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Abstract: Accurate determination of crop phenology information is essential for effective field man-
agement and decision-making processes. Remote sensing time series analyses are widely employed
to extract the phenological stages. Each crop’s phenological stage has its unique characteristic on
the crop plant, while the satellite-derived crop phenology refers to some key transition dates in time
series satellite observations. Current techniques primarily estimate specific phenological stages by
detecting points with distinctive features on the remote sensing time series curve. But these stages
may be different from the Biologische Bundesanstalt, Bundessortenamt and CHemical Industry
(BBCH) scale, which is commonly used to identify the phenological development stages of crops.
Moreover, when aiming to extract various phenological stages concurrently, it becomes necessary
to adjust the extraction strategy for each unique feature. This need for distinct strategies at each
stage heightens the complexity of simultaneous extraction. In this study, we utilize the Sentinel-2
Normalized Difference Vegetation Index (NDVI) time series data and propose a phenology extraction
framework based on the Derivative Dynamic Time Warping (DDTW) algorithm. This method is
capable of simultaneously extracting complete phenological stages, and the results demonstrate that
the Root Mean Square Errors (RMSEs, days) of detected phenology on the BBCH scale for corn were
less than 6 days overall.

Keywords: corn; phenological stage; derivative dynamic time warping (DDTW); Sentinel-2

1. Introduction

The phenological dynamics of terrestrial ecosystems are vital for understanding the
Earth’s biosphere responses to interannual and intra-annual variations in climatic and
hydrological systems [1–3]. Crop phenology characterizes the physiological development
stages of crop growth, extending from planting to harvesting [4]. Precise crop phenological
information during the growing season is vital for effective crop management such as
fertilization, pest management, and harvesting operations [5–8].

Traditional methods for phenological information extraction, such as manual records
and weather station observations, are labor-intensive and time-consuming, rendering them
impractical for large-scale surveys [9]. Satellite data provide an efficient alternative for
capturing green leaf phenology across large areas, thanks to standardized and repeated
measurements [10–14]. Current methods for phenology detection from remote sensing time
series of vegetation indices (VI) include threshold methods [9], derivative methods [15],
and shape model fitting methods [16,17]. Threshold-based methods estimate crop pheno-
logical stages using static or dynamic thresholds [18,19]. The derivative methods calculate
the first or second derivative of the smoothed Vegetation Index time series data to obtain
the curvature change rate (CCR) value to determine the key nodes of the phenological
stages [15]. The advantage of the derivative method is that there is no need to artificially
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set the threshold, which can objectively reflect the sudden change point in the growth and
the change process of the surface vegetation. However, these methods are sensitive to ob-
servation noise caused by clouds and rely on the number of satellite observations acquired
around key phenological stages [20]. Therefore, the aforementioned methods are always
combined with curve smoothing or filtering techniques. In addition, threshold methods
and derivative methods primarily focus on phenology stages with distinct features, but
some important phenological stages such as the tillering stage, Heading, and Development
of Fruit cannot be detected directly from the VI curve. Moreover, when aiming to extract
various phenological stages concurrently, it becomes necessary to adjust the extraction
strategy for each unique feature. The distinct strategies at each stage amplify the complexity
of simultaneous extraction. The shape model fitting methods, such as two-step filtering
(TSF) [17], can determine multiple phenology stages. It bridges the ground-based and
remotely sensed crop phenology with a geometrically scalable model. In this TSF model,
optimum scaling factors are obtained with an optimization analysis between the temporal
profile of the current year and the multi-year averaged and smoothed vegetation indices
as a reference [21,22]. Although the crop phenology may shift in different years, the varia-
tions in different phenological stages are not necessarily synchronous. In fact, fluctuating
weather conditions can cause diverse vegetation growth rates, leading to asynchronous
variations among different phenological stages. In scenarios where multiple phenological
stages need to be identified, employing a single scale and offset factor for all stages could
impede the precise phenology identification [23].

Dynamic Time Warping (DTW) is a promising algorithm initially developed for speech
recognition and was increasingly applied to remote sensing [24–27]. DTW and its vari-
ants were widely used in remote sensing applications, including field classification and
generating accurate crop type maps [24,28–31]. Recently, DTW is employed to investigate
vegetation phenology [32,33]. DTW can simultaneously detect multiple phenological stages,
which appears to be more beneficial for agricultural decision-making. Nevertheless, the
limitation of DTW stems from the features it considers, as it solely accounts for the y-axis
value of a data point without effectively addressing its shape. This focus can easily result
in excessive distortion. To tackle this issue, a variety of modifications and adaptations were
introduced. Among them, the Sakoe–Chiba Band constraint [34–37], frequently utilized
in fields like speech and gesture recognition, serves as a window constraint in the DTW
process. To further mitigate these issues, numerous variants were produced. For instance,
the Time-Weighted Dynamic Time Warping (TWDTW) algorithm, a variant of DTW, is em-
ployed for land cover classification leveraging remotely sensed time-series data [28,31,38].
The TWDTW, with its time-weighting factors, handles time series distortions and time
delays effectively and excels in classification tasks. A recent study has applied TWDTW to
determine wheat phenology [39] with promising results. In this study, the authors primarily
focus on a limited number of phenological stages which have obvious characteristics, such
as green-up date, Heading date, and maturity date, with no attention given to other pheno-
logical stages. TWDTW employs time-weighting factors, which are effective for handling
substantial distortions in time series and for navigating issues related to time delay. But
it barely considers higher-dimensional information of the time series, such as first-order
derivatives and second-order derivatives, which are crucial for shape feature detection.
Another commonly used variant of the DTW algorithm is the Derivative Dynamic Time
Warping (DDTW) [40]. The DDTW transforms the original time series into higher-level
features containing the shape information. A few studies have applied DDTW to land
cover classification [40,41], while the application of DDTW in phenology determination
remains limited.

