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Abstract: In close-range photogrammetry, circular-coded targets (CCTs) are a reliable method to solve
the issue of image correspondence. Currently, the identification methods for CCTs are very mature,
but complex illumination conditions are still a key factor restricting identification. This article pro-
poses an adaptive homomorphic filtering (AHF) algorithm to solve this issue, utilizing homomorphic
filtering (HF) to eliminate the influence of uneven illumination. However, HF parameters vary with
different lighting types. We use a genetic algorithm (GA) to carry out global optimization and take
the identification result as the objective function to realize automatic parameter adjustment. This
is different from the optimization strategy of traditional adaptive image enhancement methods, so
the most significant advantage of the proposed algorithm lies in its automation and universality,
i.e., users only need to input photos without considering the type of lighting conditions. As a prepro-
cessing algorithm, we conducted experiments combining advanced commercial photogrammetric
software and traditional identification methods, respectively. We cast stripe- and lattice-structured
light to create complex lighting conditions, including uneven lighting, dense shadow areas, and
elliptical light spots. Experiments showed that our algorithm significantly improves the robustness
and accuracy of CCT identification methods under complex lighting conditions. Given the perfect
performance under stripe-structured light, this algorithm can provide a new idea for the fusion of
close-range photogrammetry and structured light. This algorithm helps to improve the quality and
accuracy of photogrammetry and even helps to improve the decision making and planning process
of photogrammetry.

Keywords: circular-coded target; close-range photogrammetry; tie points extraction; homomorphic
filtering; complex illumination; genetic algorithm; structured light

1. Introduction

Close-range photogrammetry has many flourishing and diverse applications in many
fields, such as archaeology [1], physiology [2], architecture [3], agriculture [4], and indus-
try [5]. One of the main tasks of close-range photogrammetry is identifying homologous
points in multiple images, commonly called the correspondence issue [6–10]. Due to the
continuous development of various photogrammetric software, image correspondence
issues can be automatically resolved—the software searches for features uniquely identified
in multiple images. Most software uses general structure from motion (SFM) technol-
ogy [4], primarily finding dense textures on objects, such as text, wood grain, facial features,
and other patterns. There is also the use of shape from shading (SFS) technology [11],
which further enriches data through lighting and shading cues. However, artificial coded
targets are more prevalent in high-precision close-range photogrammetry, which is a very
accurate method. Due to unique identity information, coded targets are distinguishable,
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easy to identify, and quickly match automatically, and always serve as a tie point between
images with overlapping regions. They are more suitable for weak texture scenes and
even for reflective, transparent, and other featureless surfaces [12], e.g., in the industrial
field, geometric feature detection and large-scale industrial surfaces lack significant texture
information. Using self-adhesive paper to paste coded targets onto the surface of an object
is a commonly used low-cost measurement method [13].

Many scholars have researched the design style of coded targets, which can be roughly
divided into three categories [14]: point-distributed [15–18], circular [19–23], and color-
coded targets [24,25]. Although color can be used to improve the reliability of identification,
color-coded targets cannot be effective in all situations. Shorits et al. [26] elaborated on the
limitations of color-coded targets. Figure 1 shows two representative coded targets in close-
range photogrammetry. Figure 1a shows the coded targets of GSI’s V-STARS system (here-
after called GCT) [15]. Point-distributed coded targets have the advantages of large coding
capacity and high identification accuracy. However, as reported by Tushev et al. [17,27],
GSI did not disclose the identification method of GCT due to trade secrets. Recently,
Wang et al. [28] attempted to develop an identification method for GCTs, but the results
were inferior to the identification effect of V-STARS. Under the illumination of a point light
source, elliptical light spots will be formed on the image, affecting the identification of
GCTs. Therefore, in identifying coded targets under the illumination of a point light source,
CCTs have more advantages in identification than GCTs.

Figure 1. Two representative coded targets: (a) GCT. (b) Schneider CCT.

Schneider CCTs [19] (see Figure 1b) are typical examples of CCTs. The CCT has a
simple and compact structure with the advantage of affine invariance. They are applied to
commercial close-range photogrammetric software Agisoft Metashape [29]. The Schneider
CCT is public [28]. Therefore, we can continue to study the latest identification methods
based on previous studies, which will inevitably lead to increasingly robust identification.

Many methods have been proposed for CCT identification, and the existing techniques
almost share a common strategy. Generally, there are two gradual steps: central positioning
and decoding. Firstly, the CCT is filtered from the image background. Traditional methods
rely on multiple judgment criteria [30–34], such as ellipse circumference, ellipse roundness,
gray-level criteria, location criteria, etc. An object detection network has been used based
on deep learning for filtering [23,35]. Then, the central positioning method includes
ellipse fitting based on image edges [36,37], the Hough transforms approach [38], and the
gray-weighted centroid method based on gray image intensity [39]. Finally, decoding
is performed by searching for a coded band through the center point for scanning and
decoding. Generally, the coded band is directly located based on the geometric structure of
the CCT, while Liu et al. [14] and Kong et al. [40] searched for the coded band through the
grayscale averaging method, which is helpful for identification under flat viewing angles.
Decoding operations are based on grayscale gradient methods [41–46].
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The prerequisite for successful identification methods is a high-quality image. In iden-
tifying CCTs, the most basic Otsu threshold segmentation method [47] and Canny edge
detection method [48] are affected by illumination conditions. On this basis, the grayscale
centroid method for central positioning, the grayscale averaging method for searching
coded bands, and the grayscale gradient method for decoding are all very sensitive to
the internal grayscale distribution, and the grayscale intensity distribution is very quickly
affected by illumination conditions. This results in inaccurate positioning, ineffective decod-
ing, or undetectable CCTs. However, using metric [49] or high-resolution consumer-grade
digital cameras [50] in close-range photogrammetry tasks cannot effectively address the
impact of complex illumination on image quality.

