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Abstract: Early-season crop mapping and information extraction is essential for crop growth monitor-
ing and yield prediction, and it facilitates agricultural management and rapid response to agricultural
disasters. However, training classifiers by remote sensing classification features for early crop predic-
tion can be challenging, as early-season mapping can only use remote sensing image data during
part of the crop growth period. In order to overcome this limitation, this study takes the Sanjiang
Plain as an example to investigate the earliest identification time of rice, maize and soybean based on
Sentinel-2 time-series data and the random forest classification algorithm. Crop information extrac-
tion was then performed. Following the analysis of the remote sensing classification features by the
random forest importance approach and the subsequent normalization, the optimal features greater
than or equal to 0.5 have yielded quite results in early crop mapping, and their overall accuracy was
the highest in early-season mapping. The overall accuracy was observed to improve by 5% for 10 to
20 days of delay. In addition, rice, maize, and soybean were mapped at the irrigation transplanting
period (10 May), jointing stage (9 July) and flowering (29 July), with an overall accuracy of 90.4%,
90.0% and 90.9%, respectively. This study shows that features suitable for early crop classification can
be selected by random forest importance analysis as well as the ability of remote sensing to extract
crop acreage information within the reproductive period.

Keywords: crops; feature selection; Sentinel-2; earliest identifiable timing; crop mapping

1. Introduction

The future of farmland crop types is under constant change as global temperatures
increase, global urbanization accelerates, and land use changes [1]. Timely and accurate
information on crop acreage and spatial distribution is key for regional crop production
and food security [2–4], and it provides important information for crop growth monitoring,
yield prediction, farm production management, and food security scenario analysis [5,6].
In particular, early-season crop mapping is important in agricultural management [7] as
well as in rapid response to agricultural disasters [8].

Remote sensing technology is now widely used for the monitoring of agricultural in-
formation due to its advantages of large coverage, short detection period and low cost [9,10].
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Methods for extracting crop acreage using remote sensing information are well established.
For example, 24 agricultural land cover categories in Germany were mapped for 2017, 2018
and 2019 using a random forest classifier and intensive time-series data from Sentinel-2
and Landsat 8 in combination with monthly Sentinel-1 composites and environmental
data [11]. In addition, the Cropland Data Layer (CDL) was created in the United States
using medium-resolution satellite imagery [12]. Bingwen Qiu [13] et al. extracted national
maize, rice, and wheat acreage in China using MODIS data based on phenology and thresh-
olding methods. Esther Shupel Ibrahim et al. provide a mapping scheme based on freely
available Sentinel-2A/B (S2) time series and very high-resolution SkySat data to map the
main crops (maize and potato) and intercropping systems including these two crops on
the Jos Plateau, Nigeria [14]. However, the majority of current studies train classifiers for
crop mapping based on all available data in the current year, preventing their application
to agricultural management in a timely manner [15].

Crop maps have made great progress in terms of the availability of free medium-
resolution satellite imagery and the development of new algorithms and cloud computing
infrastructure [16]. Google Earth Engine (GEE) offers the opportunity to process large-scale
time-series images. Such time-series images can reflect crop phenology information, while
vegetation indices indicate the response characteristics of vegetation to the given spectral
band. Therefore, remote sensing images of multiple vegetation indices combined with
time series can differentiate crops according to their different growth status information in
different growing periods [17]. This in turn provides an opportunity to address the scarcity
of remote sensing data for early-season mapping. However, remote sensing images contain
a large number of classification features, which lead to a low computational efficiency for
the classifier and a high computation cost. Therefore, there is a requirement to improve
feature selection processes. By comparing different remote sensing classification features to
select the most suitable features for crop classification, the number of input features can be
reduced, which in turn improves the computational efficiency and learning ability of the
classifier and leads to a higher classification accuracy [18,19].

The Sanjiang Plain is not only the “king of black soil wetlands” in China, with organic
matter-rich soils and high fertility, but also a key area for food security and a high-quality
commercial grain base in China [20]. The Sanjiang plain in the northeastern Heilongjiang
Province crop sowing region has an area of approximately 3.86 million hm2. Grain pro-
duction is dominated by rice, which is followed by maize and soybean. During the critical
growth and development period, namely, the irrigated water transplanting period, rice
is a mixture of water, rice and soil [21]. It is easily distinguished from other landcover
classes using the time-series vegetation index method during this period. Moreover, maize
and soybeans grown in the Sanjiang Plain have a similar growth period and spectral in-
formation. This makes it difficult to distinguish between them using the original spectral
bands of remote sensing data. In addition, the spectral mixing phenomenon of maize and
soybeans further complicates the process of distinguishing between these two crops.

