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Abstract: Unmanned aerial vehicle (UAV) image object detection has great application value in the
military and civilian fields. However, the objects in the captured images from UAVs have problems
of large-scale variation, complex backgrounds, and a large proportion of small objects. To resolve
these problems, a multi-scale object detector based on coordinate and global information aggregation
is proposed, named CGMDet. Firstly, a Coordinate and Global Information Aggregation Module
(CGAM) is designed by aggregating local, coordinate, and global information, which can obtain
features with richer context information. Secondly, a Feature Fusion Module (FFM) is proposed,
which can better fuse features by learning the importance of different scale features and improve the
representation ability of multi-scale features by reusing feature maps to help models better detect
multi-scale objects. Moreover, more location information of low-level feature maps is integrated to
improve the detection results of small targets. Furthermore, we modified the bounding box regression
loss of the model to make the model more accurately regress the bounding box and faster convergence.
Finally, we tested the CGMDet on VisDrone and UAVDT datasets. The proposed CGMDet improves
mAP0.5 by 1.9% on the VisDrone dataset and 3.0% on the UAVDT dataset.

Keywords: UAV images; multi-feature fusion; information aggregation; multi-scale object detection

1. Introduction

UAV application technology has also made significant progress in recent years. Due
to good mobility, convenient use, and low cost, UAVs have an extremely high applica-
tion value in disaster monitoring [1], geological investigation [2], air traffic control [3],
emergency relief [4], and other aspects. Therefore, UAV image object detection has been
paid more attention by researchers. However, as the shooting angle and height of UAV
are changeable, UAV object detection faces the two following challenges: (1) Due to the
problem of UAV shooting perspective, there are considerable differences between the scales
of targets of the same category or different categories, and there are many small objects,
which greatly test the performance of the model to detect multi-scale targets and small
targets. (2) In UAV images, there are usually many objects that are blocked, and weak light
results in the poor visibility of boundary and features of the object, so it is hard to extract
discriminant features from the model.

With the development of deep learning, traditional object detection methods, such
as HOG [5] and SIFT [6], are gradually eliminated due to the need for a large amount of
prior knowledge. However, the object detection method based on deep learning does not
need the manual involvement and can dig deeper and more abstract features. Although
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the object detector based on deep learning has achieved great results in detecting natural
images, there are still great challenges for the object detection of UAV images.

To resolve these problems, this paper proposed a multi-scale object detector based on
coordinate and global information aggregation, named CGMDet. Firstly, we designed the
CGAM, which can make the model focus on coordinate and global information to alleviate
the interference brought by the background. Secondly, we proposed the FFM to better fuse
the features of different scales and add the feature maps of larger sizes to feature fusion to
more effectively detect multi-scale objects, especially small objects. In addition, we reduced
the number of convolutional channels in the neck to decrease the number of parameters
required by the network. Based on these works, we obtained an improved feature pyramid
network called multi-feature fusion pyramid network (MF-FPN). Finally, we modified the
bounding box regression loss to enable the model to more accurately regress bounding
boxes. This modification allows high-quality anchors to contribute more gradients to the
training process. Therefore, the model can achieve better detection accuracy and faster
convergence speed.

In summary, the contributions of this study are as follows:

1. We propose a multi-scale object detector based on coordinate and global information
aggregation for UAV aerial images, which can better detect targets with obscure
features and targets with different scales;

2. To alleviate the problem of the non-apparent object features due to occlusion and low
light, the CGAM is proposed. The module can capture local, coordinate, and global
contextual information and fuse them to reduce the interference of background factors
on the feature extraction process, thereby obtaining more robust feature information;

3. To make the model better detect multi-scale targets, the FFM is proposed. The module
can learn the importance of different scale features in fusion and improve the rep-
resentation ability of multi-scale features by reusing the features of different scales
to improve the ability of model detection of multi-scale targets. At the same time,
a larger size feature map is added to the feature fusion structure so that the model
can detect small targets better. We named the improved feature pyramid network
MF-FPN;

4. To more accurately regress the bounding boxes, we modified the bounding box loss
to improve the positioning effect of bounding boxes and make the model converge
faster;

5. We validated our CGMDet on two public UAV image datasets. The experimental
results show that our model can better detect multi-scale targets and targets with less
obvious features in UAV images.