Up to now, only a few scholars have focused on this challenging issue. Tushev et al. [17,27]
proposed a method for identifying coded targets under adverse lighting conditions. Still,
their approach is to change the material of the coded target to a reflective material and add a
camera with a flash to take photos. We do not want to increase the cost of materials, but we
seek algorithmic improvements. Liu et al. [14] adopted an adaptive brightness adjustment
method to solve the identification of camera overexposure and underexposure situations.
However, these issues are relatively easy to solve. Our previous work tried to combine close-
range photogrammetry and structured light technology for three-dimensional (3D) surface
topography measurements of large objects [5]. When projecting stripe- or lattice-structured
light on the surface of the measured object, such illumination conditions are very complex,
covering almost all complex illumination that can be encountered, such as point lights,
multiple lights, uneven illumination, and shadow areas. Even if the advanced commercial
photogrammetric software Agisoft Metashape is used to identify CCTs, the results are still
not ideal.

Dey [51] reviewed image processing algorithms for handling uneven illumination,
such as retinex, quotient image, adaptive histogram equalization, illumination normaliza-
tion, logarithmic transforms, homomorphic filtering (HF), etc. In these image processing
algorithms, HF can optimize the impact of lighting on images and stretch contrast rather
than enhance features. Dong et al. [52] combined HF with the gray-weighted centroid
method to improve the accuracy of circular marker positioning under uneven illumination
conditions. It has been verified that HF can be used for high-precision measurement. It
is also shown that HF can improve the image quality of uneven illumination without af-
fecting measurement accuracy. However, the effect of image enhancement depends on the
parameters of HF, and the parameters required for various types of illumination conditions
are also different. Dong et al. [52] determined various parameters of HF through simulation
experiments. Currently, the adaptive HF algorithms proposed are all based on the charac-
teristics of the image itself. For example, Venkatappareddy et al. [53] determined adaptive
parameters by calculating the pixel average and variance of the input image; Fan et al. [54]
determined through experiments that one of the HF parameters has a significant impact on
laser images and derived an empirical formula for this parameter based on the average gray
level of the image; Gamini et al. [55] used a genetic algorithm to optimize the parameters
of HF and represented the fitness function by combining the sum of entropy, edge intensity,
and the number of edge pixels of the image.

For the identification of CCTs, the actual situation is more complex. Locating accurate
and relatively complete coded bands is necessary to ensure correct decoding. When the
image’s contrast is too high, or the edge details of the image are enhanced too much, the in-
complete coded band will affect identification. Therefore, only relying on the characteristics
of the image itself to study adaptive algorithms cannot adapt to various illumination
conditions. For the identification of CCTs, the parameter values of HF are also irregular.
Up to now, there has yet to be a unified method for identifying CCTs. Although the design
strategies of the identification methods are generally similar, there are still differences
in the design concepts of many scholars. Therefore, adaptive algorithms based on the
characteristics of the image itself cannot be used in conjunction with any CCT identification
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method, which is not universal. There are apparent limitations if we use it in combination
with a specific identification method.

This paper proposes an AHF as a preprocessing technique for CCT identification. It
can solve the impact of complex illumination and combine it with any CCT identification
method. It does not need to consider the characteristics of the input photo. It uses a GA
to optimize HF parameters using the CCT’s identification results as the objective function.
Through continuous iteration, it seeks optimal identification results. Therefore, the algo-
rithm proposed in this article can be universal and fully automated. So far, this article is
the first to offer a general algorithm for CCT identification under complex illumination
conditions.

2. Proposed Algorithm

In this section, we introduce our proposed algorithm. The entire algorithm flow is
shown in Figure 2, divided into three steps. The first step is to determine whether the
procedure needs to be executed. The second step is HF, which is used to solve the impact
of complex illumination. The third step is to optimize the process to achieve universal and
automated functions.

To save computational resources, we determine whether it is necessary to execute
this program. First, the photo is input into the CCT identification method. Then, whether
the identified number of CCTs n equals the total number of targets N in the picture is
determined. If similar, the identification result is directly output. Otherwise, executing this
procedure means that the image needs to be enhanced.

Here are some suggestions for setting the total target number N:

1. We can enter the total number of pasted CCTs in advance with prior knowledge;
2. If unknown, a general object detection network [56] can identify CCTs. The recognition

result is treated as ground truth, i.e., the number of targets N.

2.1. Homomorphic Filtering (HF)

Fundamentally, no matter how complex illumination is, it can be considered as the
uneven illumination of the local description of the image. The details of the parts of the
image that correspond to low brightness are difficult to distinguish. The primary purpose
of enhancement methods based on HF is to eliminate the impact of uneven illumination. Its
basic principle is to compress the illumination component in the original image, expand the
reflection component, and enhance the image’s details based on the image’s illuminance–
reflection model [52]. The specific algorithm is as follows, in five steps.

Step 1: Take the logarithm of the image function.

z(x, y) = ln [ f (x, y)] = ln [i(x, y)] + ln [r(x, y)] (1)

where f (x, y) represents the grayscale value of the image at the location (x, y). i(x, y) and
r(x, y) are illumination and reflection functions, respectively.

Step 2: Perform Fourier transform.

Z(u, v) = F [z(x, y)] = F [ln[i(x, y)]] +F [ln[r(x, y)]] = I(u, v) + R(u, v) (2)

Step 3: Perform high-pass filtering processing.