In the current study, the earliest identifiable time (EIT) of rice, maize and soybean was
investigated using the Sanjiang Plain as the study area. Sentinel-2 images collected in 2022
were combined with ground sample data of the Sanjiang Plain to train the random forest
classifier and analyze different remote sensing classification features. The optimal remote
sensing classification features were then selected to explore early-season mapping methods
for crops in the Sanjiang Plain. The specific aims of the study were to: (1) detect the earliest
identifiable time (EIT) for rice, maize and soybean; (2) optimize the classification features
of the three crops; and (3) determine the reliability of the early-season mapping results
compared with those of post-season mapping.

2. Materials and Methods
2.1. Study Area

The Sanjiang Plain has a total land area of about 10.9 × 104 km2 and is located in
the northeastern part of Heilongjiang Province, China (131◦26′~134◦47′E, 44◦48′~48◦23′N,
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WGS-84), which is bounded by the Songhua River, Heilongjiang River, Ussuri River, Flexi
River and the administrative area of Fujin City (Figure 1). It is an important commercial
grain base in China. With 2400–2500 h of annual sunshine and 500–650 mm of annual
precipitation, the Sanjiang Plain has a temperate humid and semi-humid continental
monsoon climate with an average temperature of 21–22 ◦C in July, which is suitable for
crop growth. Its main crops include rice, maize and soybeans. In this study, spring rice,
spring maize and spring soybeans were selected as the surveyed cultivar. Each crop is
harvested once per year due to low sunshine hours and accumulated heat. The growing
period for these crops is generally concentrated in May to September. The total grain yield
of the Sanjiang Plain can reach 15 million tons per year, and the per capita arable area and
grain yield are above the national average.
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Figure 1. Geographical location of the study area and distribution of sample sites in the Sanjiang
Plain, with land use data in the background [22]. Note: The coordinate system is WGS-84.

2.2. Data Acquisition and Pre-Processing
2.2.1. Ground Reference Data

Ground data were collected in June to July 2022 in the Sanjiang Plain using GPS
field surveys. The average temperature of the Sanjiang Plain in 2022 was 1.10 ◦C, with a
maximum temperature of 32.0 ◦C and a minimum temperature of −42.6 ◦C. The annual
rainfall was 664 mm, with June to September rainfall accounting for 77% of the year. In
order to ensure the sufficient quality of sample points for the classification and to verify
the accuracy, samples with obvious errors were eliminated from this study by the visual
interpretation of Google Earth high-resolution images.

It is computationally intensive as well as time-consuming to construct a random forest
classifier using multiple remote sensing classification feature time series of the Sanjiang
Plain. In order to represent the early distribution of crops in the Sanjiang Plain both easily
and quickly, a strip study area was selected as a representative region to infer and verify
the early distribution of crops in the Sanjiang Plain. This reduces the pressure of the
data processing and improves the efficiency of the classification model computation. An
east–west strip and a north–south strip were constructed as strip study areas within the
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S2 satellite orbit coverage using ArcGIS, respectively (Figure 1). The image processing
does not require the stitching of individual images within the S2 satellite orbit coverage,
and thus, the memory used to process the data is reduced. The strip study area crosses
the entire Sanjiang Plain at a regional scale and covers the target crops of rice, maize, and
soybeans as well as representative features of forests, wetlands, cities, and water bodies. In
addition, it is rich in sample points and can thus represent typical features of the Sanjiang
Plain and meet the requirements for the early-season mapping of the target crops (Figure 1).

In order to make the classification results of the strip study area more representative,
we performed a double validation. First validation: Initial validation was performed by
536 sample sites (120 rice, 125 maize, 121 soybean and 170 non-crop sample sites) collected
in the strip study area, of which 70% were used for training and 30% were used for
validation. Second validation: Secondary validation was conducted through 1064 sample
sites (284 rice, 236 maize, 223 soybean, and 321 non-crop samples) in the entire region of
the Sanjiang Plain, of which 70% were used for training and 30% were used for validation.
The first validation was used to test the reliability of the findings from the strip study area,
and the second validation was used to test the feasibility of applying the findings from
the strip study area to the Sanjiang Plain and whether the classification results from the
Sanjiang Plain could be generalized.