2. Related Work
2.1. Object Detection

At present, the commonly used detectors are one-stage and two-stage detectors.
Among them, the first step of the two-stage detector is to generate candidate regions,
and the second step is to classify and regress each candidate region. The one-stage de-
tector performs classification and regression directly. Classic two-stage detectors include
R-CNN [7], Fast R-CNN [8], Faster R-CNN [9], SPP-Net [10], etc. The accuracy of the two-
stage detector is higher than that of the one-stage detector, but the speed is slower than the
one-stage detector. Commonly used one-stage detectors include SSD [11], RetinaNet [12],
YOLO series [13–18], etc. Recently, some anchor-free detectors have been invented. The
anchor-free method uses the features of object centers or key points to replace the complex
anchor design. For example, FCOS [19] treats each pixel on the feature map as a training
sample and uses a four-dimensional vector to regress the predicted box. CenterNet [20]
represents objects using their center points and predicts bounding boxes by predicting the
offset of the center point and the width and height of the object. The above detector has
achieved good results in natural images. However, for UAV images, existing detection
methods still face significant challenges. To date, many object detection methods for UAV
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images have been proposed. For example, Liu et al. [21] proposed an anchor-free detector,
Edge YOLO, which can be detected in real-time on the edge computing platform. The
data enhancement method is used to suppress overfitting in the training process, and a
mixed random loss function is used to improve the detection accuracy of small targets.
Jiang et al. [22] used the YOLO model to realize the transfer detection from ground thermal
infrared video images to UAV thermal infrared videos. Aiming at the challenges of scale
and the sparsity of object detection in aerial images, ClusDet [23] proposed that the CPNet
is used to generate the clustering region of objects first and ScaleNet to predict the scale
information for adjusting the clustering region. DMNet [24] determines the target area to
be clipped through the generated density map and then fuses the detection results of the
clipped area and the original image to obtain more accurate detection effects.

2.2. Attention Mechanism

Attention mechanisms are widely used because they allow the model to focus more
on important information and ignore unimportant ones. The attention mechanism has
played a significant role in object detection. The squeeze-and-excitation block (SE) [25]
is a classic channel attention mechanism that can apply a weight to each feature channel,
allowing the model to focus more on the important channel information. However, to
save computation, SE performs a squeeze operation during the processing which can
result in the loss of some channel information. To avoid losing channel information, the
Efficient Channel Attention Module (ECA) [26] and Effective Squeeze-and-Excitation Block
(ESE Block) [27] were proposed. To prevent channel information loss, the ECA uses a
1D convolution operation instead of the two fully connected layers in SE. The ESE Block
removes the squeeze operation and uses one fully connected layer instead of the two
fully connected layers in SE. In addition to channel attention mechanisms, coordinate
attention (CA) [28] obtains feature maps integrated with spatial coordinate information
by performing adaptive average pooling algorithms along the x and y directions of the
feature map, respectively. Furthermore, the CBAM [29] introduces channel and spatial
attention mechanisms to allocate different weights for different channels and spatial regions
to obtain highly responsive feature information and improve the network performance.
The adaptive attention fusion mechanism (AAFM) [30] adaptively fuses features within
and between modules with learnable fusion factors to improve the feature representation.

To better extract contextual feature information and alleviate the interference caused
by occlusion and weak light, we designed the CGAM to extract the local feature and con-
tinuously focus on the coordinate information. In addition, it combines global information
to obtain features with richer contextual information.

2.3. Multi-Scale Feature Fusion

Targets in unmanned aerial vehicle (UAV) images have characteristics such as large-
scale variations and a high proportion of small objects, which pose significant challenges
to object detection tasks. In deep networks, low-level feature maps typically contain rich
positional information, while high-level features typically contain rich semantic information.
Therefore, for better performance, low-level and high-level features are usually fused.
FPN [31] fuses the features of adjacent scales through a top–down path and horizontal
connections. PANet [32] proposes a bidirectional fusion structure that combines features in
both top–down and bottom–up directions. Zhao et al. [33] proposed MLFPN to extract more
representative multi-level and multi-scale features through the TUM and FFM, and then
integrate features through the SFAM to obtain features with rich contextual information.
Tan et al. [34] proposed BiFPN, which adds lateral skip connections to the top–down and
bottom–up pathways and assigns a learnable weight to each feature map during fusion to
emphasize the importance of different feature maps for better feature fusion.

To improve the detection performance of multi-scale targets, we designed the FFM
to learn the importance of different features in the fusion and improve the representation
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ability of different scale features through the repeated use of features of different scales to
improve the model’s ability to detect multi-scale targets.

3. Methods

This paper proposes a multi-scale object detector based on coordinate and global
information aggregation for UAV aerial images, named CGMDet. Firstly, we designed the
CGAM, which allows the backbone to focus more on the coordinate information and global
context information during the feature extraction process, to enhance the ability of the
network to extract features. Then, the FFM was proposed to better fuse multi-scale features.
Finally, we modified the bounding box loss to obtain better detection results. Figure 1
shows the overall architecture of CGMDet. Our CGMDet enables the better detection of
targets under occluded and low-light conditions and multi-scale targets.

Figure 1. The overall architecture of CGMDet.

First, a 640× 640 image is input into the backbone to extract features. The image
passes through four CBS modules, which consist of convolution, batch normalization [35],
and SiLU [36] activation function. In the first and third CBS modules, the convolution
has a stride of 1, while in the second and fourth modules, it has a stride of 2. After
obtaining the feature maps of four-fold downsampling, the CGAM extracts the feature.
After that, the features of three scales were extracted by MP and CGAM. The MP module
uses maximum pooling with the stride of 2 and 3 × 3 convolution with the stride of 2 to
realize downsampling. SPPCSPC [18] aims to aggregate features with different receptive
fields to obtain richer semantic contextual information. Then, the different scales of feature
maps are fed into the neck, where our proposed FFM is used to fuse the features of different
scales. Because most targets in UAV images are small, and low-level features are better for
small target detection, we also input feature maps of size 160× 160 into the feature fusion.
Therefore, the feature map sizes that need to be fused in the neck are 160× 160, 80× 80,
40× 40, and 20× 20. ELAN-H [37] refined the fused features. RepConv can decouple the
training and inference process, allowing the model to learn more knowledge during the
training process without affecting the inference speed. Finally, the feature maps of size
80× 80, 40× 40, and 20× 20 are used for object detection. Figure 2 shows the detailed
network structure of our CGMDet.
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Figure 2. The detailed architecture of CGMDet.

