, it means
that the area was healthy before). The infected area was measured on 14 August 2020, and
the infected area shape file collected on 14 August 2020 is also the shape file of the other
three dates. The health region was measured on 2 September 2020 and the shape file of
the health region collected on 2 September 2020 is also the shape file of the other three
dates. Figure 2c shows the results of the field survey, which includes both healthy and
rice false smut-infected areas. In the figure, the healthy area is marked with green and the
infected area is marked with red. The center coordinates of the experimental site are Lat:
30◦47′13′′N, Lon: 104◦12′16′′E.
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2.2. Data Preprocessing
2.2.1. Hyperspectral Data Filtering Processing

In this section, we mainly introduce the causes of hyperspectral data noise generation,
explain the principle and characteristics of a Savitzky-Golay filter and explain the reasons
for choosing the filter and the relevant parameter Settings of Savitzky–Golay filter.

The hyperspectral data onto UAV has hundreds of bands, which can be used to
photograph the ground object to a height of overtop 100 m. Sometimes, because the signal-
noise ratio of the instrument does not reach the optimal working state or on account of the
combined effect of dark current and other interfering factors, the spectral reflectivity of
different wavebands has some noise, resulting in the reflectivity of adjacent wavebands
showing zigzag characteristics (Figure 3). In order to get a smooth spectrum, improve the
signal-to-noise ratio and improve the accuracy of information extraction, hyperspectral
data need to be processed by spatial domain smooth filtering. There are two kinds of
spatial smoothing filtering methods: linear and nonlinear. Linear smoothing includes mean
filtering, Gaussian filtering, etc. Nonlinear smoothing includes median filtering, bilateral
filtering and so on. Savitzky–Golay (S–G) filter is a low-pass filter, also known as S–G
smoother. As S–G is a filtering method based on local polynomial least square fitting in
the time domain, it can ensure the shape (maximum value, minimum value) and width
distribution characteristics of the signal while filtering noise [29], so this paper chooses
S–G filtering method for filtering hyperspectral data. S–G filter is a best-fitting method
based on polynomials in time domain by moving Windows using the least squares method.
When using S–G filtering, it is necessary to determine the applicable moving window size
(positive odd number) and polynomial degree. The larger the value of the moving window,
the smoother the spectral curve is, and some information will be lost. The smaller the
moving window, the closer it is to the real curve. The larger the polynomial degree, the
closer the curve is to the real curve. The smaller the curve, the smoother the curve. In
addition, when the degree of the polynomial is large, due to the limitation of the window
length, there will be problems with the fitting, and the high-frequency curve will become a
straight line [29,30]. Therefore, this study adopts the S–G convolution smoothing method
of moving window 9 and quadratic polynomial to smooth and dense hyperspectral data
(Figure 3).
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Figure 3. Comparison of rice spectral data before and after S–G filtering.

2.2.2. Acquisition of Rice False Smut Monitoring Database

The location data of rice false smut and the location data of healthy rice sampling points
were matched in ENVI software to get the spectral reflectance data sampling points. We
used the ROI tool by ENVI software to extract the data of the region of interest. According
to the location data sampling points, we used the ROI tool to output the spectral reflectance
of healthy and diseased sampling points of hyperspectral data collected on four dates,
respectively and finally get the spectral database of rice false smut monitoring.
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2.3. Hyperspectral Feature Band Optimization

In this section, the following three parts, respectively introduce the basic principle of
genetic algorithm, correlation coefficient method and inter-class instability index method
and the specific process, technical details and parameter setting of characteristic band
selection of UAV hyperspectral data. The dotted line box in Figure 4 specifically shows the
operation flow of this section.
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2.3.1. Hyperspectral Feature Band Optimization Based on Genetic Algorithm

The Genetic Algorithm (GA) adopts the natural evolution model, which is self-
organizing, adaptive and self-learning. Genetic algorithms transform the original popu-
lation of the parameter space by encoding, and the most important thing is to select an
appropriate fitness function as the evaluation basis. The genetic algorithm takes the coded
population as the initial population, realizes the selection and genetic mechanism for the
genetic operation of genes in the population and finally establishes an iterative process to
get the optimal solution [31]. The calculated flow of hyperspectral features band selection
using genetic algorithm is as shown below:

• Step1: Generate the initial population. Taking the rice disease monitoring accuracy as
the optimal object, the hyperspectral band was coded with binary code as the gene
and the initial population was randomly generated.