S(u, v) = H(u, v)Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v) (3)

The low-frequency component primarily corresponds to the illumination component,
and the high-frequency component mainly corresponds to the reflection component. There-
fore, it is only necessary to design a suitable high-pass filter transfer function H(u, v) to
have different effects on low-frequency and high-frequency components to reduce the illu-
mination component and expand the reflection component. As in Equation (4), a modified
Gaussian high-pass filter transfer function is used.
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Figure 2. Proposed algorithm flow framework.

H(u, v) = (γH − γL)[1− e−c( D(u,v)
D0

)2
] + γL (4)

where γH and γL represent the filtering characteristics of high-frequency and low-frequency
components, respectively; when γH > 1, 0 < γL < 1, indicating that the illumination
component is suppressed and the reflection component is enhanced. D(u, v) is the distance
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from (u, v) the origin of the centered Fourier transform, as shown in Equation (5). D0 is the
cutoff frequency. c is the attenuation factor.

D(u, v) =
√
(u− u0)2 − (v− v0)2 (5)

Step 4: Perform inverse Fourier transform.

s(u, v) = F−1[S(u, v)] = F−1[H(u, v)I(u, v)] +F−1[H(u, v)R(u, v)] = i
′
(x, y) + r

′
(x, y) (6)

Step 5: Perform exponential transformation to obtain the HF image.

g(x, y) = es(u,v) = ei
′
(x, y)er

′
(x, y) = ih(x, y)rh(x, y) (7)

where ih(x, y) and rh(x, y) are the illumination and reflection components after HF.

2.2. Optimization Process
2.2.1. Optimization Problem

According to the introduction in Section 2.1, the high-pass filter transfer function
H(u, v) is the main factor affecting the HF effect, and its parameters include the following:

• γH: Used to adjust the high-frequency components in the filtered image, and increas-
ing γH results in an increase in the high-frequency components in the picture;

• γL: Used to adjust the low-frequency components in the filtered image, and increasing
γL causes the low-frequency components in the image to expand;

• Cutoff frequency D0: The frequency at which the filter stops attenuating the input sig-
nal. In HF, the cutoff frequency determines the degree of detail retention in the image.
A lower cutoff frequency preserves more low-frequency components, resulting in a
smoother picture; Higher cutoff frequencies keep more high-frequency components,
resulting in more explicit photos;

• Attenuation factor c: determines the rate at which the filter attenuation frequency
exceeds the cutoff frequency. Higher attenuation factors can lead to a steeper transfer
function slope, resulting in a clearer image, but may introduce more noise. A lower
attenuation factor produces a smoother appearance but may lose some details, usually
between γH and γL.

Choosing the optimal HF parameters is a trade-off between filtering performance and
computational complexity. γH and γL play a significant role, and to reduce the number of
parameter combinations arranged, the cutoff frequency D0 can be selected by calculating
the median of D(u, v) [48,50]. The attenuation factor c can be set to

c = γH − γL (8)

Therefore, the optimization problem of CCT identification under complex illumination
conditions can be transformed into the essential parameters γH and γL for optimizing HF.
We address the optimization process through the following steps.

Step 1: We input the parameters into HF’s high-pass filter transfer function.
Step 2: The image processed through HF is sent to the CCT identification method to

identify the number of targets n.
Step 3: We judge whether the identified number of targets n equals the total number

N. Therefore, we summarize this complex optimization problem into a straightforward
objective function, such as Equation (9), which uses the identification results of CCTs as the
objective function, cleverly avoiding the issue that optimization algorithms based on the
characteristics of the image itself do not have universality.

minimize|N − n| (9)

where | · | represents taking an absolute value, because in the identification method of CCTs,
there may be false positives, which can lead to n > N.
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Step 4: We obtain the target number n of the minimum quantity difference and
corresponding HF parameters through optimization.

Step 5: We output the optimal CCT identification result.

2.2.2. GA Modeling

Due to the existence of trade secrets, various commercial photogrammetric software
may not be open-source methods for identifying CCTs. We also do not need to know how
they are identified, which is the advantage of our preprocessing technology’s versatility.
Therefore, the internal model relationship of the optimization process has yet to be discov-
ered. It requires finding an optimal solution within a reasonable computational time or a
solution close to the answer (i.e., the total target number). One of the most effective artificial
intelligence methods is a GA miming natural evolutionary processes [57]. A GA has all
the characteristics of intelligent search [58] and a global random search algorithm [59].
Therefore, we use a GA to optimize HF parameters for CCT identification. In this section,
we describe the deployment optimization model in detail.

1. Fitness Function
The only requirement for using a GA is that the model must be able to determine
the value of the objective function, and the objective function used to select offspring
should be a non-negative growth function of individual quality [60]. In our opti-
mization problem, we use Equation (9) as the objective function, and our goal is to
minimize Equation (9). To adapt to a GA, we use its reciprocal as the fitness function.
The fitness value is shown in Equation (10).

Fitness =
1

|N − n|+ δ
(10)

where δ is an infinitesimal value, preventing an error when the denominator is 0.
2. Decision Variables

The decision variables are the parameters γH and γL of HF. The value range of γH is
[1,4], and the quantization during optimization is 0.1. The value range of γL is [0, 1],
and the quantization during optimization is 0.01. Due to the different value ranges
and coding accuracy of the two decision variables, the multiparameter cascade coding
method is adopted. Each parameter is first binary-coded to obtain a substring; then,
these substrings are connected in a specific order to form a chromosome (individual).
Each chromosome corresponds to an optimized set of variable values.

3. GA Structure
As shown in Figure 2, our optimization process includes various modules of the GA.
In the following, the functions and parameter configurations of each module are
described. Table 1 lists the specifications of the GA used in this algorithm.