In the realm of agricultural applications, it is essential to precisely determine the dates
of full phenological stages and to detect the Biologische Bundesanstalt, Bundessortenamt
and CHemical Industry (BBCH) scale [42]. The BBCH scale is a universal indicator used
to recognize various and specific phenological stages of crops t. It portrays the ongoing
phenological stages of crops, presenting the phenological stages on a given date instead of
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the date corresponding to a certain stage. This scale signifies the growth status and offers
crucial information for managing crops. These methods, such as threshold methods and
derivative methods, can detect remotely sensed phenology events at the start-of-season
(SOS), end-of-season (EOS), and maturity onset, but these stages do not match the standard
phenological stages.

This study aims to develop a DDTW phenological detection framework for identifying
full phenological stages for the detection of corn following the BBCH standard and to
explore the potential of the DDTW method in crop phenology detection. The framework
integrates the time series starting point adjustment and Sakoe–Chiba Band constraints with
the DDTW to increase the accuracy of phenology detection. It also enables the simultaneous
extraction of phenological stages following the BBCH standard, including weak-featured
phenology such as the Development of Fruit stage. By comparing the DDTW to the
DTW and the TSF method, this study contributes to the enhancement of phenological
monitoring techniques.

2. Materials and Methods
2.1. Study Site

The study site was situated in an extensive agricultural plain near London, in South-
western Ontario, Canada. This region is characterized by a plentiful water supply, fertile
soil, an average annual temperature of 8 ◦C, and temperate conditions during the growing
season, making it ideal for crop cultivation. The predominant agricultural practice in this
area is rotational cropping [3], with a single annual harvest. This study primarily examines
corn in this region, which is typically sown in May and harvested between October and
November. The farmland investigated in this study is depicted in Figure 1.

2.2. Remote Sensing Data and Preprocessing

The Copernicus Sentinel-2 mission consists of a constellation of two polar orbiting
satellites located in the same sun-synchronous orbit at a 180◦ phase to each other. The
Sentinel-2 platform is equipped with a Multispectral Instrument (MSI) sensor with reflected
radiation in 13 spectral bands, with a resolution of 10 m in the main band [43]. It is
designed to monitor changes in surface conditions, and its wide (290 km) and high revisit
time characteristics will support our studies for phenology monitoring. In our study, we
utilized 112 Level 2A (L2A) Sentinel-2 images. This dataset comprised 52 images from the
period of April to November 2019, and 60 images from the same period in 2020. The Fmask
tool was used to extract the cloud masks from the Sentinel-2 data [44]. The detection results
were applied to the level 2A images to obtain cloud-masked images. As Sentinel-2 level 2A
data were orthoimage, Bottom-Of-Atmosphere (BOA)-corrected reflectance products [45],
then we used the cloud-mask-processed 2A level data to directly calculate the NDVI of the
study area [46].

2.3. Annual Crop Inventory (ACI) Data

The Annual Crop Inventory (ACI) data were generated by Agriculture and Agri-Food
Canada (AAFC) at a 30 m spatial resolution since 2009 with an overall accuracy of at
least 85% [47]. To apply the proposed method to a larger area, given the high phenology
homogeneity within a field, we resampled both the ACI and Sentinel-2 data to a resolution
of 100 m × 100 m. Then, we utilized this ACI data as a mask for corn fields in this area,
with the potential to extend its application to areas beyond the study region.

2.4. Ground Truth Data

In this study, we conducted field observations in several corn fields over two years. In
2019, two corn fields were selected, each with 16 sampling points. In 2020, our focus was
on two corn fields, each containing 20 sampling points, along with eight other fields for
general survey, each having a single sampling point. We conducted weekly phenological
observations for all of these sample points. The distance between any two sample points



Remote Sens. 2023, 15, 3456 4 of 20

exceeded ten meters, and sampling was conducted approximately every week to facilitate
the phenology model construction. Field data collected in 2019 were primarily utilized
to create the matching template, while the data from 2020 served as a verification tool to
assess the accuracy and applicability of our method. We employed the BBCH scale [48] to
assess crop phenological stages [42]. Phenological information was gathered almost weekly
during the growing season, with more frequent observations conducted during the rapid
growth stage. Validated phenological data were obtained either from field observations
or through interpolating the nearest phenological stage. Table 1 lists the fieldwork dates
for 2020.
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For corn, the main phenological stages include Emergence, Stem elongation, Heading,
Flowering, Development of Fruit, Ripening, and Senescence. The description of each BBCH
scale and related phenological stage for corn is shown in Table 2.
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Table 1. Dates for the fieldwork conducted in 2020.

Date (DD/MM/YYYY) Crops Visited Date (DD/MM/YYYY) Crops Visited

20/07/2020 Corn 03/09/2020 Corn
20/07/2020 Corn 10/09/2020 Corn
06/08/2020 Corn 20/09/2020 Corn
14/08/2020 Corn 27/09/2020 Corn
20/08/2020 Corn 17/10/2020 Corn
27/08/2020 Corn

Table 2. The BBCH scales and description of each phenological stage for corn [16,17].