3.1. Coordinate and Global Information Aggregation Module

Because of the camera angle of the UAV, there are often many cases where the targets
are occluded. At the same time, the light is dimmer in nighttime scenes. The feature
extraction process in these two scenarios is easily disturbed by background factors, which
is easy to cause missed detections and false detections. To alleviate the interference of
background factors, we designed the CGAM, which can integrate global information,
coordinate information, and local information extracted by convolution, to obtain more
robust features. The structure of CGAM is shown in Figure 3.

Figure 3. Coordinate and Global Information Aggregation Module.
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The CGAM consists of two branches. The first branch introduces the coordinate
attention mechanism, which constantly focuses on the coordinate information when using
convolution for feature extraction. The second branch obtains global information on the
feature map through two pooling operations. By fusing the features extracted from the two
branches, richer contextual features are obtained.

The first branch of CGAM first uses a 1× 1 convolution to reduce the number of
channels in the input feature X ∈ RC×H×W by half, obtaining the first intermediate feature
map M1 ∈ R C

2 ×H×W . As shown in Formula (1):

M1 = Conv1×1(F) (1)

The features map is then extracted using 3× 3 convolution and the coordinate atten-
tion mechanism, obtaining the second and third intermediate output feature maps M2,
M3 ∈ R C

2 ×H×W . As shown in Formulas (2) and (3):

M2 = CA(Conv3×3(CA(Conv3×3(M1)))) (2)

M3 = CA(Conv3×3(CA(Conv3×3(M2)))) (3)

where CA represents the coordinate attention mechanism. The coordinate attention is
shown in Figure 4.

Figure 4. Coordinate Attention.

The coordinate attention mechanism first performs pooling operations on the input
feature F ∈ RC×H×W along the horizontal and vertical directions, obtaining features
f h ∈ RC×H×1 and f w ∈ RC×1×W . As shown in Formulas (4) and (5):

f h
c =

1
W ∑

0≤i≤W
Fc(h, i) (4)

f w
c =

1
H ∑

0≤j≤H
Fc(j, w) (5)
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where Fc and fc represent the c-th channel of the input and output features, respectively.
W and H represent the width and height of the input feature, respectively. Then, f h and
f w are concatenated along the spatial dimension, and the number of channels is reduced
using a 1× 1 convolution. Furthermore, feature Q ∈ R C

r ×1×(W+H) is obtained by passing
it through batch normalization and an activation function, where r is a scaling factor. Batch
normalization is used to prevent gradient explosion or vanishing, making the model more
stable during training, and the activation function introduces nonlinear factors to enhance
the expression ability of the model. The formula is shown as (6):

Q = δ
(

BN
(

Conv1×1

(
[ f h, f w]

)))
(6)

where [·] denotes the channel concatenation operation. BN denotes batch normalization.
δ represents a nonlinear activation function. Then, the feature tensor Q is split along
the spatial dimension to obtain two feature tensors yh ∈ R C

r ×H×1 and yw ∈ R C
r ×1×W .

Increasing the number of channels for yh and yw to the same as the input feature map F by
1× 1 convolution, and then the attention weights gh and gw are obtained by the sigmoid
function. The formulas are shown as (7) and (8):

gh = σ(Conv1×1(yh)) (7)

gw = σ(Conv1×1(yw)) (8)

where σ denotes the sigmoid function. Finally, gh and gw are multiplied by the feature map
F. As shown in Formula (9):

CA = F⊗ gh ⊗ gw (9)

The second branch of the CGAM module first uses global pooling operations to add the
global contextual information of the backbone network. For the input feature X ∈ RC×H×W ,
perform global average pooling and global maximum pooling operations first, then add the
results, and finally allocate weights for each channel through a fully connected layer and a
sigmoid function, making the model focus on the highly responsive channel information.
As shown in Formula (10):

O = σ(FC(GAP(X)⊕ GMP(X))) (10)

where GAP and GMP represent global average pooling and global maximum pooling,
respectively. σ represents the sigmoid function. FC represents a fully connected layer.
Then, multiply the result with the input feature X and use a 1× 1 convolution to obtain the
output M4 ∈ R C

2 ×H×W of the second branch. As shown in Formula (11):

M4 = Conv1×1(X⊗O) (11)

The CGAM module first performs channel concatenation on all intermediate output
features M1, M2, M3, and M4 from the two branches, and then uses a 1× 1 convolution to
obtain the output feature Z ∈ R2C×H×W of CGAM. As shown in Formula (12):

Z = Conv1×1([M1, M2, M3, M4]) (12)

Our CGAM module can extract coordinate information, global information, and
local information simultaneously and fuse them to obtain more robust features, thereby
accurately locating the target, reducing the focus of the model on the background, and
improving the detection ability of the model.
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3.2. Multi-Feature Fusion Pyramid Network

The object scale changes greatly in UAV images, and there are many small objects.
To enhance the ability of the network to detect multi-scale targets, we proposed the FFM,
which can learn the importance of different features in fusion to integrate the features of
different scales better. Moreover, reusing feature maps to enrich the context information
of fused features and improve the expression ability of multi-scale features. In this way,
the model can improve the detection ability of multi-scale targets. We added the feature
map of size 160× 160 to the MF-FPN for fusion to alleviate the difficulty in detecting small
objects. The FFM is shown in Figure 5.