• Preparing data: In the GA, several parameters must be determined to converge
and save computational resources quickly. We first use the four parameters of
HF, i.e., γH, γL, C, and D0. At the same time, the population size, maximum
generation, crossover probability, and mutation probability are fixed.

• Initialization: Initialize the GA population with random chromosomes. Dif-
ferent identification methods, illumination conditions, and HF parameters are
others.The calculation cost of combined permutations of HF parameters is tremen-
dous. For example, the value range of γH is [1, 4], and the quantization during
optimization is 0.1. The value range of γL is [0, 1], and the quantization during
optimization is 0.01. There are 3000 combined permutations in total. Due to
the Fourier transform required after each combination permutation, choosing
a simple brute-force optimization algorithm would waste many computational
resources. We randomly select γH and γL and use Equation (7) to determine the
parameter c, while the median value of the calculated D(u, v) determines D0.

• Fitness function calculation: We update the parameters γH and γL by decoding
the chromosomes for individuals. The image processed by HF is fed into a
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CCT identification method, and the fitness function value is calculated using the
number of targets n identified by Equation (10).

• Optimization stop criteria: “Is it equal to the total target number N or reaches
the maximum generation?” is used as the judgment module. If it is equal to the
total target number N, the identification result is directly output; if the maximum
generation is reached, the ultimate fitness member of the final GA is selected,
and the identification result is output. If none is achieved, proceed to the next
step, such as “Selection”, “Crossover”, and “Mutation”.

Table 1. The specifications of the applied genetic algorithm.

Parameter Value or Method

Population size 50 (chromosome)
Selection Tournament
Crossover Single-point
The probability of crossover 0.8
The probability of mutation 0.1

Stopping criterion “Lack of progress over 50 successive generations” OR
“The total target number N was reached”

3. Experiments and Analysis
3.1. Experimental Setup

As shown in Figure 3, 54 standard specifications of CCTs were pasted on the wall.
A Canon EOS 850D SLR camera was used for image acquisition and was equipped with an
EF-S 18–55 mm f/4–5.6 lens. The Optoma EH415e projector was used to create complex
lighting conditions. The specifications of the camera and projector are shown in Table 2.

Table 2. The specifications of the camera and projector.

Device Parameter Value

Canon EOS 850D SLR Camera Resolution 3984 × 2656 pixels
Focal length 55 mm

Optoma EH415e Projector

Resolution 1920 × 1080 pixels
Horizontal scanning frequency 15.375–91.146 KHz

Vertical scanning frequency 24–85 Hz
Brightness 4200 lux

We experimented with advanced photogrammetric software Agisoft Metashape (AM)
and the latest publicly published traditional CCT identification method (TI). Due to this
study’s lack of relevant literature, we cannot compare it with other algorithms, so we
choose AM and TI as the control groups. Our adaptive homomorphic filtering algorithm
(AHF) is used for image preprocessing. Comparative experiments combine AM (referred
to as AHF-AM) and TI (referred to as AHF-TI) to verify the effectiveness and accuracy of
the proposed algorithm.

AM is a tool for three-dimensional reconstruction, visualization, measurement, and
mapping tasks and is currently a highly competitive photogrammetric software on the mar-
ket [29,40]. The workflow of TI [33] is first to filter out CCTs based on criteria such as ellipse
circumference and roundness and then use ellipse fitting to locate the center. Then, we
calculate the gray gradient of the coded band to obtain the center angle of each coded band
segment for decoding. It is worth noting that the purpose of the experimental comparison
is to verify whether the proposed algorithm effectively improves the performance of the
CCT identification method under complex illumination conditions. At the same time, it is
also shown that this algorithm can be used as a preprocessing technique in combination
with any CCT identification method.
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Figure 3. Experimental setup.

We chose a projector to project stripe- and lattice-structured light on the image to
create complex lighting conditions. The following complex types of lighting conditions
may be involved:

• Shadows: Casting structured light may produce shadows on the CCT surface, making
some areas of low light intensity or completely dim. The presence of shadows can
cause CCTs to be invisible and unrecognizable;

• Uneven illumination: This uneven lighting condition may cause changes in the bright-
ness of the CCT surface, affecting the extraction and decoding of CCTs;

• Light spot: Densely projectedlattice-structured light, which will form an oval spot
when imaging and may damage the imaging structure of the CCT.

Such lighting conditions are challenging, including the poor lighting environment
encountered in close-range photogrammetry applications. Therefore, to thoroughly verify
this algorithm’s performance, three groups of experiments of lighting conditions are set,
as shown in Figure 4: normal lighting, striped structured light, and lattice-structured light.
AM, TI, and AHF-AM, AHF-TI all use the same image, and each group obtains 50 photos
for comprehensive evaluation.

Figure 4. Illumination conditions. (a) Normal illumination; (b) striped structured light; (c) lattice-
structured light.
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3.2. Evaluation Indicators

We assume that the total number of CCTs in a photo is N (N in this algorithm is
known; see Section 2 for suggestions on setting). The number of targets identified by the
identification method is n. After verification, the number of CCTs is indeed I. The false
positive is n− I. Among the correctly identified I target, the number of correct decodes
is d.

Three indicators are defined to evaluate the performance of identification methods and
to test the ability of this algorithm to improve the performance of identification methods.

Correct Rate C =
I
n

(11)

Recall Rate R =
I
N

(12)

Decoding Rate D =
d
N

(13)

The correct rate C reflects the ability of the identification method to identify correctly.
The recall rate R demonstrates the power of the identification method to detect CCTs, while
a low recall rate R indicates that some targets have not been identified. The decoding rate
D reflects the ability to decode effectively.