2.2.2. Satellite Imagery

Sentinel-2 (S2) consists of two satellites with a revisit period of 5 days and a resolution
of 10–60 m, carrying a multispectral imager with 13 bands (four visible, three red-edge
and two near-infrared bands, one water vapor band, and three short-wave infrared bands)
that can be used to monitor vegetation, soil and water cover, land cover change, etc.
S2 Level-1C with top-of-atmosphere reflectance was used, and they were widely used
for crop classification. Sentinel-2 has the advantages of short revisit period, high spatial
resolution, large number of bands, and fully open source, which not only allows moni-
toring seasonal changes in crop growth [23] but also significantly reduces the problem of
mixed image elements. A relatively new door has been opened for large-scale plot-level
crop mapping.

S2 images from 1 April to 27 October 2022 were selected, and a cloud masking method
was used to eliminate the effect of clouds. Clouds are a form of water and have absorption
features in the blue and cirrus bands as well as in all visible bands. Therefore, four bands
(aerosol band, blue band, green band, and red band) and two spectral indices (normalized
moisture index (NDMI) and normalized snow index (NDSI)) were used to detect the cloud
pixels in the S2 imagery and remove them [24].

In order to eliminate the effect of the discontinuous time interval of the S2 data caused
by varying observation dates from the different orbits of S2, the median value of the S2
observations was selected to generate the final image data across a 10-day interval. Linear
interpolation [25] was employed to obtain images covering the whole time period using
the 10-day time series. The Savitzky–Golay (SG) filter [26] was then used to smooth the
images using a 70-day window and a third-order polynomial. The resultant images were
used to calculate the vegetation indices.

2.3. Methods

Figure 2 presents the flow chart developed for early-season crop mapping. First, the
10-day time-series images were synthesized with the surveyed ground sample points. The
optimal classification scheme for the mapping of the Sanjiang Plain via the strip study area
was then determined. Lastly, the early-season mapping was performed for the major crops
in the Sanjiang Plain.
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2.3.1. Feature Selection

The optimal taxonomic features were obtained by comparing and analyzing four
schemes in the strip study area. These features were then applied to the early-season
mapping of the Sanjiang Plain. The four schemes are the: (1) original band (F1); (2) spectral
index (F2); (3) original band + spectral index (F3); and (4) optimal features (F4).

1. Original band

The S2 image has 13 bands, including four visible, three red-edge and two near-
infrared bands, one water vapor band, and three short-wave infrared bands. Among them,
the blue band is susceptible to soil background and other factors, and it plays a strong
role in the differentiation between soil and vegetation. The green is sensitive to different
plant types, and it can be used to differentiate between vegetation types. The red band is
the main absorption band of chlorophyll, and it is an important indicator of plant vigor
status. The red edge band is sensitive to vegetation, and the near-infrared band can reflect
the growth of vegetation as well as vegetation cover. The short-wave band can be used to
improve the classification recognition of maize and soybean. Therefore, we selected the
blue band (blue), green band (green), red band (red), red edge 1 band (red1), red edge 2
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band (red2), red edge 3 band (red3), near infrared band (nir), short-wave band 1 (swir1),
and short-wave band 2 (swir2).

2. Spectral indices

Seven spectral indices—Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), Land Surface Water Index (LSWI), Normalized Differential Senes-
cent Vegetation Index (NDSVI), Normalized Difference Tillage Index (NDTI), Red Edge
NDVI (RENDVI) and Red Edge Position (REP) —were selected as input variables. Among
them, NDVI and EVI have been widely used to extract temporal features or phenological
indicators of different crops [27,28]. LSWI is highly sensitive to water and soil moisture
and can be used to identify rice and distinguish between maize and soybean [29]. NDSVI
is related to the crop water content, and NDTI is related to crop cover. Thus, these two
indices can distinguish between maize and soybean based on phenology [27]. RENDVI and
REP can estimate canopy chlorophyll II and nitrogen content using the red-edge band, also
aiding to distinguish between maize and soybean [30]. The specific calculation formula is
shown in Table 1.