• Step2: Selecting Fitness function. In the genetic algorithm, individual fitness is used
to determine the probability of the individual being inherited to the next generation
population. The greater the fitness of an individual, the greater the probability that
the individual will be inherited to the next generation and vice versa [31]. Partial least
squares cross test of mean square error (RMSECV) was used as the fitness function [23].

• Step3: Genetic algorithm parameter design. The main control parameters of genetic
algorithm include population size, iteration times, mutation probability, crossover
probability, etc. In addition, before the initial population is assigned, it should be
estimated at a large probability interval to avoid the limitation of the search range of
the genetic algorithm and reduce the burden on the algorithm at the same time. If the
group size is too large, the results are difficult to converge and waste resources and
the robustness decreases. If the mutation probability is too small and the population
diversity declines too fast, it easily leads to the rapid loss of effective genes and is no
picnic to repair. If the iteration of the genetic algorithm is too small, the algorithm will
not converge easily; If the number of iterations is too large, the algorithm will lead
to a premature population and further evolution will only increase time expenditure
and waste of resources. If the mutation probability is too large, the diversity of the
population can be guaranteed, but the better solution will be eliminated. Similar to the
mutation probability, the crossover probability is easy to destroy the existing solution,
increases the randomness and easily misses the optimal individual; In addition, if the
crossover probability is too small, the genetic algorithm cannot effectively renew the
population [32].

• Step4: Algorithm termination condition. When the fitness of the optimal band com-
bination is no longer improved or the number of iterations of the genetic algorithm
reaches the preset number of iterations, the operation is aborted. After repeated exper-
iments and tests, the initial population size is set as 30, the crossover probability is 0.5,
the mutation probability is 0.01 and the maximum iteration is 100 at this moment [26].

2.3.2. Hyperspectral Feature Band Optimization Based on Correlation Coefficient

Pearson correlation coefficient (PCC) [33] (r) is used to measure the correlation (linear
correlation) between two variables X and Y, and its value is between −1 and 1, which is
defined and calculated by Equation (2).

r =
∑n

i=1(Xi − X)
(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(2)

In Equation (2), r is the Pearson correlation coefficient, X and Y are the mean values of
variables X and Y and Xi and Yi are the element values of variables X and Y.

The value of the coefficient is 1, it means that X and Y can be well described by the
linear equation. All data fall on a straight line and Y increases with the increase of X [34,35].
When the correlation coefficient of the two variables is close enough to 1, the two variables
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can be considered to be strictly linearly correlated. Therefore, the information on one of the
two linearly correlated bands can be used to place the information on the two bands with
the monitoring of rice false smut. Because these two bands are strictly linearly correlated,
the information lost by eliminating one band is limited and mutual interference with
related bands can be avoided during model checking. In this way, the original data can
be compressed and noise data can be reduced under the premise of retaining the original
information as much as possible.

Therefore, based on the principle that the two variables with large correlation can be
expressed linearly to each other, the correlation coefficient method is used to select the
hyperspectral band. We eliminate the variables whose correlation is greater than a certain
threshold to ensure that the correlation coefficients between the remaining variables are less
than the threshold. When Pearson’s correlation coefficient is between 0.8 and 1.0, variables
X and Y are strongly correlated [36]. In this paper, the correlation coefficient between bands
selected by the genetic algorithm is firstly calculated and a threshold between 0.8 and 1.0 is
selected as the criterion for the correlation coefficient selection of hyperspectral bands. After
each threshold is selected, bands that did not meet the threshold conditions are eliminated
from the preliminary preferred bands and the monitoring model is constructed using the
preferred bands and the prediction accuracy is calculated. Finally, the correlation coefficient
threshold with the highest prediction accuracy is acquired.

2.3.3. Hyperspectral Feature Band Optimization Based on Instability Index
between Classes

The Instability Index between Classes (ISIC) is an important index for quantitative
evaluation of the separability of samples of each band of hyperspectral data. ISIC can judge
the applicability of a band to the second or multi classification problem by the size of the
ISIC and then select some bands that are suitable for the sake of related classification or
eliminate the bands that are not suitable for related classification. ISIC is calculated in
sequence by the band, and the instability index of each band is calculated in sequence by
taking the same band of various samples as the unit. When there are two types of samples
involved in the operation, the ISIC can be calculated from Equation (3) [24].