3.3. Experimental Results
3.3.1. AM and AHF-AM Identification Results

Figure 5a–c show the identification results of AM. Under normal illumination condi-
tions, AM can perfectly identify all CCTs. However, under complex illumination conditions,
the identification results of AM are not ideal, especially under striped structured light,
and CCTs cannot be detected. Surprisingly, under lattice-structured light, AM can identify
18 targets. After verification, these 18 targets are CCTs without false positives.

Figure 5d,e shows the identification results of AHF-AM. After processing with the
AHF algorithm, the image quality was significantly improved. Under striped structured
light, AHF-AM can perfectly identify all CCTs. Under lattice-structured light, 42 CCTs
were identified.

Table 3 summarizes the identification results of AM and AHF-AM; “-” in the table
indicates that it has not been processed. Because under normal illumination conditions,
the targets identified by AM are equal to the total number of targets, the AHF algorithm
was not executed. We can see that AHF-AM has an absolute advantage in identifying
CCTs under striped structured light. Compared with AM’s identification results, the AHF-
AM recall rate increased by 45% under lattice-structured light. Surprisingly, the AM
identification method has no false positives and can accurately decode if a CCT is detected.

3.3.2. TI and AHF-TI Identification Results

Figure 6a–c show the identification results of TI. It is worth noting that the decoding
display of TI and AM is different. AM is numbered through a lookup table after decoding,
and TI is the displayed decoded value. The identification performance of TI could be better
than AM’s, and even under normal illumination conditions, it cannot fully identify CCTs,
resulting in false positives. Under striped structured light, TI also cannot detect CCTs.
Under lattice-structured light, up to 342 false positives are not correctly identified as CCTs.

Figure 6d–f show the identification results of AHF-TI. Table 4 summarizes the iden-
tification results of TI and AHF-TI. After processing with the AHF algorithm, the image
quality was significantly improved. Under normal illumination conditions, although not
all CCTs are identified, false positives are reduced. Under striped structured light, AHF
also performs well, and AHF-TI has an absolute advantage over TI in identification results.
Under lattice-structured light, AHF-TI significantly reduces false positives. Although the
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accuracy and recall rates are low, the identification results compared to TI are also entirely
satisfactory. Surprisingly, although TI’s identification performance is poor, it can accurately
decode as long as a CCT is detected.

Table 3. Identification result statistics of AM and AHF-AM.

Type Methods γH γL N n I d C R D

Normal AM - - 54 54 54 54 100% 100% 100%
AHF-AM - - - - - - - - -

Stripe AM - - 54 0 0 0 0 0 0
AHF-AM 2.8 0.82 54 54 54 54 100% 100% 100%

Lattice AM - - 54 18 18 18 100% 33% 33%
AHF-AM 2.6 0.44 54 42 42 42 100% 78% 78%

Table 4. Identification result statistics of TI and AHF-TI.

Types Methods γH γL N n I d C R D

Normal TI - - 54 65 35 35 54% 65% 65%
AHF-TI 3.9 0.93 54 58 36 36 62% 67% 67%

Stripe TI - - 54 0 0 0 0 0 0
AHF-TI 3.8 0.70 54 58 45 45 78% 83% 83%

Lattice TI - - 54 342 0 0 0 0 0
AHF-TI 3.7 0.66 54 47 15 15 32% 28% 28%

Table 5 shows the comprehensive evaluation results of 50 AM, AHF-AM, TI, and AHF-
TI images under normal illumination, striped, and lattice-structured light. Although the
identification performance of AM and TI is different, as long as a CCT is detected, it can
be accurately decoded, so the recall rate and decoding rate are the same. Under normal
illumination conditions, AM performs excellently and can perfectly identify all CCTs. Un-
der striped structured light, neither AM nor TI can detect CCTs. However, AHF performs
exceptionally well in processing striped structured light. AHF-AM can correctly identify
all CCTs without false positives. AHF-TI’s identification under striped structured light is
even better than that under normal illumination conditions. Under lattice-structured light,
both AHF-AM and AHF-TI significantly improve identification results. In the identification
statistics of TI and AHF-TI, the recall rate is higher than the correct rate, indicating the pres-
ence of false positives. The statistical results in Table 5 are similar to those in Tables 3 and 4
and reflect the combined identification of AM, TI, and AHF with high stability.

Table 5. Comprehensive evaluation of AHF algorithm.

Methods
Normal Stripe Lattice

C R D C R D C R D

AM 100% 100% 100% 0 0 0 100% 22% 22%
AHF-AM - - - 100% 100% 100% 100% 78% 78%

TI 53% 62% 62% 0 0 0 0 0 0
AHF-TI 63% 68% 68% 80% 83% 83% 35% 26% 26%
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Figure 5. AM and AHF-AM identification results. (a) Identification of AM under normal lighting
conditions; (b) identification of AM under striped structured light; (c) identification of AM under
lattice-structured light; (d) identification of AHF-AM under striped lighting conditions; (e) identifica-
tion of AHF-AM under lattice lighting conditions.
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Figure 6. TI and AHF-TI identification results. (a) Identification of TI under normal lighting con-
ditions; (b) identification of TI under striped structured light; (c) identification of TI under lattice-
structured light; (d) identification of AHF-TI under normal lighting conditions; (e) identification
of AHF-TI under striped structured lighting conditions; (f) identification of AHF-TI under lattice-
structured lighting conditions.

3.3.3. The Precision of Center Positioning of CCTs

The precise identification of CCTs includes correct decoding and obtaining accurate
center positioning coordinates. The center positioning accuracy of CCTs is of great signifi-
cance for the accuracy, stability, and reliability of close-range photogrammetry. It affects
point cloud reconstruction, camera positioning, feature matching, and measurement ac-
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curacy evaluation. Therefore, it is necessary to evaluate the center positioning accuracy
of CCT.