Table 1. Summary of selected remote sensing classification features.

Remote Sensing Classification Features Formula Reference

Original band Blue, green, red, red1, red2, red3, nir, swir1, swir2
NDVI nir − red

nie + red [31]
EVI 2.5 × (nir − red)

nir + 6 × red − 7.5 × blue + 1
[32]

LSWI nir − swir1
nie + swir1 [27]

NDSVI swir1 − red
swir1 + red [33]

NDTI swir1 − swir2
swir1 + swir2 [28]

RENDVI nir − red2
nir + red2 [16]

REP 705 + 35 × (0.5 × (red3 + red) − red1)/(red2 − red1))
1000

[16]

3. Original band + spectral index

The combination of original bands and spectral indices as classification features pro-
vides a large number of input variables to the classifier, allowing it to take full advantage of
its own learning ability and improve the classification accuracy. In order to compare and
analyze the original band and vegetation index to select the optimal features, we set the
weights of all remote sensing features in the original band and vegetation index equally to 1.

4. Optimal features

The same features at different phenological periods and different features of the same
phenological period have varying importance for crop mapping. In order to make full use of
remote sensing classification features, this study compares the importance of different time-
series remote sensing classification features for crop mapping by random forest importance
analysis. The random forest importance analysis measures how much contribution each
feature makes in the random forest by using the Gini index and the out-of-bag (OOB) error
rate as evaluation metrics. The time series of remote sensing classification features with
high importance were selected as the optimal features. A high number of classification
features tends to lower the computational efficiency and redundancy of the training results.
Therefore, the importance score of remote sensing classification time-series features is
normalized, and the advantages and disadvantages of remote sensing classification time-
series features with different normalization scores are compared and analyzed to select the
optimal remote sensing classification features.

2.3.2. Random Forest

The random forest algorithm is an improved integrated learning method based on the
decision tree algorithm, which uses a bootstrap sampling strategy with put-back to generate
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several independent training sets, and it constructs a decision tree on each training set by
randomly selected features or linear combinations of features. Each tree is trained and
classified based on a set of random observations, and the results of different classifications
are determined by voting using the majority voting method to finally obtain the results of
classifying the dataset.

The RF algorithm has the characteristics of fast, easy parameterization and strong
robustness. It is proved to be more robust, more accurate and faster than many other
classifiers such as maximum likelihood, single decision trees and single-layer neural net-
works [34]. In addition, the RF classifier is inherently insensitive to data noise, which can
mitigate the effect of noise derived from the Top-of-Atmosphere Reflectance in this study
to some degree.

2.3.3. Determination of Earliest Identifiable Time for Crops

The field preparation period for the main crops in the Sanjiang Plain is around the 100th
day of the year (DOY), and the harvest date is around the 300th DOY. The random forest
classifier is used for the classification with the following parameters: (1) numberOfTrees =
100 based on experience (when the number of trees increases, the accuracy rate increases
slightly and the computational cost increases linearly [35]); (2) minLeafPopulation = 10 to
limit the depth of each tree and avoid overfitting [35]; and (3) the other four parameters,
including variablesPerSplit (the number of variables per split, the square root of the number
of features by default), bagFraction (the fraction of input to bag per tree, 0.5 by default),
outOfBagMode (whether the classifier should run in out-of-bag mode) and seed (random
seed), were set by default in the Google Earth Engine. The earliest identifiable time (EIT)
for the three crops in the Sanjiang Plain is defined as the first time that the random forest
classifier accuracy reaches 90%.

2.3.4. Accuracy Assessment

Five validation metrics, namely the user accuracy (UA), production accuracy (PA),
overall accuracy (OA), and Kappa coefficient, are determined by establishing confusion
matrices through ground validation points. The validation metrics are defined as follows:

UA =
nii
ni·
× 100% (1)

PA =
nii
n·i
× 100% (2)

OA =
∑

q
i=1 nii

n
× 100% (3)

Kappa =

[
n·∑q

i=1 nii −∑
q
i=1(ni· × n·i)

]
[
n2 −∑

q
i=1(ni· × n·i)

] (4)

where n_ii is the value of the i-th row and i-th column in the confusion matrix; n_(i·) is
the sum of the i-th row in the confusion matrix; n_(·i) is the sum of the i-th column in the
confusion matrix; n is the total number of validation samples; and q is the number of rows
of the confusion matrix.