There are two main ways to fuse features. If only two feature maps need to be fused,
such as the top–down path in the neck, the method shown in Figure 5a is used. This method
assigns two learnable weights to the two feature maps to determine the importance of each
feature map, as shown in Formula (13):

P =
w1F1 + w2F2

w1 + w2 + ∆
(13)

where w1 and w2 are learnable parameters, and ∆ is a small number to avoid numerical
instability. For the case of fusing three feature maps, we use the method shown in Figure 5b.
The calculation method is shown in Formula (14). We first use Formula (13) to fuse the
three feature maps pairwise, where each feature map participates in two fusions, achieving
the effect of reusing features. Then, we obtain three different intermediate feature maps
and finally assign three learnable weights to fuse these three feature maps, obtaining the
output feature map with rich contextual information for the final prediction.

N =
w1P(F1, F2) + w2P(F1, F3) + w3P(F2, F3)

w1 + w2 + w3 + ∆
(14)

Since the fusion features contain feature maps with different scales and channel
numbers, it is necessary to adjust the size and number of channels of the feature maps to be
consistent before fusion. Our FFM integrates multi-scale features better by automatically
learning the importance of different scale feature maps in the fusion process. Furthermore,
the feature maps of different scales can be used to enrich the context information of fusion
features and improve the representation ability of multi-scale features to enhance the
detector’s perception of targets of different scales.

(a) (b)

Figure 5. The structure of the Feature Fusion Module (FFM). (a) represents the feature fusion method
in the top-down path; (b) represents the feature fusion method in the bottom-up path.
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To preserve more feature information, the convolutional channels in the model are
usually large, and larger channels bring more parameters to the model. The number of
parameters of convolution can be calculated by the Formula (15).

Params = Kh × Kw × Cin × Cout (15)

where Kw and Kh represent the size of the convolutional kernel. Cin and Cout represent
the number of input and output channels of the convolution, respectively. Therefore, to
decrease the parameters of the model, we modified the convolutional channel numbers in
the neck of the model. First, the channel numbers of the 3× 3 convolutions in ELAN-H_1,
ELAN-H_2, and ELAN-H_3 to 32. Then, we adjusted the output channel numbers of
the first two 1× 1 convolutions in ELAN-H_4, ELAN-H_5, and ELAN-H_6 to 1/4 of the
input channel numbers. ELAN-H_1, ELAN-H_2, ELAN-H_3, ELAN-H_4, ELAN-H_5,
and ELAN-H_6 have the same structure. The changes in the number of parameters for all
ELAN-H modules in the neck are shown in Table 1.

Table 1. Change of parameters in the neck part of the model.

Module Baseline Ours

ELAN-H_1 1.26 M 0.1 M
ELAN-H_2 0.32 M 0.07 M
ELAN-H_3 \ 0.07 M
ELAN-H_4 \ 0.21 M
ELAN-H_5 1.26 M 0.85 M
ELAN-H_6 5.05 M 3.4 M

After the above improvements, we named the improved feature pyramid structure
MF-FPN. The pseudo-code of the MF-FPN is shown in Algorithm 1. We first fuse two
adjacent features in X = {x1, x2, x3, x4} from top to bottom to obtain four intermediate
feature maps M = {m1, m2, m3, m4}. Then, the features from X and M are fused using
the bottom–up path and skip connections to obtain three final features of different scales,
denoted as Y = {y1, y2, y3}, which will be used for prediction.

Algorithm 1 The feature fusion method of MF-FPN.

Input: X = {x1, x2, x3, x4}, X refers to four different scale feature maps of the backbone
network output. The scale of x1 is the smallest and x4 is the largest.
Step 1: M = {}, M refers to the intermediate feature map generated by the top–down
branch of MF-FPN. Conv() represents a series of convolution operations required,
Reshape() represents the upsampling and downsampling operations required, and
FFM() represents our feature fusion operation.

for i = 1 to 4 do
if i = 1 then

mi = Conv(xi)
else

mi = Conv(FFM(xi, Reshape(xi−1)))
end if
M.append(mi)

end for
Step 2: Y = {}, Y refers to the feature map generated by the bottom–up branch of
MF-FPN for use in prediction.

for i = 1 to 3 do
yi = Conv(FFM(xi, Mi, Reshape(Mi+1)))
Y.append(yi)

end for
Output: Return Y.
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3.3. Loss Function

The CIOU [38] loss is commonly used as the bounding box regression loss in existing
models. The definition of CIOU is as follows:

LCIOU = 1− IOU +
ρ2(b, bgt)

c2 + αv (16)

IOU =
|B ∩ Bgt|
|B ∪ Bgt| (17)

where ρ represents the Euclidean distance. b and bgt denote the center points of the
predicted and ground truth box, respectively. c represents the diagonal length of the
minimum bounding rectangle of the ground truth box and predicted box. v and α are
defined as follows:

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(18)

α =
v

(1− IOU) + v
(19)

where hgt and wgt are the height and width of the ground truth box. h and w are the height
and width of the predicted box.