Through experiments, we found that AM and TI could not identify CCT at all under
stripe-structured light, so it was impossible to evaluate the center positioning accuracy of
CCTs. Under the lattice-structured light, there are a lot of false positives in TI identification;
after verification, CCT is not correctly identified, and the AM identification effect is not
ideal. AM is a very mature and robust commercial photogrammetric software. Through
experiments, AM can accurately identify CCTs under normal lighting conditions. Therefore,
we consider the CCT center positioning coordinates identified by AM under normal lighting
conditions (AM-Normal represents the identification results of AM under normal lighting
conditions) as ground truth to evaluate the impact of the AHF algorithm on the center
positioning accuracy of CCT identification methods under complex lighting conditions.
Evaluating the center positioning accuracy of CCTs that have yet to be correctly identified is
meaningless. Therefore, on the identified CCTs benchmark, we calculate the offset RMSE of
each method relative to the image coordinates of AM-Normal in the X direction, Y direction,
and plane direction (XY direction). As shown in Table 6, “-” represents CCTs that were not
correctly identified.

Table 6. Comparison of center positioning accuracy of various methods.

Types Methods RMSE X (px) RMSE Y (px) RMSE XY (px)

Normal TI 0.312 0.214 0.378
AHF-TI 0.201 0.170 0.263

Stripe

AM - - -
AHF-AM 0.070 0.093 0.116

TI - - -
AHF-TI 0.189 0.159 0.247

Lattice

AM 0.125 0.203 0.238
AHF-AM 0.091 0.103 0.137

TI - - -
AHF-TI 0.256 0.219 0.337

AHF serves as an image preprocessing algorithm to optimize the image of CCTs
under complex illumination conditions. From Table 5, we can see that the center posi-
tioning accuracy of AM is very robust. Whether under stripe- or lattice-structured light,
the center positioning accuracy of AHF-AM is 0.07–0.1 px and is slightly worse under
lattice-structured light. The performance of TI is poor, but according to Table 5, we can
see that after AHF preprocessing, the center positioning accuracy of AHF-TI is between
0.2–0.4 px. Although it is a significant error for high-precision photogrammetry [28], it
also significantly improves the center positioning accuracy of TI. Through experiments, it
has been verified that our AHF algorithm significantly improves the center positioning
accuracy of CCTs under complex lighting conditions.

4. Discussion

Through identification experiments on CCTs, we verified that HF can be applied to
photogrammetry and can effectively cope with the impact of complex illumination. The pro-
posed AHF overcomes the tedious process of determining HF parameters through repeated
experiments. Regardless of which identification method is combined and which type of
illumination conditions are applied, it can achieve universal and automatic characteristics.

4.1. Why Can Our AHF Be Combined with Any Identification Method?

Figure 2 shows the overall process of our algorithm. The core idea of the entire al-
gorithm is that as an independent module, the identification method of CCTs is used to
identify the number of CCTs n in the image after HF and is used as the objective function
of GA optimization for global optimization. The proposed AHF does not participate in
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the work of the CCT identification method. Still, it only serves as the result of image
preprocessing and calling the identification method in the optimization process to realize
the automatic optimization of the image affected by complex illumination. Therefore, our
AHF can be combined with any identification method, including various photogrammetric
software or the identification method of CCTs proposed by scholars. In this article, we
selected representative identification methods for experiments, namely, advanced commer-
cial photogrammetric software Agisoft Metashape and the latest published traditional CCT
identification method.

4.2. Analysis of Experimental Results
4.2.1. Experimental Results under Striped Structured Light

The original intention of our work was to overcome the influence of uneven illumina-
tion and shadow areas. To thoroughly verify the performance of the proposed algorithm,
we set rigorous experimental conditions to cast stripe-structured light on the measured
image. This case covers many densely shaded areas and the impact of uneven lighting.

Not surprisingly, such strict experimental conditions posed obstacles to the identifi-
cation method of CCTs. AM and TI cannot work effectively under stripe-structured light.
Observing the image of the CCT under the stripe-structured light, the dense shadow areas
are distributed on the coding ring band and the center point of the CCT. The identifica-
tion method of CCTs based on grayscale statistics is ineffective for images with frequent
grayscale changes.

In our cognition, the image’s stripes (structured light illumination part) have a spatial
frequency similar to that of the CCT. Therefore, some of the CCT patterns will be filtered out
by HF. However, what surprised us was that our AHF performed too flawlessly, as shown
in Figures 5d and 6e and by the statistics in Tables 2–4. AM could identify correctly 100%
of the time, while TI’s identification results were equally excellent, even exceeding the
identification results under normal lighting conditions. We did not apply a binarization
method with appropriate thresholds to the image and only processed it through HF.

By observing the identification images in Figures 5d and 6e, we can observe that the
same stripe patterns are filtered out in the white paper area (CCTs area) but remain outside
that area. We analyze based on the illuminance–reflection model of the image, and image
f (x, y) can be represented as the product of the illuminance field (illumination function)
i(x, y) of the light source and the reflection field (reflection function) r(x, y) of the reflected
light of the object in the scene, i.e.,

f (x, y) = i(x, y) · r(x, y) (14)

Equation (14) is generally called the illuminance–reflection model of an image. The il-
lumination function describes the illumination of a scene, and its properties depend on
the light source and are independent of the scene. The reflection function describes the
content of a scene, and its properties depend on the characteristics of the imaging object, in-
dependent of lighting. Due to the slow variation of lighting brightness, the spectrum of the
lighting function is concentrated in the low-frequency range. Due to the rapid spatial varia-
tion of the reflection function with different image details (such as edge parts of objects),
the spectrum of the reflection function is concentrated in the high-frequency range. In this
way, the image can be understood as the result of the product of the high-frequency and
low-frequency components according to Equation (14). After Fourier transform, the middle
part of the Fourier spectrum is the low-frequency part, and the higher the outer edge
frequency, the higher the frequency. The edges in the image correspond to high-frequency
components, so image sharpening can be achieved using a high-pass filter.