The confusion matrix of the strip study area is used to compare and analyze different
feature schemes to obtain the optimal classification features for the early-season mapping
of the Sanjiang Plain. The confusion matrix of the Sanjiang Plain is employed to verify the
results of the early-season mapping of the Sanjiang Plain.
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3. Results
3.1. Impact of Different Remote Sensing Classification Features on Early-Season Mapping

Figure 3 presents the normalized importance scores of different crop remote sensing
time-series classification features for rice, maize and soybean at the earliest identifiable
time (EIT). NDSVI and LSWI contribute the most to the early-season mapping of rice, and
REP is a key taxonomic feature in the early-season mapping of maize and soybean.
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In order to specifically determine which time-series features are applicable to the early-
season mapping of different crops, 10-day time-series curves of the different remotely sensed
classification features of rice, maize, soybean and other features were plotted (Figure 4). Note
that the 10-day time-series curves of other features are not shown in detail as rice, maize
and soybean are easily distinguishable from other features. The bands of blue and green
have similar trends to the red time-series curves, and red1, red2, and red3 are similar to
the nir time-series curves. LSWI, NDSVI, EVI, swir1, and swir2 can distinguish rice from
other landcover types. The differences between LSWI and NDSVI are maximized between
the 100th and 120th DOY (rice sowing and irrigation transplanting period), which was
followed by swir1 and swir2. Although maize and soybean exhibit similar time-series curves,
significant changes in REP and RENDVI are observed between the 150th and 180th DOY
(maize emergence and nodulation, and soybean seedling and differentiation), with large
differences between swir1 and swir2 and between LSWI, NDTI and REP at other times.

In summary, the results reveal that the time-series remote sensing classification fea-
tures with importance normalization scores greater than or equal to 0.50 for different crops
are the most suitable input variables to construct classifiers for the classification process.
Therefore, scheme F4 is the time-series remote sensing classification features with impor-
tance normalization scores greater than or equal to 0.50. The time-series remote sensing
classification features of rice, maize and soybean greater than or equal to 0.50 are colored
dark blue in Figure 3, which contains both F1 and F2 features; thus, it includes all the
features useful for crop classification.
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3.2. Earliest Identifiable Time of Different Crops

Figure 5 presents the overall classification accuracy under the four scenarios for rice,
maize, and soybean for the 100th DOY (10 April) to the 300th DOY (27 October). Rice is the
earliest identifiable and has the highest accuracy, while maize and soybean exhibit relatively
late earliest identifiable times and have a slightly lower accuracy. The accuracies of corn
and soybean exhibit similar upward trends, while the former is slightly more accurate and
can be identified first. Among the four scenarios, F4 stands out in early-season mapping.
Compared with F4, F1 rice EIT is delayed by 10 days, corn EIT is delayed by 20 days, and
soybean EIT is the same. The three crops exhibit the same EIT under F2 and F4, while
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that of F3 maize is delayed by 10 days (and that of F3 rice and soybean is the same) when
comparing with F4. Despite the EIT being the same under F4 and the other schemes, F4 has
the highest overall accuracy. Thus, the EIT for rice, maize and soybean was determined
based on F4 as the 130th, 180th and 200th DOY, with a 91.9%, 90.5% and 91.3% overall
accuracy, respectively. This is approximately 4 months earlier for rice and 2 months earlier
for maize and soybean compared with the crop-harvesting period.
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Figure 5. Curves of the overall accuracy of early-season mapping with time for different crops. The
blue, red, and black vertical dashed lines represent the DOY when the overall accuracy of rice, corn,
and soybeans first reached 90% or higher, respectively.

This study defines the EIT as the first time that the overall accuracy of the crop
classification reaches more than 90%. However, other studies adopt different overall
accuracies. Therefore, we also report the time to first reach 80–95% overall accuracy for
different crops in Table 2. Rice can reach more than 80% accuracy at the 110th DOY, while
maize is observed to be relatively late to reach more than 80% accuracy (at the 150th DOY).
Identifying soybean proves to be more difficult, reaching more than 80% accuracy at the
170th DOY. In contrast, rice is relatively easy to identify, and its accuracy can reach more
than 95% at the 150th DOY.
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Table 2. Earliest crop identification time for different overall accuracies in Sanjiang Plain.