ISICi =
∆within, i

∆between, i
=

S1,i + S2,i

|m1,i −m2,i|
(3)

In Equation (3), ISICi is the Instability Index between Classes of two types of samples
at the i-th band; ∆within, i and ∆between, i is the intra class deviation and inter class
deviation, respectively; S1,i is the standard deviation of the first type samples at the i-th
band, and S2,i is the standard deviation of the second type samples at the i-th band; m1,i is
the mean value of the first type of sample in the i-th band, and m2,i Is the mean value of the
second type of sample in the youth band. It can be seen from Equation (3) that when the
intra-class deviation is smaller and the inter-class deviation is larger, the Instability Index
between Classes is smaller [24].

If the number of categories of samples to be classified is greater than two, the Instability
Index between Classes can be calculated by Equation (4) [37].

ISICi =
∆within, i

∆between, i
=

m
m(m− 1) ∑m−1

z=1 ∑m
j=z+1

Sz,i + Sj,i∣∣mz,i −mj,i
∣∣ (4)

In Equation (4), m is the number of categories, Sz,i is the standard deviation of the z-th
sample in the i-th band and Sj,i is the standard deviation of the j class sample in the i-th
band; mz,i is the mean of the z-th sample in the i-th band, and mj,i is the mean value of the j
sample in the i-the band.

The ISIC is an important index for characterizing the separability of each category in
the band. According to the size of the ISIC, it can directly determine whether a band is
conducive to more accurate classification of samples. When the standard deviation Sz,i in
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each category is smaller, it manifests that the spectral reflectance of each sample of the same
category is closer and the dispersion degree of the data is smaller. Therefore, the smaller
the intra-class deviation ∆within is, the better the classification of samples. When the
absolute value of the mean difference of

∣∣mz,i −mj,i
∣∣ is larger, it manifests that the greater

the difference of spectral reflectance of each sample between different categories and the
better the separability of spectral data. Therefore, the greater the inter class deviation
∆between, i, the more conducive to sample classification. In conclusion, the smaller the
ISIC is, the better the classification accuracy will be. It is necessary to select the band of the
smaller ISIC for monitoring, eliminate the band of the larger ISIC, further reduce the data
dimension and improve the efficiency and accuracy of the model.

The most important thing is to select the threshold value of the hyperspectral feature
band by using the method of ISIC. The larger the threshold is, the more hyperspectral
bands are selected. Conversely, the number of preferred hyperspectral bands is smaller.
In addition, when the threshold is too large or too small, it is easy to reduce the classifi-
cation accuracy. So, it is necessary to find an optimal threshold as the criterion of band
optimization. The search for the optimal threshold can be selected within the interval of
ISIC aggregation. First, set a certain step size and then select the optimal band within the
threshold interval with a certain threshold value. Finally, use the selected optimal band
to establish a prediction model and then evaluate the accuracy to determine the optimal
threshold value. In order to find the optimal threshold, a series of thresholds need to
be selected. At the beginning, the step size can be set larger, the interval selected by the
threshold can be narrowed according to the prediction accuracy calculated by the selected
threshold, and then the optimal threshold can be acquired by setting a smaller step size.
This method can effectively reduce the optimal threshold searching time. In this paper,
prediction accuracy was used as the evaluation index of prediction accuracy. After selecting
a series of thresholds in the threshold interval, the hyperspectral band was selected to
establish the prediction accuracy of the rice false smut prediction model by comparing the
ISIC with the threshold value.

2.4. Model Establishment and Verification

The data set is divided into a training set for model establishment and a verifiable set
for model accuracy test by 7:3. The sample data set in this paper includes 1527 disease and
health sampling points including 766 health sampling points and 761 disease sampling
points. The sampling point data is uniformly collected from the five sampling areas in
Figure 2c. It showed sample data set division in the following Table 4:

Table 4. Data set partitioning.

Number of
Sampling Points Training Set Validation Set

no-m1 280 196 84
no-m2 170 119 51
no-m3 104 73 31
no-m4 111 78 33
no-m5 105 73 32
yes-m1 428 300 128
yes-m2 335 235 199

Total
Health 539 231

Infected 535 327
In Table 4, yes and no indicate whether they are ill, and m1–m5 is the sampling area number.