BBCH Scale Phenology Stage Description

10 Emergence First leaf through coleoptile
30 Stem elongation Beginning of stem elongation
50 Heading Beginning of tassel emergence

60 Flowering Male: stamens in middle of tassel visible
Female: tip of ear emerging from leaf sheath

70 Development of Fruit Beginning of grain development: kernels at blister
stage, about 16% dry matter

80 Ripening Kernel content soft
90 Senescence Over-ripe: kernel hard and shiny, 70% dry matter

3. Methodology

In this study, we proposed a framework for phenology extraction based on the DDTW
algorithm. We first built the NDVI phenological curve template using the Sentinel-2 data
in 2019, and we defined the key phenological stages based on the in situ measured BBCH
scale. Then, we adjusted the starting point of each NDVI time series curve to reduce
the interference of the data before the crop was seeded. Finally, the Sakoe–Chiba Band
constraint was used for the DDTW algorithm to align the Sentinel-2 NDVI curve acquired
in 2020 and the reference curve, and it was also used to extract the key phenological stages.

According to the Sentinel-2 NDVI time series data and the classification results of corn,
the key phenological stages of corn were determined. The flow chart is shown in Figure 2
and mainly includes the following three steps: (a) data preprocessing; (b) phenology
detection; (c) result generation and validation.

3.1. Overview of DDTW Principle

The Dynamic Time Warping (DTW) algorithm is a technique used for aligning and
comparing two time series by calculating an optimal warping path between them. Given
two sequences A (of length m) and B (of length n), a path matrix is created to store the
pairwise distances between points. The algorithm enforces three constraints: (1) endpoint
constraint, ensuring the path starts and ends at the first and last points of the matrix; (2) con-
tinuity constraint, allowing the path to advance one step at a time; and (3) monotonicity
constraint, ensuring the path does not decrease. The cost function is calculated as shown in
Equation (1) below

D(i, j) =


0 i f i = j = 0
∞ i f (i× j = 0 and i 6= j)

d
(

q(i), s(j)

)
+ min


D(i− 1, j− 1)

D(i− 1, j)
D(i, j− 1)

i f i, j ≥ 1
(1)

where D(i, j) represents the accumulated distance between elements, q(i) and s(j) in se-
quences Q and S at positions i and j, respectively. The local distance between elements
q(i) and s(j) in sequences Q and S is denoted by d

(
q(i), s(j)

)
. The indices of the elements in

sequences Q and S are represented by i and j, respectively.
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Overall, the DTW algorithm includes two steps as shown in Figure 3. The optimal
match between the two sequences is determined by the lowest distance path after alignment.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 23 
 

 

3.1. Overview of DDTW Principle 
The Dynamic Time Warping (DTW) algorithm is a technique used for aligning and 

comparing two time series by calculating an optimal warping path between them. Given 
two sequences A (of length m) and B (of length n), a path matrix is created to store the 
pairwise distances between points. The algorithm enforces three constraints: (1) endpoint 
constraint, ensuring the path starts and ends at the first and last points of the matrix; (2) 
continuity constraint, allowing the path to advance one step at a time; and (3) monotonic-
ity constraint, ensuring the path does not decrease. The cost function is calculated as 
shown in Equation (1) below 

𝐷 𝑖, 𝑗 = ⎩⎪⎨
⎪⎧ 0 𝑖𝑓 𝑖 = 𝑗 = 0∞ 𝑖𝑓 𝑖 𝑗 = 0 𝑎𝑛𝑑 𝑖 𝑗𝑑 𝑞 , 𝑠 + 𝑚𝑖𝑛 𝐷 𝑖 − 1, 𝑗 − 1𝐷 𝑖 − 1, 𝑗𝐷 𝑖, 𝑗 − 1 𝑖𝑓 𝑖, 𝑗  1  (1) 

where 𝐷 𝑖, 𝑗   represents the accumulated distance between elements, 𝑞   and 𝑠   in 
sequences Q and S at positions 𝑖 and 𝑗, respectively. The local distance between elements 𝑞  and 𝑠  in sequences Q and S is denoted by 𝑑 𝑞 , 𝑠 . The indices of the elements 
in sequences Q and S are represented by 𝑖 and 𝑗, respectively. 

Overall, the DTW algorithm includes two steps as shown in Figure 3. The optimal 
match between the two sequences is determined by the lowest distance path after align-
ment. 

 
Figure 3. An illustration of the DTW algorithm. It contains two steps: (a) cost calculation and (b) 
path backtracking. The red line represents the alignment result and the green line in the cost matrix 
represents the backtracking path. 

Although DTW is effectively used in numerous fields, it can sometimes yield patho-
logical results due to its tendency to overcompensate for y-axis variations by distorting 
the x-axis. This method primarily focuses on the y-axis values of data points, which can 
lead to unexpected alignments. For instance, Figure 4a depicts an alignment result of DTW 
where curve A was shifted up by two units. The subsequent DTW alignment is repre-
sented by the unideal blue line in Figure 4a. The second data point in time series A, with 
a value of four, aligns with the fourth data point in series B, which also has a value of four; 
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Figure 3. An illustration of the DTW algorithm. It contains two steps: (a) cost calculation and (b) path
backtracking. The red line represents the alignment result and the green line in the cost matrix
represents the backtracking path.