As shown in Figure 7, the CCT image (stripe illumination part) is processed by HF
with different parameter values. Figure 7a–c show the HF effect with a fixed γH value and
an increase in γL value. We found that as the γL-value increases, the overall brightness and
sharpness of the image are improved, which helps to identify CCTs. This seems to contradict
the original intention of HF design (suppressing illumination components). However, it is
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precise that the illumination component is increased because of the increase of the γL value,
which leads to the narrowing of stripes and reduces the influence of stripe-structured light.
Figure 7d,e shows the HF effect with fixed γL-value and increased γH-value. The γH-
value is used to adjust the high-frequency reflection component. The improvement of the
γH-value highlights the contour details of the CCT. Therefore, it can be seen that with the
increase of the γH-value, the overall brightness and sharpness of the image are significantly
improved, and the stripe width also changes with the change of the γH-value. Both γH
and γL values affect the overall brightness and sharpness of the image, and both γH and
γL values jointly affect the filtering effect of the circular encoded target image. Therefore,
adjusting only one value of γH and γL is not feasible.

Figure 8 shows the impact of HF with different parameter values on CCT identification.
Indeed, the identification effect also varies with the combination of γH and γL values.
When γH = 2.0 and γL = 0.05 are combined, the image is too dark, which affects identifica-
tion. Combining γH and γL values in Figure 8d–f improves the image’s overall brightness.
However, the stripes are still distributed on the CCT, resulting in poor identification per-
formance. Figure 8c,f,i show the effect when both γH and γL values are high. The image
brightness is high, and the sharpness is also high. However, excessive enhancement of
image edge details results in incomplete CCT bands, which affects the identification of
CCTs. This also explains the necessity of designing automatic optimization HF algorithms.

Figure 7. Processing effect of HF with different parameter values on CCT illuminated by stripe-
structured light. (a) γH = 2.2, γL = 0.25; (b) γH = 2.2, γL = 0.55; (c) γH = 2.2, γL = 0.85; (d) γH = 1.8,
γL = 0.85; (e) γH = 2.0, γL = 0.85; (f) γH = 2.3, γL = 0.85.

HF with appropriate parameter values can filter out all interference in shaded areas,
stretch image contrast, smooth the image, and highlight the details of the image contour.
CCTs on white paper enable HF to compress the image’s dynamic range under high contrast
in densely shaded areas, resulting in sharper CCT images. This also explains why AHF-TI’s
identification results under stripe results exceed those under normal lighting and why
stripe areas are still outside the CCT area.

Our AHF can help us find the most suitable combination of HF parameter values for
this identification method. Therefore, AHF-AM can identify perfectly under the stripe-
structured light. Its optimization stop standard is that the number of identified targets n
equals the total number of targets N. The optimization stop criterion for AHF-TI is to reach
the maximum optimization generation.
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4.2.2. Experimental Results under Lattice-Structured Light

Identifying CCTs under the projected lattice-structured light can simulate the illumina-
tion of points, multiple light sources, and local highlight, and the experimental conditions
are still strict enough such that such a dense lattice-structured light shines on the measured
image to form a dense oval spot, which poses a considerable obstacle to the identification
of CCTs.

The dense spots formed under the lattice-structured light significantly affect the
identification of TI. TI mistakenly identifies the light spot as a CCT, and there are many
false positives. Although the identification results of AM were poor, there were no false
positives. By observing the CCTs identified by AM, we found a standard feature: the central
positioning point of the CCT and the absence of light spot distribution on the central ring
of the coding band. Even if many light spots are distributed in other positions of the CCT,
it does not affect identification. Therefore, we can infer the identification strategy of AM:
detecting the central positioning point of the CCT, locating it to the center of the coding
band based on its geometric structure, and then decoding it. This strategy leads to its
identification failure under stripe-structured light. Obviously, under the lattice-structured
light, the identification of AM is random.

Figure 8. Effect of HF with different parameter values on CCT identification under stripe-structured
light illumination. (a) Original image γH = 2.0, γL = 0.05; (b) original image γH = 2.5, γL = 0.60;
(c) original image γH = 3.9, γL = 0.85; (d) AM’s identification of (a); (e) AM’s identification of
(b); (f) AM’s identification of (c); (g) TI’s identification of (a) ; (h) TI’s identification of (b); (i) TI’s
identification of (c).

Under the lattice-structured light, HF is still good for optimizing the image affected
by illumination and significantly improves the identification results of the identification
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method. By observing Figures 5e and 6f, HF can effectively filter out light spots. Through
the observation in Figure 9, we find that the combined effect of HF parameters is similar to
that under the illumination of stripe-structured light. Under the combination of low γH
and γL values, the image is generally darker; however, the impact is more severe under
lattice-structured light. With the adjustment of the γH and γL values, the image brightness
and sharpness are improved, but the light spot on the CCT causes the coding ring band to
be incomplete. Therefore, filtering the light spots distributed on the coding ring involves a
trade-off between filtering performance and identification results.

Figure 9. The processing effect of HF with different parameter values on CCTs illuminated by
lattice-structured light. (a) γH = 2.4, γL = 0.32; (b) γH = 2.6, γL = 0.50; (c) γH = 2.8, γL = 0.80.