Overall Accuracy ≥80% ≥85% ≥90% ≥95%

Rice
110th DOY 120th DOY 130th DOY 150th DOY
(20 April) (30 April) (10 May) (30 May)

Maize
150th DOY 170th DOY 180th DOY 200th DOY
(30 May) (19 June) (29 June) (19 July)

Soybean 170th DOY 180th DOY 200th DOY 240th DOY
(19 June) (29 June) (19 July) (28 August)

3.3. Early-Season Mapping of the Sanjiang Plain and Best Classification Features

Based on schemes F1, F2, F2 and F4 for the classification in the Sanjiang Plain, the
differences between the classification results and the striped study area were small and
met the requirements for early-season mapping application. The differences between the
rice and soybean classification results are the greatest, with the accuracy in the Sanjiang
Plain approximately 15% lower than that in the strip study area. The maize classification
differences are slightly smaller, fluctuating around 1% (Table 3). Figure 6 presents the classi-
fication results of different schemes for three crops in the Sanjiang Plain. The classification
of rice is more accurate in the eastern part of the Sanjiang Plain, which was followed by
the western region. The classification of maize exhibits less spatial variation, while that of
soybean is more accurate in the central part of the Sanjiang Plain.

Table 3. Overall accuracy of the earliest identification time of different crops in the Sanjiang Plain.

Programs
Strip Study Area Sanjiang Plain

Rice Maize Soybean Rice Maize Soybean

F1 88.8% 85.0% 90.5% 87.2% 84.2% 88.9%
F2 91.3% 90.0% 90.5% 90.2% 89.0% 89.2%
F3 90.0% 89.4% 91.3% 88.3% 88.7% 90.5%
F4 91.9% 90.5% 91.3% 90.4% 90.0% 90.9%
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Scheme F4 is able to select the most suitable classification features by random forest
importance analysis, taking the best and discarding the worst features. This not only im-
proves the overall classification accuracy but also reduces the redundancy of the calculation
results due to the extensive amount of data for large areas. Thus, F4 outperforms the other
feature schemes in early-season mapping; it has the highest overall classification accuracy
and optimizes the spatial distribution of the classification results. Therefore, we conclude
that F4 is the best classification feature for the early-season mapping of major crops in the
Sanjiang Plain.

4. Discussion
4.1. Factors Influencing Early Crop Mapping

A number of potential uncertainties can affect the accuracy of early-season crop
mapping. First, whether or not satellite data are affected by clouds determines to a large
extent the effectiveness of monitoring seasonal changes in crop growth [36]. Second, using
linear interpolation based on adjacent pixels to fill missing values in time-series remote
sensing images [37], the interpolation does not effectively reflect the true information of
crop growth when high-quality observations are missing at the peaks (valleys). In this
study, a special cloud-masking method is used to eliminate the influence of clouds to the
maximum extent, and a Savitzjy–Golay (SG) filter is applied to smooth the time-series
images to weaken the negative effects caused by linear interpolation. In addition, the
optimal features are selected for training classification through feature filtering to minimize
the impact of potential uncertainties on the accuracy of early-season mapping.