Although DTW is effectively used in numerous fields, it can sometimes yield patho-
logical results due to its tendency to overcompensate for y-axis variations by distorting the
x-axis. This method primarily focuses on the y-axis values of data points, which can lead to
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unexpected alignments. For instance, Figure 4a depicts an alignment result of DTW where
curve A was shifted up by two units. The subsequent DTW alignment is represented by
the unideal blue line in Figure 4a. The second data point in time series A, with a value of
four, aligns with the fourth data point in series B, which also has a value of four; however,
these points indicate differing trends. Specifically, in series A, this point signifies a rising
trend, whereas in series B, the corresponding value marks a peak. Though DTW may deem
the mapping between these points as perfect, it is intuitively more beneficial to steer clear
of aligning differing trends.
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To tackle this problem, we modified DTW [43] to consider not only the Y value of the
data point but also its shape characteristics. Consequently, we altered the calculation of
the cost matrix in DTW. The distance metric employed is not the Euclidean distance but
rather the square of the difference between the estimated derivatives, referred to as DDTW.
Assuming that the sequences to align are U and V in DDTW, the Equation for transforming
the data point ui in sequence U is presented below [43]:

du
i =

(ui − ui−1) + ((ui+1 − ui−1)/2)
2

, 1 < i < n, (2)

ddi,j =
∣∣∣du

i − dv
j

∣∣∣+ min
{

ddi−1,j, ddi−1,j−1, ddi,j−1
}

(3)

where du
i represents the derivative of sequence U at position i; ui, ui−1, and ui+1 are values

of sequence U at different positions; n is the length of sequence U; and ddi,j represents the
distance between the transformed sequences at positions i and j.

As shown in Figure 4b, the DDTW algorithm shows greater robustness when handling
the translation of time series A, ensuring aligned points share similar trends, indicating
identical shape characteristics. This is particularly pertinent for phenology detection, where
shape features often surpass a single NDVI value in importance.
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3.2. Crop Phenology Determination

Crop phenology determination involves four steps: (1) establishment of phenological
curve template, (2) time series starting point adjustment, (3) Sakoe–Chiba Band constraint,
and (4) DDTW alignment and phenology determination, each of which will be introduced
sequentially in the following sections.

3.2.1. Establishment of Phenological Curve Template

The accuracy of the phenological curve template directly influences the extraction
accuracy of phenological information. We determined that the observation blocks based on
ground observation data from 2019 and the Sentinel-2 NDVI data acquired under favorable
atmospheric conditions in this area were used for the template curve establishment. We
applied Hants function for filtering the NDVI time series and used interpolation to obtain a
suitable NDVI temporal curve. Subsequently, we identified the phenological feature points
on the template curve according to the ground observation data. We defined the following
phenological feature points based on the BBCH standard on the template curve, including
Emergence (ED), Stem elongation (Stem), heading (HD), Flowering (FlD), Development of
Fruit (FrD), Ripening (RD), and Senescence (SD).

The growth of crops can be significantly impacted by various environmental factors,
with cumulative temperature being one of the most influential. Suppose there is an incon-
sistency in the accumulated temperature across two planting years, this can easily lead to
deformation of the NDVI time series curve along the x-axis (DOY). As demonstrated in
Figure 5 below, the template is compressed to 0.7 times on the x-axis.
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In Figure 5, the start of the growing season of the two NDVI curves deviates signif-
icantly. If we use the same phenological interval as the template, for instance, defining
phenology based on a specific number of days from the starting point, it could lead to
serious anomalies. However, the DDTW or DTW algorithm’s dynamic warping capability
facilitates satisfactory alignment outcomes, even in the face of x-axis compression. This
holds true even when these phenological intervals align with significant variations on
the template. This is because the algorithm goes beyond merely aligning curve transla-
tions, and it dynamically adjusts alignment in accordance with the shape features of the
target curve.

3.2.2. Time Series Starting Point Adjustment

Our satellite data collection often commences prior to the actual sowing and growth
of crops. However, before the crops were planted, there were typically short NDVI peaks
due to the weed growth. These NDVI variations present inconsistently across different
NDVI time series and are usually irrelevant for subsequent alignment (Figure 6a). As
depicted in Figure 6, the algorithm was able to manage the offset on the x-axis; however,
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challenges arose when other vegetation, such as weed, existed before the crops were planted.
As illustrated in Figure 6b, despite the well-aligned stages of rapid vegetation growth,
abnormal alignments were prevalent at the early stages. Owing to the global alignment
attribute of the algorithm, failure to eliminate the time of soil and weed mixtures could
potentially interfere with early phenology detection.
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Figure 6. Early NDVI timing analysis and alignment. (a) Examples of two NDVI time series and
(b) illustration of abnormal alignments at early stages.

The initial NDVI time series begins from DOY 120. To minimize the influence of
soil and weed before the growing season of corn on the NDVI time series alignment, we
planned to adjust the starting point of the time series for both the template and target curves.
The Emergence stage (ED) typically occurs within 10 days prior to the rising inflection
point. Therefore, we adjust the starting point of the NDVI curve to be 15 days before the
rising inflection point instead of DOY 120, and we proceed with subsequent operations.
The detection condition for the rising inflection point was given by the following conditions
(Equation (4)): 

p+30
∑

i=p
1(NDVIi+1 > NDVIi) > 25

NDVIrise_end > 0.6
(4)

where p represents the current corresponding NDVI data point; i represents the index of
the NDVI data points within a 30-day window starting from point p; NDVIi+1 and NDVIi
are the NDVI values at points i+1 and i, respectively; and rise_end represents the end of the
rising period.