However, accurately regressing the height and width of the bounding box cannot only
be achieved through the aspect ratio. Because when w = kwgt and h = khgt(k ∈ R+), v = 0.
The EIOU loss [39] not only retains the advantages of the CIOU but also minimizes the
differences between the height and width of the predicted and ground truth boxes, resulting
in better localization performance. The definition of EIOU is shown in Formula (20).

LEIOU = 1− IOU +
ρ2(b, bgt)

c2 +
ρ2(h, hgt)

hc +
ρ2(w, wgt)

wc (20)

where hc and wc are the height and width of the minimum bounding box surrounding
the ground truth and predicted box. EIOU can directly regress the height and width of
the prediction box. Furthermore, to make the model converge faster, we use the focal
EIOU loss [39], which combines the focal loss with the EIOU loss, as the bounding box
regression loss for CGMDet. It allows high-quality anchors to contribute more gradients to
the training process, thereby improving the convergence speed of the model. Its definition
is as follows:

LFocal−EIOU = IOUλ × LEIOU (21)

where λ is an adjustable parameter, which we set to 0.5. Additionally, the confidence and
classification losses of the model are calculated using binary cross entropy with Logits Loss
(BCEWithLogitsLoss) [40]. The definition is as follows:

LBCE = −
N

∑
n=1

ŷi log (σ(y)) + (1− ŷi) log (σ(1− y)) (22)

where N is the number of input vectors. ŷi and y are the predicted and truth vectors,
respectively. σ is the sigmoid function. The overall loss of CGMDet can be obtained by
combining the classification loss, confidence loss, and bounding box regression loss. The
definition is as follows:

Loss = λ1Lbox + λ2Lobj + λ3Lcls

= λ1LFocal−EIOU(Pbox, Tbox) + λ2LBCE(Pobj, Tobj) + λ3LBCE(Pcls, Tcls)
(23)



Remote Sens. 2023, 15, 3468 11 of 24

where Lbox, Lobj, and Lcls represent the bounding box regression loss, confidence loss,
and classification loss, respectively. Pbox and Tbox denote the predicted and ground truth
box, respectively. Pobj and Tobj denote the predicted and truth confidence, respectively.
Furthermore, Pcls and Tcls represent the predicted and truth class probability, respectively.
The hyperparameters λ1, λ2, and λ3 are set to 0.05, 0.7, and 0.3 by default.

4. Experiments

To verify the effectiveness of our detector, we conducted experiments on two publicly
available UAV image datasets and compared it with other detectors.

4.1. Datasets

The VisDrone benchmark [41] contains 10,209 static images, among which 6471 images
are used for training, 3190 for testing, and 548 for validation. The resolution of the images
is approximately 2000 × 1500 pixels, collected by various drone platforms in different
scenarios, as well as under different weather and lighting conditions. Figure 6 shows some
images from this dataset.

Figure 6. Some examples in VisDrone.

The UAVDT benchmark [42] consists of 40,735 images, among which 24,206 images
are used for training and 16,529 for validation. This dataset contains images with different
weathers, flight heights, shooting angles, and occlusion scenes. The images in the dataset
have a resolution of approximately 1080× 540 pixels. The dataset includes three predefined
classes: car, truck, and bus. Figure 7 shows some images from this dataset.

4.2. Implementation and Evaluation Criteria
4.2.1. Implementation

This paper validated the proposed object detector on the Ubuntu 18.04.6 LTS system,
trained and tested on NVIDIA GeForce RTX 3090 (24 G) as the graphics processing unit,
with an Intel(R) Xeon(R) Silver 4114 CPU @2.20 GHz and Python version 3.6. The CUDA
version used was 11.7 and the PyTorch version used was 1.10.2.

During model training, the input image size was set to 640 × 640, and the Stochastic
Gradient Descent (SGD) optimizer with momentum was used. The initial learning rate was
set to 0.01, the momentum parameter was set to 0.937, the weight decay coefficient was set
to 0.0005, and the batch size was set to 8. The total number of training iterations for the
VisDrone dataset was 300, and for the UAVDT dataset was 200.
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Figure 7. Some examples in UAVDT.

4.2.2. Evaluation Criteria

Precision P, recall R, average precision AP, and mean average precision mAP are used
as metrics to evaluate the performance of our detector. P represents how many predicted
positive samples are correct. R represents how many positive samples are predicted. The
definitions of P and R are as follows:

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

where TP represents how many samples were correctly predicted to be positive. FP
represents how many samples were incorrectly predicted to be positive. FN represents
how many samples were incorrectly predicted to be negative. P and R are usually trade-
offs between each other. Therefore, AP can better measure the detection capability of the
network. The definition of AP is shown in Formula (26):

AP =
∫ 1

0
P(R)dR (26)

where P(R) represents the precision value when the recall value on the P-R curve is R. mAP
is the average of all class AP values, which can represent the average detection performance
of the detector on the dataset. The definition is shown in Formula (27):

mAP =
1
K

K

∑
i=1

APi (27)

where APi denotes the AP value of the i-th category. K denotes the number of target categories.
To better describe the ability of our detector to detect multi-scale objects, we also used

COCO evaluation metrics [43], such as APS, APM, and APL. APS represents the AP value
of small objects with an area less than 32× 32. APM represents the AP value of medium
objects with an area between 32× 32 and 96× 96. APL represents the AP value of large
objects with an area greater than 96× 96.