The AHF algorithm automatically finds this identification method’s most suitable
combination of HF parameters. The statistical results in Figure 6c,f and Table 3 show
that the AHF algorithm reduces many false positives in TI identification. Compared with
the identification of AM and TI, the identification results of AHF-AM and AHF-TI under
lattice-structured light have comparative advantages.

4.3. Efficiency Issues

The complexity analysis of the GA depends on various factors, such as population
size n, individual size m, generation g, and the fitness function used. In the worst case, it
has O (gnm) time complexity [61]. Due to the frequent use of CCT identification methods
in our algorithm, the efficiency of this algorithm mainly depends on the efficiency of the
identification method.

The processing efficiency of TI is relatively low, and the processing time varies de-
pending on different image types. For example, TI mistakenly identifies many spots of
lattice-structured light as targets, and it takes an average of 3 s per image to process such
images. However, the processing efficiency of AM is exceptionally high, with a total
consumption of approximately 1 s for processing nearly 1000 different types of images.
Therefore, combining our proposed AHF algorithm with photogrammetric software will
have higher processing efficiency and be used for practical industrial applications.

We sacrifice time costs to identify CCTs under complex illumination conditions accu-
rately. For close-range photogrammetry tasks, the primary working mode is offline [62], so
the algorithm proposed in this article can meet the requirements.

4.4. Application Prospects
4.4.1. The Application of AHF in Photogrammetry in the Field of Remote Sensing

CCTs are essential in photogrammetry, providing accurate position, pose, and scale
information for measurement tasks through feature extraction, positioning and navigation,
calibration and correction, 3D reconstruction, and data registration [63]. It is worth noting
that the SFM technology with no targets still dominates in unmanned aerial vehicle (UAV)
photogrammetry, but CCTs are widely used as ground control points [64]. The contributions
and potential applications of the proposed algorithm to photogrammetry in the field of
remote sensing are as follows:
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1. Robustness to Constantly Changing Lighting Conditions:
Photogrammetry typically involves capturing images in outdoor environments with
significant changes in lighting conditions [65]. The ability to identify CCTs under
complex lighting conditions, including shadows, highlights, and uneven lighting,
ensures the consistency and robustness of the photogrammetric process. It reduces
the probability of CCT identification failure or errors due to challenging lighting
conditions.

2. Improving Reconstruction Accuracy:
Accurately reconstructing 3D models and maps is the primary goal of UAV pho-
togrammetry. Accurate identification of CCTs under complex lighting conditions
improves the accuracy of the reconstruction model. It ensures reliable correspon-
dence between images and facilitates more accurate triangulation and point cloud
generation, thereby achieving higher-quality 3D reconstruction.

3. Multifunctional Application:
It successfully identifies CCTs under complex lighting conditions, expanding the
applicability of UAV photogrammetry in various scenarios. It can capture high-
quality data in challenging lighting environments, enhancing the effectiveness of data
collection and analysis based on UAV photogrammetry.

4.4.2. AHF for Close-Range Photogrammetry and Structured Light Fusion

Our team’s previous work [5] research found that by combining close-range pho-
togrammetry and structured light technology, combining their respective advantages, there
is excellent potential for high-precision measurement of the three-dimensional topography
of large objects [1,66,67]. Close-range photogrammetry technology captures high-resolution
images from multiple angles, integrates global control points, and can accurately recon-
struct the geometric structure of objects. Structured light technology provides accurate
depth measurement to obtain local high-density point clouds [68]. This combination can
significantly improve the accuracy of depth maps and surface reconstruction. Through
experiments, it is verified that the algorithm can perfectly identify the CCT under the stripe-
structured light, which provides a new idea and potential application for the technical
fusion of the two.

Complex lighting conditions may pose challenges in capturing accurate surface infor-
mation. However, if the CCT can be ideally identified under these conditions, close-range
photogrammetry and structured light technology integration will become more robust.
The CCT can be excellently identified in the stripe-structured light image, which means
that the CCT can still be used as the tie point between the images to achieve accurate
and reliable point correspondence, improving the accuracy of the matching process and
better integrating the two technologies’ data. The proposed algorithm can ensure accurate
alignment, matching, and calibration in challenging lighting scenes.

5. Conclusions

This article proposes an AHF algorithm as a preprocessing technique combined with a
CCT identification method to address the impact of complex illumination. We set rigor-
ous experimental conditions, casting stripes and lattice-structured light on the measured
image, covering the complex lighting conditions of the point light source, multiple light
sources, uneven lighting, and shadow areas. Experiments were conducted using commer-
cial photogrammetric software AM and the state-of-the-art traditional CCT identification
method, TI.

The experimental results show that although the current identification methods for
CCTs are pretty mature, they still fail under complex illumination conditions. We find
that HF with appropriate parameter values can effectively filter out the influence of stripe-
structured light illumination and has satisfactory results for lattice-structured light illumi-
nation. Therefore, HF has excellent potential in dealing with image problems affected by
complex illumination conditions. The AHF proposed in this article can achieve automatic
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parameter adjustment and can be combined with any CCT identification method with
automatic and universal features, that is, users only need to input photos without any
other operations.

The future application prospects of this algorithm: As a preprocessing technology,
it can be integrated into photogrammetric software. Alternatively, scholars can use it
to develop more robust CCT identification methods without considering the impact of
complex illumination. This algorithm also provides a new idea and potential solution for
the fusion of close-range photogrammetry and stripe-structured light technology. Our
team’s next work plan is to apply this algorithm to the fusion application of close-range
photogrammetry and structured light technology.
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