The detection criteria for the rising inflection point are that the NDVI value after this
point rises continuously for more than 25 days within 30 days. This condition is not strictly
set to 30 days to reduce the influence of errors on the curve; it only requires that the overall
curve shape after this point is rising. Another condition is that the peak value during the
rising stage must be greater than 0.6, which is a relatively lenient requirement. The first
point that meets these conditions is considered the rising inflection point.

3.2.3. Sakoe–Chiba Band Constraint

As discussed in Section 3.1, DTW can excessively distort the x-axis to account for
y-axis variations, leading to the disproportionate correspondence of one point with the
others. DTW is often combined with Sakoe–Chiba warped windows for various tasks, and
many studies have demonstrated that Sakoe–Chiba Band constraints are very effective for
improving accuracy [34–37], especially when processing time series that are not highly
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distorted. This is clearly illustrated in Figure 7, where two identical NDVI sequences
(a) incur a downward shift in one sequence. This manipulation yields a corresponding cost
matrix and path denoted in Figure 7b, resulting in an alignment outcome represented in
Figure 7c. The implementation of a Sakoe–Chiba constraint involves assigning a value of
infinity to elements outside a specified width near the main diagonal of the cost matrix
(Figure 7e). This constraint ensures the backtracking path adheres closely to the main
diagonal, limiting potential over-distortions (Figure 7f). To incorporate this constraint into
the phenology extraction algorithm, one needs to set the value outside a specified width
near the main diagonal of the cost matrix to infinity. This ensures that the backtracking path
remains within the range of the main diagonal, preventing excessive distortion of the crop’s
NDVI curve during alignment, which in turn facilitates accurate phenology extraction.
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Figure 7. This figure demonstrates the effect of the implementation of a window constraint on the
alignment of two NDVI time series. (a,d) Two original identical NDVI time series, where one slightly
shifts one time series downwards. (b) Resulting cost matrix and path when one time series is shifted
downwards. (c) Corresponding DTW alignment outcome from the adjustment. (e) Adjusted cost
matrix and path when a 20% window constraint is applied. (f) Final alignment result post-application
of the constraint. The green line in the cost matrix represents the backtracking path.

The Sakoe–Chiba Band constraint restricts the DTW backtracking algorithm’s path to a
specific width along the diagonal, effectively limiting the maximum size of singularities but
not entirely preventing their occurrence. The DDTW algorithm, with its emphasis on shape
features, exhibits less sensitivity to y-axis shifts. However, DDTW combined with window
constraints can also play an important role in avoiding excessive distortion of the curve.
In real scenarios, numerous factors such as cloud interference and radiation distortion
can affect the shape of the time series. Moreover, DDTW involves derivative calculations,
which are inherently susceptible to noise. Importantly, implementing window constraints
does not negatively impact original DDTW performance, often proving beneficial [34–37].
Applying window constraints can help mitigate this sensitivity, enhancing the algorithm’s
performance, though the improvement is not as prominent as in traditional DTW. During
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the alignment of vegetation NDVI curves, having performed time series adjustment, the
NDVI curve shapes at this stage should be similar, exhibiting only minor shifts along
the time axis. Consequently, the Sakoe–Chiba Band constraint can be effectively applied,
employing a typical window size of 20%.

3.2.4. DDTW Alignment and Phenology Determination

Adhering to the principle of DDTW warp alignment, we calculated the cost matrix and
identified the backtracking path. The points on the path represent the best-aligned positions
on the two curves, indicating the closest distance and most similar shape. Consequently, we
can consider these points as corresponding to the same phenological stages. In other words,
based on the reference phenology curve, we search for the point on the target curve closest
to the characteristic phenology point on the reference phenology curve, and we consider
this point as the phenology of the target curve. To find the phenological feature points cor-
responding to the target curve, we determined that when the feature point on the reference
curve corresponds to a single point on the target curve, this point is also considered the
phenological feature point of the target curve. When corresponding to multiple points, the
mean value is taken as the target phenological feature point. Figure 8 demonstrates an
example of how the DDTW algorithm was used to determine the phenological stage.
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Figure 8. This depiction elucidates the methodology employed by the algorithm to ascertain pheno-
logical stages through the congruence between the reference trajectory (dark green) and the target
trajectory (light blue). The blue square points represent phenological points. Employing varying
shades of green, the illustration standardizes three distinct scenarios. The red arrows represent the
algorithm alignment results, and the blue arrows represent the phenology alignment results.

Assuming we only know three feature points (Features a, b, and c) on the reference
trajectory (depicted in dark green), we sequentially identify the corresponding points
(Features A, B, and C) on the target trajectory (light blue). In this context, three scenarios
were examined: In Feature a, the mean value of the aligned points on the target trajectory is
selected as Feature A for the target curve. In Feature b, only one point is aligned and directly
chosen as Feature B. In Feature c, multiple points on the reference trajectory correspond to
a single point on the target trajectory; however, Feature c on the reference curve still solely
corresponds to a single point on the target trajectory, which is chosen as Feature C.
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3.3. Crop Phenology Evaluation

The accuracy of the results was assessed by in situ observations in 2020, using three
statistical measures to verify the accuracy: mean absolute error (MAE), root mean square
error (RMSE), and Bias (e.g., Equations (5)–(7))

MAE =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣ (5)

RMSE =

√
1
n

n

∑
i=1

(
y′i − yi

)2 (6)

Bias =
∑n

i=1
(
y′i − yi

)
n

(7)

where n is the number of ground data detection, y′i is the predicted phenological date, and
yi is the actual phenological date.