4.3. Experimental Results
4.3.1. Experimental Results on the VisDrone Dataset

We evaluated our model using the VisDrone dataset and compared our model with
other models to validate its effectiveness. As shown in Table 2, our CGMDet achieved the
highest mAP0.5 and mAP. Compared with baseline YOLOv7 [18], mAP0.5 and mAP are
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increased by 1.9% and 1.2%, respectively. At the same time, CGMDet achieved the second-
highest result on mAP0.75 and APM, where it was only 0.1% lower than CDMNet’s APM.
Compared with YOLOv7, our CGMDet increases by 1.3% APS and 1.2% APM. Although
the value of APL is 0.4% lower than that of YOLOv7, on the whole, CGMDet is superior
to YOLOv7 in the detection performance of multi-scale targets, which also indicates that
our proposed FFM can better integrate the features of different scales and improve the
model’s perception ability of features of different scales. Compared to Edge YOLO, our
CGMDet is 5.7% lower on APL, but our CGMDet is better than Edge YOLO on other
metrics. Compared with NWD, CGMDet is 10.6% higher at mAP0.5 but 2.0% lower at
APS. Although our CGMDet is lower than ClusDet and DMNet on APL, it is higher than
them on other metrics. Our CGMDet was only 0.2% higher than CEASC on mAP0.5, but
significantly higher than CEASC on mAP0.75 and mAP. At the same time, compared with
CDMNet, CGMDet has slight disadvantages in mAP0.75, APS, and APM, but has obvious
advantages in mAP0.5 and APL. Compared to RetinaNet, Cascade-RCNN, Faster-RCNN,
YOLOv3, YOLOX, YOLOv5l, HawkNet, and QueryDet, our CGMDet outperformed them
on all metrics.

Table 2. Comparison with state-of-the-art detectors on the VisDrone dataset.

Method mAP0.5 mAP0.75 mAP APS APM APL

RetinaNet [12] 35.9 18.5 19.4 14.1 29.5 33.7
Cascade R-CNN [44] 39.9 23.4 23.2 16.5 36.8 39.4

Faster R-CNN [9] 40.0 20.6 21.5 15.4 34.6 37.1
YOLOv3 [15] 31.4 15.3 16.4 8.3 26.7 36.9
YOLOX [45] 45.0 26.6 26.7 17.4 37.9 45.3

YOLOv5l [17] 36.2 20.1 20.5 12.4 29.9 36.4
HawkNet [46] 44.3 25.8 25.6 19.9 36.0 39.1
QueryDet [47] 48.1 28.8 28.3 \ \ \

Edge YOLO [21] 44.8 26.2 26.4 16.3 38.7 53.1
NWD [48] 40.3 \ \ 22.2 \ \

ClusDet [23] 50.6 24.7 26.7 17.6 38.9 51.4
DMNet [24] 47.6 28.9 28.2 19.9 39.6 55.8
CEASC [49] 50.7 28.4 28.7 \ \ \

CDMNet [50] 49.5 29.8 29.2 20.8 40.7 41.6
YOLOv7 [18] 49.0 27.8 28.1 18.9 39.4 47.8

CGMDet(Ours) 50.9 29.4 29.3 20.2 40.6 47.4

We also listed the mAP0.5 for each category to describe in more detail which categories
our model has improved on. As shown in Table 3, our model has a higher mAP0.5 than
other models for each category. In addition, except for the tricycle category, which has the
same result as YOLOv7, all other categories have greatly improved, especially the bus and
bicycle categories, which increased by 3.3% and 3.8%, respectively.

Table 3. Detection results for each category on the VisDrone dataset.

Method Pedestrian People Bicycle Car Van Truck Tricycle Awing-
Tricycle Bus Motor mAP0.5

YOLOv3 [15] 12.8 7.8 4.0 43.0 23.5 16.5 9.5 5.1 29.0 12.5 31.4
YOLOv5l [17] 44.4 36.8 15.6 73.9 39.2 36.2 22.6 11.9 50.5 42.8 37.4
YOLOv7 [18] 57.6 48.7 21.6 85.4 51.9 45.8 37.9 18.3 63.0 60.0 49.0

CGMDet (ours) 59.7 50.7 25.4 86.2 53.4 47.4 37.9 20.2 66.3 61.6 50.9

To make it more deployable on mobile devices, we also designed a tiny version of
the model and conducted experiments. The inference time was obtained by calculating
the average prediction time of all images in the test set. The results in Table 4 show that
our CGMDet-tiny achieved the best results. Compared to YOLOv7-tiny, our CGMDet-tiny
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achieved a 4% improvement in mAP0.5, 3.6% in mAP0.75, and 3.1% in mAP. Meanwhile,
APS, APM, and APL increased by 2.8%, 4.1%, and 1%, respectively. Moreover, our model
has only increased by 1.4 M parameters. Although our CGMDet-tiny is slower than other
models in terms of inference time, it can still detect in real time. Moreover, judging from the
results of detection performance, it is worth trading inference time for detection accuracy.