The number of remotely sensed classification features is critical for early mapping.
A study used only three vegetation indices to construct time series for the early map-
ping of Heilongjiang crops using random forest [38]. Compared with them, since this
study increases the number of remotely sensed classification features and selects features
of high importance as input variables, the earliest identifiable time in this study was
10–20 days earlier, and the overall accuracy of this study was slightly higher at the same
time. Therefore, many efforts have been devoted to exploring the importance of remotely
sensed classification features in the classification of different crops [39–41]. However, the
current study mainly focuses on the separability between remote sensing classification
features and ignores the contribution of remote sensing classification features. By selecting
the optimal classification features through random forest importance analysis, a higher
classification accuracy can be achieved with fewer classification features, while compu-
tational complexity and time costs are also reduced. The optimal features of rice, maize
and soybean were obtained respectively, achieving promising results in early mapping. In
particular, rice is best distinguished from other features between the 120th and 150th DOY
(irrigation and transplanting period). During this time, rice is subjected to irrigation and
transplanting, and rice fields are covered with water, while maize and soybean are in the
planting and seedling period with low vegetation cover. Maize can be easily identified
between the 170th and 200th DOY (pulling stage), when the leaves become wider and
plants have 7–9 leaves. This corresponds to the tillering stage of rice and the differentiation
and flowering stage of soybean, and the vegetation cover of forest is higher than that of
maize. Since maize and soybean have similar spectral features, it is generally difficult to
distinguish between them [42,43]. However, individual spectral features from the 170th to
the 210th DOY (jointing stage) produce differences, also for the differentiation of crops, and
consequently, the overall accuracy of soybean improves rapidly. In particular, the largest
differences in spectral features between soybean and maize are observed at the 200th DOY,
when soybean and maize are at the flowering and tasseling stages, respectively (Figure 7).
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4.2. Comparison of Early and Post-Season Crop Mapping

Early-season mapping uses imagery from just the early and middle stages of the
crop-growing season, while post-season mapping is generated using all available images
and samples for the year. As the length of the time series increases, the overall accuracy of
the early-season mapping increases simultaneously. Therefore, there is a trade-off between
timeliness and accuracy for early-season mapping. In order to further assess the accuracy
of early-season crop mapping, we compared the results of early crop mapping with those
of post-season mapping. The spatial distribution of crops was observed to be almost
identical, with the early-season mapping exhibiting higher instability (Figure 8). Due to
the limited number of original remote sensing images available for early-season mapping,
there are more time periods with missing images in some areas. This consequently lowers
the accuracy of the time series determined from the early remote sensing images and a high
instability of the classification results. Furthermore, the uneven distribution of samples
also enhances the classification instability.

The overall accuracy of the early-season mapping is lower than that of the post-season
mapping, and the differences vary among the classification schemes (Table 4). F1 exhibits
the greatest variations and only contains a few important remotely sensed classification
features. The differences between F2 and F3 are smaller, and they possess more critical
and non-critical remote sensing classification features, which lowers the classification
accuracy caused by over-prediction. The F4 scheme is observed to have the lowest variation,
and the random forest importance analysis filters out the most suitable remote sensing
classification features for classification, avoiding classifier prediction errors. The overall
accuracy differences between early and post-season mapping differs among crops, with
rice showing the greatest differences, which is followed by maize and soybean. The rice
classification employs the least amount of remote sensing images and thus has the highest
instability compared to soybean and maize.

Table 4. Comparison of the overall accuracy of early- and post-season mapping of different schemes
for three crops in the Sanjiang Plain.

Overall Accuracy of Rice (%) Overall Accuracy of Maize (%) Overall Accuracy of Soybean (%)

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

Early-season mapping 87.2 90.2 88.3 90.4 84.2 89.0 88.7 90.0 88.9 89.2 90.5 90.9
Post-season mapping 95.5 93.3 94.6

Difference 8.3 5.3 7.2 5.1 9.1 4.3 4.6 3.3 5.7 5.4 4.1 3.7

The distribution of early mapping and post-season mapping inconsistency varied
among the three crops, with rice inconsistency mainly distributed in the eastern part of
the Sanjiang Plain, maize in the southwestern part of the Sanjiang Plain, and soybean in
the northern part of the Sanjiang Plain (Figure 9). The spatial heterogeneity of this bias
in early mapping was mainly due to the different distribution of rice, maize and soybean
cultivation areas in the Sanjiang Plain, which is followed by the uneven distribution of
selected sample points. In addition, since early-season mapping uses imagery from just the
early and middle stages of the crop-growing season, it is more susceptible to environmental
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factors. Subsequent studies may consider adding crop texture features or terrain factors to
improve the stability of early-season mapping.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 18 
 

 

 

Figure 8. (a–f) Early- and post-season mapping of different crops.  
Figure 8. (a–f) Early- and post-season mapping of different crops.