To evaluate the detection capabilities of the DDTW method, we compared it with the
two-step filtering (TSF) method [17]. The TSF method adopts a two-stage filtering approach
that involves smoothing the VI time series and obtaining optimal scaling and shift param-
eters through a shape model fitting procedure. Following this, the dates of critical crop
development stages are estimated using the initial values of the optimal scale parameters
and shape models, which correspond to distinct phenological stages. These initial values
are derived from in situ observations. To prove the effectiveness of the starting point
adjustment, we also conducted the DTW experiment with and without the starting point
adjustment. Lastly, we applied the proposed phenology detection framework to a larger
area of corn fields, to visualize the temporal and spatial distribution of corn phenology.

4. Results
4.1. Establishment of Phenological Curve Template Results

We defined the following phenological feature points based on the BBCH standard
on the template curve, including Emergence (ED), Stem elongation (Stem), Heading (HD),
Flowering (FlD), Development of Fruit (FrD), Ripening (RD), and Senescence (SD), as
illustrated in Figure 9 below:
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4.2. Time Series Starting Point Adjustment Result

Figure 10 presents the process of adjusting the time series starting point. Accordingly,
we adjusted the starting points of both the phenological curve template and the target
time series.
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4.3. Temporal and Spatial Distribution of Corn Phenology

For the corn fields in the area shown in the big black box in Figure 1, we employed the
DDTW algorithm to extract seven key phenological stages during the growth of corn in
2020 and generated the phenological maps (Figure 11). In various phenology maps, we can
observe the differences in color, indicating that the DOY to reach each phenological stage
varies. For most corn fields, the Emergence day was between DOY 130 and 150. While for
some fields, the Emergence day was between DOY 150 and 170.

Furthermore, there is a certain continuity on the map, suggesting that some areas
and their surrounding regions experience similar phenological stages. Instances where
the phenology of certain areas differs from their surrounding regions, such as the non-
purple areas in the map of Emergence day, signify a later phenological stage—which is also
reflected in the subsequent Stem elongation stage. This phenomenon is primarily related to
the late sowing date. However, towards the end of the phenological cycle, these differences
gradually diminish.

The frequency distributions corresponding to each phenological stage are illustrated
in Figure 12. We observed that the Emergence stage (ED) primarily occurs between
days 135 and 155, Stem elongation (Stem) is concentrated between days 170 and 190, Head-
ing (HD) typically takes place between days 195 and 210, Flowering (FlD) is predominantly
found between days 195 and 215, Development of Fruit (FrD) mainly occurs between days
215 and 230, Ripening (RD) is focused between days 230 and 240, and Senescence (SD)
primarily happens between days 265 and 270. The Emergence date exhibits two distinct
minor peaks on the frequency graph, which may result from varying sowing dates. For
Stem elongation, the bimodal distribution of the histogram is quite noticeable, likely due to
the differences in seeding time. However, during the mid-growth stage, Flowering (FlD),
Development of Fruit (FrD), and Ripening (RD) exhibit a more concentrated histogram
as the phenological interval between early- and later-planted corn decreases, owing to
improved thermal conditions and faster growth of the later-sown crop. With continuous
growth and upon reaching the late growth stage, the Senescence date becomes relatively
close, regardless of whether the corn was planted earlier or later. This may be due to tem-
perature or other factors (such as harvesting), resulting in a more concentrated histogram
as the corn matures and begins to senesce.
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Figure 12. The histogram of phenological intervals displays the statistical number of phenological
occurrences on specific dates. Red, green, and blue lines represent the frequencies of 25%, 50%,
and 75% respectively. (a) Represents Emergence, (b) represents Stem elongation, (c) represents
Heading, (d) represents Flowering, (e) represents Development of Fruit, (f) represents Ripening, and
(g) represents Senescence.

4.4. Accuracy of the DDTW Phenology Detection for Corn

Table 3 shows the extraction results of the phenology stages, tested by the 2020 ground
observation data. For phenology stages with distinct shape characteristics, such as Stem
elongation and Heading, the RMSE, MAE, and bias are all less than 5 days. However, for
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phenology stages with less distinct shapes, such as Development of Fruit and Ripening, the
RMSE can still be within 10 days. It is evident that due to the inconspicuous characteristics
of these phenological stages, the detection is difficult and deviation is larger. In general,
using the DDTW method to extract phenological stages yields high accuracy. As shown
in Figure 13, the results of the phenological stages extracted by DDTW were verified. It
performs well for phenological features with obvious characteristics and demonstrates
good detection ability for inconspicuous features.

Table 3. Verification results of corn phenology detection.