Table 4. Comparison of detection results of tiny version on VisDrone dataset.

Method mAP0.5 mAP0.75 mAP APS APM APL
Params

(M)
Inference
Time (ms)

YOLOX-tiny [45] 35.7 19.2 19.7 12.2 28.3 31.7 5.0 \
YOLOv5s [17] 28.7 14.0 15.1 9.2 22.2 31.8 7.0 10.8

YOLO-UAVlite [51] 36.6 19.7 20.6 12.9 29.3 33.4 1.4 \
YOLOv7-tiny [18] 35.8 17.3 18.6 11.4 27.4 36.6 6.0 9.4

CGMDet-tiny (ours) 39.8 20.9 21.7 14.2 31.5 37.6 7.4 21.2

To better illustrate the advantages of our model, we provide the detection results
of several images in different scenarios. As shown in Figure 8(a1–a4) are the results of
YOLOv7, and Figure 8(b1–b4) are the detection results of our CGMDet. From the red
dashed box in (a1,b1) of Figure 8, YOLOv7 recognized that text on the ground as a car,
while our model can recognize it as the background. From Figure 8(a2,b2), our model
can also distinguish between two objects with very similar features that are close together.
Due to the indistinct features of small targets, it is difficult for the model to learn, and it is
easy to recognize similar backgrounds as targets. However, our improved model is better
able to detect small targets and can effectively distinguish the background, as shown in
Figure 8(a3,b3). In addition, we also tested the detection performance in nighttime scenes,
as shown in the red dashed box in Figure 8(a4,b4). YOLOv7 failed to detect it, while our
model accurately marked it out.

As shown in Table 5, in order to verify the effectiveness of the proposed CGAM
module, we compared it with other similar modules. Compared to ELAN, our CGAM
improved the mAP0.5 by 0.7% and mAP by 0.5%. Although the mAP0.75 and mAP of
CGAM have a slight disadvantage compared with the CSPRepResStage, the number of
parameters brought to the model by CGAM is much smaller than that of the CSRepResStage.
The results show that our CGAM can effectively enhance the model’s feature extraction
ability without too many parameters.

We also compared our MF-FPN with other multi-scale fusion methods. We only
incorporate the last three scale features generated by the YOLOv7 backbone. As shown in
Table 6, our MF-FPN is similar to PAFPN on all metrics, but MF-FPN has fewer parameters
and computations than PAFPN. Although the number of parameters and the calculation
amount are the lowest among the three, the BiFPN also has a gap with the other two
in performance. The results show that our MF-FPN can effectively integrate multi-scale
features and enhance the model’s perception for multi-scale targets.

Table 5. Comparison between CGAM and similar methods.

Method mAP0.5 mAP0.75 mAP Param (M)

YOLOv7 + ELAN [37] 49.0 27.8 28.1 36.5
YOLOv7 + CSPRepResStage [52] 49.7 28.2 28.7 41.4

YOLOv7 + C2f [53] 48.0 26.8 27.5 36.7
YOLOv7 + CGAM (ours) 49.7 28.0 28.6 38.0



Remote Sens. 2023, 15, 3468 15 of 24

Table 6. Comparison of different multi-scale fusion methods.

Method mAP0.5 mAP0.75 mAP Param
(M) GFLOPs

YOLOv7 + PAFPN 49.0 27.8 28.1 36.53 103.3
YOLOv7 + BiFPN 48.6 27.2 27.9 35.97 102.5

YOLOv7 + MF-FPN (ours) 49.0 27.6 28.2 36.50 102.9

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 8. The detection results of the VisDrone dataset under different scenes. (a1–a4) are the
detection results of YOLOv7; (b1–b4) are the results of the proposed model.

As shown in Figure 9, we present the visualized results of three different multi-scale
fusion methods. As shown in Figure 9(b1), there are many false detections in the red dotted
box, while the PAFPN and our MF-FPN reduce the number of false check targets. In the
green dotted box, the MF-FPN accurately boxes the target, while the BiFPN and PAFPN
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do not fully box the target. As shown in the red and green dotted boxes in Figure 9(b2),
BiFPN missed one of the two adjacent targets, while neither PAFPN nor MF-FPN missed it,
but MF-FPN’s bounding box in the green dotted box was less accurate than PAFPN’s. As
shown in the green dotted boxes in Figure 9(a3,b3), although PAFPN and BiFPN detected
the truck, they generated a redundant detection box, and the detection box’s scope is not
accurate. However, the MF-FPN does not generate redundant detection boxes, and the
detection box can accurately enclose the target. It can also be seen from Figure 9 that our
MF-FPN can also better detect targets of different scales.

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

Figure 9. Visual results of different fusion methods. (a1–a3) are the visualization results of PAFPN;
(b1–b3) are the visual results of BiFPN; and (c1–c3) are visualization results for MF-FPN.