In order to further verify the effectiveness of the hyperspectral band optimization
method, a model between rice health and spectral data was established based on Random
Forest and Gradient Boosting Decision Tree. The two models have unique characteristics.
Through the mutual verification of various models, the optimal selection results of spectral
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bands can be comprehensively evaluated. Random Forest (RF) is an algorithm based on
classification tree [38]. Random Forest improves the prediction accuracy of the model by
summarizing many classification trees and has a fast computation speed and excellent
performance in processing big data. In addition, Random Forest does not need to worry
about the problem of multivariate collinearity, so it is easy to calculate the nonlinear effect of
variables and can reflect the interaction between variables [39]. Gradient Boosting Decision
Tree (GBDT) is a part of the ensemble boosting algorithm. GBDT can flexibly process
various types of data including continuous values and discrete values. When using some
robust loss functions, the robustness to outliers is very strong [40].

This study is to monitor whether rice suffers from rice false smut which is a binary
problem. According to the combination of sample and model prediction categories, the
four cases of the table are divided into the following Table 5 “confusion matrix” [41]:

Table 5. Confusion matrix.

Predicted Results

Real Situation Positive Example Negative Example

positive example TP (True positive example) FN (False negative example)
negative example FP (False positive example) TN (True negative example)

In Table 5, TP refers to the number of positive cases in the predicted results and the actual cases; FP refers
to the number of actual cases that are counterexamples but are predicted to be positive; TN is the number
of counterexamples in the prediction result and the actual situation; FN is the number of genuine cases as
counterexamples but predicted as positive cases [41].

Based on confusion matrix, accuracy, precision, recall and F1 score were used as
evaluation indexes of the model in this study. Accuracy is how many samples are predicted
correctly in all samples, see Equation (5); precision is how many of the predicted positive
examples are actually positive, as shown in Equation (6); recall is how many samples
of actual positive examples are predicted to be positive, see Equation (7); Accuracy and
recall balances F1 score together, and F1 score combines these two quantities to improve
decision-making speed, as shown in Equation (8). In order to better realize the monitoring
and prevention of rice false smut, it is necessary to accurately extract the affected area of
rice false smut, and the FP (False positive example) should be as small as possible. The
evaluation index mainly refers to the accuracy and accuracy rate.

accuracy =
TP + TN

TP + FP + TN + FN
(5)

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

F1 =
2∗precision

precision + recall
(8)

3. Results
3.1. Screening Results of Spectral Characteristic Bands by Genetic Algorithm

In this section, we introduce the detailed process of using genetic algorithms to select
feature bands including the effect of band selection.

Using the data of 1527 hyperspectral samples of health and disease, a genetic algorithm
combined with the partial least squares method was used to calculate and repeat the
preprocessed spectral reflectance value 20 times, and the characteristic spectral bands
were screened from 273 bands of hyperspectral images. Figure 5 shows the results of the
spectral band screening operation of the genetic algorithm. The hyperspectral band range
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is 400–1000 nm, and there are 273 bands in total. The abscissa is the number of 273 bands
according to the wavelength from small to large, and the ordinate is the frequency selected
for each band in the 20-th band screening. On the variable selection frequency of Figure 5,
there are three horizontal lines, which indicate that the characteristic band with the selected
frequency greater than the horizontal line value is used for modeling. The position of a
horizontal line is selected according to the accuracy of the model, and the optimal band
combination with the best accuracy is selected as the result of band selection. In the figure,
the number of feature bands selected by taking the top horizontal line as the reference is 8,
the number of feature bands selected by taking the middle horizontal line as the reference
is 18 and the number of feature bands selected by taking the bottom horizontal line as the
reference is 42.
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Then, we used three horizontal lines, respectively to screen out the feature band
random forest model for verification. When eight characteristic bands were used for
modeling, the prediction accuracy of the model was 76.91%. When 18 feature bands were
used for modeling, the prediction accuracy of the model was 83.44%. When 42 feature
bands were used for modeling, the prediction accuracy of the model was 83.44%. In this
paper, 18 feature bands (the number of modeling bands accounts for 6.59% of the total
spectral bands) screened based on the middle horizontal line were selected for modeling
analysis and subsequent band screening.

According to the band selection results of genetic algorithm (see Figure 5b and Table 6),
the selected characteristic bands are mainly 698–800 nm and 974–997 nm, which are consis-
tent with the sensitive bands of RFS studied [11,27].

Table 6. Genetic algorithm optimization feature bands.