Phenological Stage RMSE MAE Bias

Emergence 4.728 3.736 2.045
Stem elongation 4.062 3.327 1.959

Heading 3.033 2.727 1.364
Flowering 3.132 2.636 1.909

Development of Fruit 6.575 5.545 4.091
Ripening 7.908 6.727 6.727

Senescence 3.734 2.318 2.318
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Figure 13. The validation of the corn phenological stages obtained using the DDTW algorithm
via comparison with ground-observed data. Different colors represent different phenology, the
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We compared the phenology extraction results using the DDTW algorithm with the
TSF and DTW. As illustrated in Figure 14, the DDTW algorithm demonstrates an obvious
advantage in extraction accuracy compared to other methods for most stages. For the
Development of Fruit and Ripening stages, the performance of the DDTW is inferior
to the other two methods. A plausible explanation is that these two stages are often
found in areas with high NDVI values. However, due to observation errors or noise,
there might be subtle differences in the derivative curves of vegetation, which can be
erroneously identified as “incorrect” features. In comparison, other algorithms are slightly
more stable, as the derivative is more sensitive to noise. DTW and DDTW offer significant
advantages over TSF at the Senescence stage. TSF allows for basic translation of all points
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along a curve, depending on the shift and scaling parameters, while DDTW provides the
flexibility to distort the curve. This adaptability enables it to account for variations in time
and growth speed and to adjust the data in more accurate and robust alignments. The
DDTW outperforms the DTW and TSF at most stages, suggesting that it is more effective at
capturing and reflecting the shape features of time series data. By considering the derivative
information, DDTW is better suited to handle variations in the shape of the curves.
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Within the same window constraints, we compared the DTW experiment results with
and without the time series starting point adjustment, as illustrated in Figure 15. We
found that the algorithm performance was improved after adjusting the starting point,
particularly at the Emergence stage. This improvement could be attributed to the reduction
in interference from the early stage before the emergence of crops.
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5. Discussion
5.1. Contributions and Advantages of the Study

In this study, we proposed a DDTW-based phenology detection framework for the
estimation of corn phenological stages based on the BBCH scale. This method allows the
construction of the Sentinel-2 NDVI time series template acquired in previous years with
the defined phenological events from ground measurements, matching it with unknown
NDVI time series. Subsequently, phenological stages for other years can be identified.

The framework integrated the time series starting point adjustment and Sakoe–Chiba
Band constraints with the DDTW to increase the accuracy of phenology detection. By
comparing the DTW results with and without the time series starting point adjustment, we
found that the algorithm performance was improved after adjusting the starting point. At
the early stage before the corn growing season, complex factors such as weed growth and
seeding events may cause the high fluctuation of NDVI values. By detecting and adjusting
the starting point, the interference of the NDVI data at the early stage was removed, and it
is beneficial to detect corn phenological stages. After adjusting the starting date, the NDVI
curve did not deviate significantly on the time axis. We also employed the Sakoe–Chiba
Band constraint, a common constraint in DTW and related algorithms, to avoid excessive
distortion of the curve. The Sakoe–Chiba Band constraint effectively suppresses extreme
one-to-many situations, especially on curves with relatively large noise, thus enhancing the
overall performance of the phenological detection process.

In our comparative analysis of the DTW and DDTW algorithms, we observed that
DDTW excels beyond the performance of the DTW algorithm. An aspect of DDTW’s
potential is its ability to consider the shape characteristics of the NDVI curve, rather than
solely focusing on the NDVI values. This yields a more robust and precise performance in
phenological detection. Even under extreme weather conditions, our DDTW-based method
consistently performs effectively. Whereas lower NDVI values caused by drought or frost
might severely disrupt the DTW, leading to significant curve distortion, DDTW maintains
its ability to identify phenological stages as long as the overall trend or shape of the NDVI
does not dramatically change.

The TSF’s presumption of synchronized phenological stages often lacks accuracy when
confronted with disparate growth rates and asynchronous shifts triggered by fluctuating
weather conditions, thereby reducing its precision in phenology detection. TSF allows
for the basic translation of every point along a curve, contingent on the shift and scaling
parameters, while DDTW proffers the flexibility to distort the curve. This flexibility enables
it to account for variations in time and growth speed and to adjust the data in more accurate
and robust alignments.

5.2. Limitations of the Proposed Method and Outlooks

It is evident that utilizing DDTW for alignment may not be sufficient to improve
the extraction accuracy in phenological stages with weak shape information, such as
Development of Fruit and Ripening. Additionally, the Vegetation Index NDVI is prone to
oversaturation, which can further hinder the accuracy of the extraction process.

To improve phenology detection accuracy, it could be advantageous to explore alterna-
tive vegetation indices less susceptible to oversaturation, such as the Enhanced Vegetation
Index (EVI or EVI2) [49,50]. These indices are specifically designed to address some NDVI
limitations and could potentially offer more precise phenological information.

Furthermore, incorporating both the value and the derivative of data points in the
DTW warp alignment process might be beneficial. This can be achieved by employing a
hybrid approach that combines the strengths of both DTW and DDTW, allowing for a more
comprehensive assessment of time series similarities. By considering both the value and the
derivative, this approach could potentially improve the detection of weakly characterized
phenological stages, leading to enhanced overall accuracy in phenological analysis.

To apply this method to different regions or crop types, it is essential to establish a
template curve that aligns with the local crops, necessitating certain ground observations.
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The precision of these observations directly influences phenology detection accuracy;
however, acquiring high-quality time series satellite observations over croplands can be
challenging due to frequent cloud contaminations over extended periods of time [51,52].
This issue can be mitigated by merging high-temporal resolution observations with high-
spatial resolution ones, such as HLS-MODIS, HLS-VIIRS, HLS-ABI, etc. Furthermore,
creating the crop template requires consistent, long-term ground observations, which may
not always be feasible in extensive geographical regions. Compared to other algorithms
determining phenology events based on curve characteristics, this study’s method has
its limitations.

6. Conclusions

In conclusion, this study introduced a novel DDTW framework for detecting corn
phenology based on Sentinel-2 NDVI time series data. The proposed framework effectively
integrates the DTW-based algorithm with the BBCH-scale model, which is suitable for corn
and can also be extended to other crops. This framework achieved full phenology detection
of corn based on the BBCH scale. It also outperformed other methods such as DTW and
TSF at most phenological stages, and the RMSEs were less than 5 days at these stages.