Remote Sens. 2023, 15, 3212 15 of 18

The distribution of early mapping and post-season mapping inconsistency varied
among the three crops, with rice inconsistency mainly distributed in the eastern part of
the Sanjiang Plain, maize in the southwestern part of the Sanjiang Plain, and soybean in
the northern part of the Sanjiang Plain (Figure 9). The spatial heterogeneity of this bias
in early mapping was mainly due to the different distribution of rice, maize and soybean
cultivation areas in the Sanjiang Plain, which is followed by the uneven distribution of
selected sample points. In addition, since early-season mapping uses imagery from just the
early and middle stages of the crop-growing season, it is more susceptible to environmental
factors. Subsequent studies may consider adding crop texture features or terrain factors to
improve the stability of early-season mapping.
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4.3. Application of Early Classification

The early classification method developed in this study can be applied to rice, maize,
and soybean in other regions. However, the remote sensing variation varies with the
different crop growth environments and agricultural management practices, and thus, the
direct migration of classifiers is prone to errors. The addition of other classification features
to the classifier, such as climatic variables and crop texture information, can reduce the
impact of differences in the growing environment and agricultural management practices
on the classifier accuracy. The early classification framework proposed in this study can
be useful for early-season mapping of other crop types. It is important to note that the
phenological period, sample information, and taxonomic features vary widely among crops.

Food scarcity remains a major problem for many countries. Based on early crop
mapping information, areas at risk of severe food crises can be identified in a timely
manner, allowing for advanced responses. The early warning of food crises has important
implications for agricultural market monitoring and early warning systems. As major
commodity crops, obtaining crop acreage prior to harvest for rice, maize and soybeans is
of profound importance in predicting food prices. This timely information also helps to
manage food price fluctuations in domestic and international markets [27].

4.4. Limitations and Expansions of Early-Season Mapping Methods

Although our proposed early-season mapping method has achieved satisfactory re-
sults, it has limitations. We only selected remote sensing time-series classification features,
ignoring geographic classification features and meteorological classification features. Only
one year of the early maps for 2022 was produced, ignoring the influence of factors such
as climate and cropping patterns in different years on early mapping. Therefore, our next
effort will be to make full use of the classification features of different types and pay more
attention to the differences of early mapping in different years. We also used only one S2
satellite data, so we could only construct time-series images with 10-day intervals. The
S2A and S2B satellite data can be used to construct 5-day time-series images, which can
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provide better and richer remote sensing time-series classification features. This improves
the accuracy of early mapping.

The random forest classifier is overly dependent on samples, and the quality and
spatial distribution of the samples directly determine the accuracy of the classification
accuracy. It also has problems such as a high memory consumption of computational
resources, not being easy to interpret, easy to overfit and weak to handle discrete features.
Therefore, in practice, improvements and optimizations need to be made on a case-by-case
basis. In this study, for feature selection, importance analysis is used to select the optimal
features to reduce the number of features in order to improve the training efficiency and
accuracy of the random forest. The number of features can also be reduced by other more
efficient feature selection algorithms. For example, Nanshan You [24] et al. designed a
sophisticated feature selection procedure to obtain the optimal cropland/crop features
from the large size of feature candidates, which was based on the two criteria: (1) the
important features with high separability among different classes should be retained;
and (2) the collinearity of each pair of selected features should be relatively low to avoid
redundancy [44].

5. Conclusions

We obtained the most suitable early classification features for the Sanjiang Plain
through the analysis of several classification schemes of remote sensing classification
features. A random forest classifier was trained based on 10-day time series of S2 remote
sensing images and ground sample data to investigate the earliest identifiable time (EIT)
of three major crops in the Sanjiang Plain. Remote sensing classification features were
analyzed using random forest importance and normalized to select those greater than
or equal to 0.50, revealing a strong performance for early crop mapping. Rice was first
identified at the 130th DOY (irrigated transplanting stage), and maize and soybean were
identified at the 180th (nodulation stage) and 200th DOY (flowering stage), respectively. The
optimal features scheme, which aggregates all the dominant remote sensing classification
features and excludes the inferior remote sensing classification features, exhibited the
highest overall classification accuracy, with a delay of approximately 10–20 days per
5% improvement. This scheme also demonstrated the ability to improve the classifier
computational efficiency and avoid the redundancy of the computational results. Compared
with the post-season mapping, the overall accuracy difference of the early-season mapping
in this study is not significant and can reach more than 90%. This study can therefore
provide important information for crop yield prediction and growth monitoring and for
ensuring food security. The early-season mapping method we developed can also provide
ideas for other regions.
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