Preferred band number 7, 14, 19, 97, 135, 137, 155, 166, 172, 181, 206, 234,
260, 261, 262, 264, 268, 270

Preferred band wavelength

414.817 nm, 430.309 nm, 441.375 nm, 614.006 nm,
698.107 nm, 702.534 nm, 742.372 nm, 766.717 nm,
779.996 nm, 799.915 nm, 855.245 nm, 917.215 nm,
974.758 nm, 976.972 nm, 979.185 nm, 983.611 nm,

992.464 nm, 996.891 nm
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3.2. Screening Results of Spectral Characteristic Bands by Correlation Coefficient

In this section, we mainly show the calculation results of correlation coefficients and
the detailed process of using correlation coefficients to select feature bands and analyze the
rationality of selecting feature bands by correlation analysis.

We use the preprocessed hyperspectral data to calculate the Pearson correlation co-
efficient between the 18 characteristic bands screened by the genetic algorithm to form a
correlation coefficient matrix (Figure 6). Then, we need to analyze the correlation coefficient
between the variables of each band and select an appropriate threshold to eliminate the
relevant bands. The appropriate threshold value is determined by the prediction accuracy
calculated by establishing the model of the optimized characteristic band, and the optimal
threshold value is finally 0.98 after a series of operations. On the basis of the characteris-
tic bands screened by the genetic algorithm, the bands of correlation coefficients greater
than 0.98 are eliminated. Finally, 16 characteristic bands (the number of characteristic
bands accounts for 5.86% of the total spectral bands) are acquired, which is 11.11% less
dimensionality than the genetic algorithm-optimized characteristic band data.
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According to the correlation coefficient of bands (see Figure 6), redundant bands with
a high correlation coefficient are eliminated (see Table 7), and the eliminated redundant
bands are consistent with the range of redundant bands in other studies [42].
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Table 7. Correlation coefficient optimizes characteristic bands.

Preferred band number 7, 14, 19, 97, 135, 137, 155, 181, 206, 234, 260, 261,
262, 264, 268, 270

Preferred band wavelength

414.817 nm, 430.309 nm, 441.375 nm, 614.006 nm,
698.107 nm, 702.534 nm, 742.372 nm, 799.915 nm,
855.245 nm, 917.215 nm, 974.758 nm, 976.972 nm,
979.185 nm, 983.611 nm, 992.464 nm, 996.891 nm

3.3. Screening Results of Spectral Characteristic Bands by Instability Index between Classes

In this section, we introduce the fundamental process of using the ISCI method to
select the feature bands and analyze the rationality of the feature band selection results and
the effectiveness of the ISCI method.

We use the preprocessed hyperspectral data to calculate the ISIC of 18 characteristic
bands screened by genetic algorithm and select the appropriate threshold to eliminate the
bands. According to the prediction accuracy of the model established by the filtered bands,
this paper selects 50 as the screening threshold of the ISIC. On the basis of the characteristic
bands screened by genetic algorithm, the bands with ISIC greater than 50 are eliminated.
Finally, 15 characteristic bands (the number of characteristic bands accounts for 5.49% of the
whole band) are acquired, which is 16.67% less dimensionality than the genetic algorithm
optimized characteristic band data.

According to the ISCI calculation results (see Figure 7), 50 is selected as the threshold
of eliminating bands, and bands larger than the threshold are eliminated (see Table 8),
which are all outside the range of sensitive bands given by existing studies [27].
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Table 8. Instability Index between Classes optimizes characteristic bands.

Preferred band number 19, 135, 137, 155, 181, 206, 234, 260, 261, 262,
264, 268, 270

Preferred band wavelength

441.375 nm, 698.107 nm, 702.534 nm, 742.372
nm, 799.915 nm, 855.245 nm, 917.215 nm,

974.758 nm, 976.972 nm, 979.185 nm, 983.611
nm, 992.464 nm, 996.891 nm
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3.4. Model Test

In Sections 3.1–3.3, genetic algorithm (GA), Pearson correlation coefficient (PCC) and
Instability Index between Classes (ISIC) were used, respectively to select feature bands. In
this section, based on the above results, the optimal characteristic bands selected by GA,
GA + PCC, GA + ISIC and GA + PCC + ISIC were, respectively constructed by RF and
GBDT models to verify the band selection results. Then, we use the accuracy evaluation
index to evaluate the predicted results of the model. The accuracy evaluation results of the
model are as shown below:

The Random Forest model was used to evaluate the characteristic bands selected by
various methods. The characteristic bands were used to establish a model to predict the
evaluation indexes according to Equations (5)–(8). The results are shown in Table 9. The
correlation coefficient and the ISIC method eliminated two and three bands, respectively,
and the accuracy, precision, recall and F1 scores were significantly improved compared to
those before the elimination of bands. When five bands were eliminated in the meantime,
the optimized feature band combination reduced the data volume by 27.8% on the basis of
the original optimized feature band, and ensured that the accuracy, precision, recall and
F1 score were significantly improved compared with the band elimination before band
elimination and the band elimination by single method. The accuracy and precision can
be improved by 2.22% and 1.70%, respectively by using correlation coefficient and ISIC to
eliminate bands.

Table 9. Random Forest (RF) model.

Method GA 1 PCC 2 ISIC 3 PCC + ISIC

Accuracy 83.44% 84.10% 84.10% 85.62%
Precision 79.84% 80.08% 80.08% 81.54%

Recall 89.57% 90.87% 90.87% 92.17%
F1-score 0.84 0.85 0.85 0.87

Excluded
wavelength

766 nm,
779 nm

414 nm,
430 nm
614 nm

414 nm, 430 nm
614 nm, 766 nm

779 nm
Number of

selected bands 18 16 15 13

1 Genetic algorithm. 2 Pearson correlation coefficient. 3 Instability Index between Classes.

The optimal bands screened by various methods were evaluated based on Gradient
Boosting Decision Tree model, and the evaluation indexes were calculated according to
Equations (5)–(8). The results are shown in Table 10. For the optimal band selected by the
correlation coefficient method and ISIC, the accuracy, precision, recall and F1 score have been
improved. When the five bands screened by correlation coefficient and ISIC were removed in
the meantime, the accuracy increased by 2.4% and the recall increased by 1.99%.

Table 10. Gradient Boosting Decision Tree (GBDT) model.

Method GA 1 PCC 2 ISIC 3 PCC + ISIC

Accuracy 81.70% 84.53% 82.79% 84.10%
Precision 77.86% 81.42% 78.93% 79.85%

Recall 88.70% 89.57% 89.57% 91.30%
F1-score 0.83 0.85 0.83 0.85

Excluded
wavelength

766.717 nm,
779.996 nm

414.817 nm,
430.309 nm,
614.006 nm

414.817 nm,
430.309 nm
614.006 nm,
766.717 nm
779.996 nm

Number of
selected bands 18 16 15 13

1 Genetic algorithm. 2 Pearson correlation coefficient. 3 Instability Index between Classes.
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3.5. Monitoring Results of Rice False Smut

According to the results of the model test, the prediction accuracy of the Random
Forest model based on the characteristic bands selected by the genetic algorithm, ISIC
method and the correlation coefficient method is the best. Therefore, based on the UAV
hyperspectral photogrammetry data of four periods, the random forest model trained in
the model test in Section 3.4 was used to monitor rice false smut. The monitoring results of
rice false smut are shown in Figure 8.
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As shown in Figure 8a, on 14 August, rice in a few regions was extensively infected
with rice false smut, while in other regions only a small area was affected; As shown in
Figure 8b, six days later, on 20 August, a small area of diseased areas began to infect nearby
healthy rice, but the infection rate was relatively slow; As shown in Figure 8c,d, a large
area of disease began on 25 August and 2 September. The small area of disease in the front
also rapidly infected nearby healthy rice, and rice fields were infected with rice false smut
in an all-round way. Figure 8a,b are in the early heading stage of rice, so the infection rate
of rice false smut is slow; As shown in Figure 8c,d, the period is at the rapid heading stage
of rice, so rice false smut quickly infects the entire rice field. Therefore, for the monitoring
of rice false smut, the earlier the discovery time is, the better the disease control is. The
early heading stage of rice is an important time point for the control of rice false smut.