The phenology extraction method proposed in this study can provide valuable support
for crop field management and policy development. In the future, our intention is to
explore the potential of this method for near real-time detection of phenological events.
By conducting experiments and validating our approach with real-time data, we hope to
contribute to a more sustainable and productive agriculture.
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37. Kurbalija, V.; Radovanović, M.; Geler, Z.; Ivanović, M. The Influence of Global Constraints on Similarity Measures for Time-Series
Databases. Knowl. Based Syst. 2014, 56, 49–67. [CrossRef]

38. Cheng, K.; Wang, J. Forest-Type Classification Using Time-Weighted Dynamic Time Warping Analysis in Mountain Areas: A
Case Study in Southern China. Multidiscip. Digit. Publ. Inst. 2019, 10, 1040. [CrossRef]

39. Zhao, F.; Yang, G.; Yang, X.; Cen, H.; Zhu, Y.; Han, S.; Yang, H.; He, Y.; Zhao, C. Determination of Key Phenological Phases of
Winter Wheat Based on the Time-Weighted Dynamic Time Warping Algorithm and MODIS Time-Series Data. Remote Sens. 2021,
13, 1836. [CrossRef]

40. Kumar, V.; Grossman, R. Derivative Dynamic Time Warping. In Proceedings of the 2001 SIAM International Conference on Data
Mining; SIAM: Philadelphia, PA, USA, 2011.

41. Rath, T.M.; Manmatha, R. Word Image Matching Using Dynamic Time Warping. In Proceedings of the 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003; Volume 2, p. II.

42. Ventura, F.; Marletto, V.; Traini, S.; Tomei, F.; Botarelli, L.; Rossi, P. Validation of Development Models for Winter Cereals and
Maize with Independent Agrophenological Observations in the BBCH Scale. Riv. Ital. Di Agrometeorol. 2009, 14, 17–26.

43. Hird, J.N.; McDermid, G.J. Noise Reduction of NDVI Time Series: An Empirical Comparison of Selected Techniques. Remote Sens.
Environ. 2009, 113, 248–258. [CrossRef]

44. Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved Cloud and Cloud Shadow Detection in Landsats 4–8 and Sentinel-2 Imagery. Remote
Sens. Environ. 2019, 231, 111205. [CrossRef]

45. Navarro, A.; Rolim, J.; Miguel, I.; Catalão, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop Monitoring Based on SPOT-5 Take-5 and
Sentinel-1A Data for the Estimation of Crop Water Requirements. Remote Sens. 2016, 8, 525. [CrossRef]

46. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

47. Ahn, B. Agriculture and Agri-Food Canada (AAFC). Available online: https://agriculture.canada.ca/en (accessed on 6 July 2023).
48. Hess, M.; Barralis, G.; Bleiholder, H.; Buhr, L.; Eggers, T.H.; Hack, H.; Stauss, R. Use of the Extended BBCH Scale—General for the

Descriptions of the Growth Stages of Mono; and Dicotyledonous Weed Species. Weed Res. 1997, 37, 433–441. [CrossRef]
49. Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote

Sens. Environ. 2008, 112, 3833–3845. [CrossRef]
50. Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference

Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651.
[CrossRef] [PubMed]

51. Prudente, V.H.R.; Martins, V.S.; Vieira, D.C.; de Silva, N.R.F.E.; Adami, M.; Sanches, I.D. Limitations of Cloud Cover for Optical
Remote Sensing of Agricultural Areas across South America. Remote Sens. Appl. Soc. Environ. 2020, 20, 100414. [CrossRef]

52. Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud Cover throughout the Agricultural Growing Season: Impacts
on Passive Optical Earth Observations. Remote Sens. Environ. 2015, 156, 438–447. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.knosys.2013.10.021
https://doi.org/10.3390/f10111040
https://doi.org/10.3390/rs13091836
https://doi.org/10.1016/j.rse.2008.09.003
https://doi.org/10.1016/j.rse.2019.05.024
https://doi.org/10.3390/rs8060525
https://agriculture.canada.ca/en
https://doi.org/10.1046/j.1365-3180.1997.d01-70.x
https://doi.org/10.1016/j.rse.2008.06.006
https://doi.org/10.3390/s7112636
https://www.ncbi.nlm.nih.gov/pubmed/28903251
https://doi.org/10.1016/j.rsase.2020.100414
https://doi.org/10.1016/j.rse.2014.10.009

	Introduction 
	Materials and Methods 
	Study Site 
	Remote Sensing Data and Preprocessing 
	Annual Crop Inventory (ACI) Data 
	Ground Truth Data 

	Methodology 
	Overview of DDTW Principle 
	Crop Phenology Determination 
	Establishment of Phenological Curve Template 
	Time Series Starting Point Adjustment 
	Sakoe–Chiba Band Constraint 
	DDTW Alignment and Phenology Determination 

	Crop Phenology Evaluation 

	Results 
	Establishment of Phenological Curve Template Results 
	Time Series Starting Point Adjustment Result 
	Temporal and Spatial Distribution of Corn Phenology 
	Accuracy of the DDTW Phenology Detection for Corn 

	Discussion 
	Contributions and Advantages of the Study 
	Limitations of the Proposed Method and Outlooks 

	Conclusions 
	References