4. Discussion

In the study of monitoring crop diseases and pests with hyperspectral remote sensing
images, people usually inoculate healthy crops with related diseases and pests to make the
crops more evenly infected, so that more detailed studies can be conducted on each stage
of crop diseases and pests [3,20]. However, in nature, pests and diseases infect crops from
several points and gradually infect nearby healthy crops, and crop diseases and pests are
more complex. The rice false smut disease studied in this paper is a random disease under
natural infection, which is strikingly different from artificial inoculation in the laboratory. In
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the aspect of monitoring methods of crop diseases and insect pests, most researchers build
models based on band selection of hyperspectral and spectral characteristic parameters
(first derivative, etc.) [21–24]. However, the characteristic band selected by the method
adopted in the above research is not optimal. In order to further improve the monitoring
accuracy of crop diseases and pests, we need to optimize the band selection method. This
paper monitors rice false smut based on band optimization of UAV hyperspectral data.
According to the optimized characteristic band and model prediction results, the following
outcomes are acquired through observation and analysis.

As shown in Tables 6–8, most of the selected characteristic bands are distributed in
698–800 nm and 974–997 nm, which are taken as sensitive bands in this paper. Based
on the characteristic bands selected in Section 3.1, the correlation coefficient method is
used to eliminate the redundant bands in Section 3.2 and the eliminated redundant bands
are within the range of sensitive bands that have been given in existing studies. Further-
more, in Section 3.3, the ISIC method is used to eliminate insensitive bands, which are not
within the range of sensitive bands that are given in existing studies. The above results are
consistent with existing studies [11,27]. According to the existing studies on the hyperspec-
tral reflectance of diseased rice panicles, the diseased rice ear will decrease greatly after
700 nm [27,43–45]. The reason for the above phenomenon is that rice leaves mainly absorb
and reflect visible wavelengths, while rice ears are sensitive to the wavelength range after
700 nm. Therefore, the sensitive band range determined by the disease state of rice ears is
after 700 nm, which is consistent with the sensitive band range obtained in this paper.

Observing the model test results in Tables 9 and 10, we can find that after band
selection by the correlation coefficient method and instability index between classes method,
the monitoring accuracy of the model improved. By comparing the variation of model
monitoring accuracy when the PCC is used to select bands, we can conclude that the
selection of bands with strong correlation will reduce the model monitoring accuracy. In
addition, by comparing the variation of monitoring accuracy when ISIC is used to select
bands, we can conclude that the difference in spectral characteristics between diseased and
healthy rice is useful information for monitoring rice false smut.

According to the verification results of RF and GBDT models, the correlation coefficient
method and ISIC method can accurately screen the feature bands to achieve the purpose of
reducing data volume and data noise (see Tables 9 and 10). Because Random Forest (RF)
can reflect the interaction between variables, the multivariate collinearity problem is not
considered [39]. Therefore, after the correlation coefficient method is used to eliminate
some strongly correlated bands, the prediction accuracy of the model is limited to improve.
The Gradient Boosting Decision Tree (GBDT) can automatically combine the features and
fit the nonlinear data. Therefore, the prediction accuracy of the model is greatly improved
after the band is eliminated by the correlation coefficient method. In the meantime, the
ISIC method can improve the accuracy of model monitoring by eliminating the insensitive
band. Therefore, both PPC and ISIC methods can be used for feature band selection.

In this study, both the PCC method and the ISIC method we used needed to determine
the appropriate thresholds. The prediction accuracy of the RF and GBDT models has
been improved after the characteristic bands are further optimized by using the PCC
method and ISIC method (see Tables 9 and 10). The correlation coefficient method uses
one of two strongly correlated variables to replace these two variables, which theoretically
will lose important classification information, but may also eliminate noise data that
hinder correct classification [33]. Therefore, whether the correlation coefficient threshold
is reasonable determines the monitoring accuracy of rice false smut. ISIC is to select the
characteristic bands according to the separability within the bands. The bands with larger
ISIC are not conducive to accurate classification. Theoretically, removing bands with large
ISIC will improve the prediction accuracy, but too small threshold setting will lose too
much information, leading to a decline in classification accuracy. Similarly, whether the
ISIC threshold is reasonable also determines the accuracy of rice false smut monitoring.
Therefore, based on the principle of band selection by the two methods, both PPC and ISIC
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methods can be applied to select feature bands, but the selection of threshold values in the
two methods greatly affects the monitoring accuracy of the model.

As shown in Tables 9 and 10, comparing the prediction accuracy of the models with
the same data, we found that the overall prediction accuracy of the RF model was higher
than that of the GBDT model. However, in the same case, after further screening of feature
bands, the accuracy of the gradient lifting tree model is higher than that of the random tree
model. Therefore, the stochastic forest model has better monitoring accuracy of the whole,
but the gradient lifting tree model has greater potential to improve the accuracy.

By comparison with Tables 9 and 10, the Random Forest model has the highest
prediction accuracy, but there are still nearly 14% wrong classifications. Misclassification can
be divided into two categories: misidentification of healthy as infected and misidentification
of infected as healthy. First, if health is wrongly identified as infected, recall (Equation (7))
can be used to evaluate it. Recall refers to the proportion of health data that is actually
healthy among all the predicted health data. The greater the recall, the more health can be
correctly predicted. The recall of optimal prediction accuracy of the random forest model
was 92.17%, indicating that less than 8% of healthy samples were wrongly identified as
infected. The main reason for this wrong prediction was the difference in rice growth. The
spectral reflectance of rice infected with growth (see Figure 9), and the spectral reflectance
of infected rice was less than that of healthy rice (see Figure 10) during the same period.
Therefore, the spectral reflectance of healthy rice with a fast growth rate is lower than that
of other healthy rice, and it is more similar to the spectral reflectance of infected rice, so it is
easier to be wrongly identified as infected rice. Secondly, the infected rice was misidentified
as healthy, and the main reason was that the spectral reflectance of the newly infected rice
was similar to that of the healthy rice, so it was easy to be identified as healthy. In view of
the above two situations, it is not easy to solve the problem that health is wrongly identified
as infected, but if the disease is predicted as healthy, the difference between infected rice
and healthy rice can be expanded through data processing methods such as integration or
finding relevant spectral characteristic parameters to improve the prediction accuracy of the
mode, which is a direction of future research. In addition, the spectral reflectance of healthy
rice was greater than that of diseased rice, which was consistent with the conclusion of
previous studies [46].
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According to the prediction results in Figure 8, it can be seen that at the beginning, a
few patches of regional rice were infected with rice false smut, while only small areas were
infected in other areas, which conforms to the law of rice false smut infection under natural
conditions. By comparing the predicted results at four different time points, we can see
that the infection rate of rice false smut to the surrounding healthy rice in the early stage
was slow, then the infection rate of rice false smut was accelerated and finally, the rice was
widely infected with rice false smut. Therefore, for the monitoring of rice false smut, the
earlier the detection time, the better the control effectively and the early heading stage of
rice is an important time point for the control of rice false smut.

Although this study gained relatively accurate rice false smut data through field data
measurement, it does not mean that there was no interference from other diseases and pests
that could not be visually identified at the initial stage, especially when overlapping with
the spectral reflection curve of rice false smut infection. In the meantime, there is room
for improvement in the distortion of measurement data caused by rice position migration.
Therefore, there are still some limitations to our study.

5. Conclusions

In this paper, we discuss how to accurately identify rice false smut by optimizing the
band of UAV hyperspectral image to achieve data noise reduction in hyperspectral image.
By using RF and GBDT models to test the effectiveness of three different optimization
methods, GA, PCC and ISIC, an effective method to select the hyperspectral characteristic
bands was obtained and a model method for high-precision monitoring of rice false smut.
The conclusion is as shown below:

(1) The method of hyperspectral characteristic bands selecting based on genetic algorithm,
correlation coefficient method and Instability Index between Classes is an effective
band selection method. It can effectively reduce the data dimension (27.78% of bands
can be further eliminated in this paper) and reduce the amount of data while ensuring
the monitoring accuracy of the model.

(2) The selection of bands with strong correlation will reduce the model monitoring accuracy.
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(3) The difference of spectral characteristics between diseased and healthy rice is a useful
information for monitoring rice false smut.

(4) The sensitive bands of rice false smut surveillance ranged between 698–800 nm and
974–997 nm.

(5) Both RF model and GBDT model can effectively extract the affected areas of rice false
smut. The RF model has higher accuracy and the GBDT model has higher potential to
improve accuracy.

(6) The early heading stage is an important time point for controlling rice false smut.

Although the consequences of this study are encouraging, there are some limitations
to this study that should be addressed in future studies. For example, rice can be divided
into early ripening and late ripening and there are also different varieties. The method
adopted in this paper should be tested in different regions, growth cycles and varieties of
rice. In addition, since rice reflectance is used in this study to monitor rice false smut, it may
be affected by the background (such as soil and weeds), so the subsequent research shall
consider removing soil and weeds to improve the accuracy of rice false smut monitoring.
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