4.3.2. Experimental Results on the UAVDT Dataset

We also evaluated our model using the UAVDT dataset and compared our model with
others. As shown in Table 7, compared with YOLOv7, our model has increased mAP0.5 by
3.0%, mAP0.75 by 3.2%, and mAP by 2.3%. The detection performance of YOLOv7 on the
UAVDT dataset is worse than that of YOLOv5l. Compared with YOLOv5l, the mAP0.5 is
1.2% lower, the mAP0.75 is 1.3% lower, and the mAP is 1.1% lower. However, our model
outperforms YOLOv5l in terms of mAP0.5, mAP0.75, and mAP. We also listed the mAP0.5
results for each category in the table, which showed that our model improved by 2.9% over
YOLOv7 in the car category, and the results for the truck and bus categories both improved
by 3.4%. In addition, our model outperforms YOLOv5l by 3.3% in the truck category and is
also 0.6% and 2.2% higher in the car and bus categories, respectively. At the same time, our
model’s performance is also superior to YOLOv3 and YOLOX.
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In Table 7, we also included the results of the tiny version for comparison. Our
CGMDet-tiny improved the results for the car, truck, and bus categories by 2.3%, 1.0%,
and 0.9%, respectively, compared to YOLOv7-tiny. It also increased the mAP0.5 by 1.4%
and improved the mAP0.75 and mAP by 2.2% and 1.8%, respectively. In addition, our
CGMDet-tiny outperforms YOLOX-tiny in all metrics. However, compared to YOLOv5s,
our CGMDet-tiny only outperforms by 0.3% in terms of mAP.

To illustrate the superiority of our CGMDet, we present detection results for several
images in different scenarios. As shown in Figure 10(a1–a3) are the results of YOLOv7,
and Figure 10(b1–b3) are the results of our proposed model. From Figure 10(a1,b1), our
model performs significantly better than YOLOv7 in terms of detecting small targets. From
Figure 10(a2,b2), even under low light conditions at night, our model has a significant
improvement over the baseline. In addition, as shown in Figure 10(a3,b3), YOLOv7 detected
the left tree as a car, and the bus as a truck, and did not detect the objects that were truncated
at the bottom of the image or slightly occluded on the right side of the image. In contrast,
our model correctly recognized the tree as the background, accurately identified the object
categories, and accurately detected the objects at the bottom and right of the image.

(a1) (b1)

(a2) (b2)

(a3) (b3)

Figure 10. Detection results of different scenes in the UAVDT dataset. (a1–a3) are the detection results
of YOLOv7; and (b1–b3) are the detection results of our CGMDet.
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Table 7. Comparison with state-of-the-art detectors on the UAVDT dataset.

Method Car Truck Bus mAP0.5 mAP0.75 mAP

YOLOv3 [15] 30.8 3.9 26.4 36.3 20.6 20.4
YOLOX [45] 39.4 5.7 25.3 37.9 26.1 23.5

YOLOX-tiny [45] 40.5 0.5 22.0 36.1 22.7 21.0
YOLOv5l [17] 80.7 12.7 45.2 46.2 30.7 27.7
YOLOv5s [17] 78.1 13.3 45.6 45.0 28.6 26.8
YOLOv7 [18] 78.4 12.6 44.0 45.0 29.4 26.8

YOLOv7-tiny [18] 75.5 6.9 46.7 43.0 24.3 25.0
CGMDet (ours) 81.3 16.0 47.4 48.0 32.6 29.1

CGMDet-tiny (ours) 77.8 7.9 47.6 44.4 26.5 26.8

4.3.3. Ablation Experiments

We used the VisDrone dataset to conduct ablation experiments for our model to verify
the effectiveness of our improved methods. For fairness, all experimental settings have the
same parameters and are conducted in the same environment. As shown in Table 8, we use
YOLOv7 as the baseline and achieved a 49% mAP. Furthermore, the results show that each
improvement can enhance the detection ability of the model to some extent.

• CGAM: To reflect the effectiveness of the CGAM, we replaced the ELAN [37] module
in the YOLOv7 backbone with our CGAM module. Compared with YOLOv7, using
CGAM increased the mAP0.5 by 0.7%. This is because our CGAM can simultaneously
extract local, coordinate, and global information, making the extracted feature map
richer in contextual information, and thereby improving the ability of the backbone
network to extract features;

• MF-FPN: To demonstrate the effectiveness of MF-FPN, we replaced the neck part
of YOLOv7 with the proposed MF-FPN. Compared with YOLOv7, the improved
model with MF-FPN increased mAP0.5 by 1%, and the parameters of the model also
decreased by 2.2M. This shows that the MF-FPN can fully integrate multi-scale features
with fewer parameters. This also proves that our FFM can fully integrate features of
different scales and obtain multi-scale feature maps with stronger representation ability;

• Focal-EIOU Loss: To reflect the effectiveness of Focal-EIOU Loss, we replaced the
CIOU loss in YOLOv7 with Focal-EIOU Loss. Compared with CIOU Loss, Focal-
EIOU Loss can more accurately regress the bounding box and allow high-quality
anchor boxes to make more contributions during training, thereby improving detection
performance. Compared with YOLOv7, the model’s mAP0.5 increased by 0.5%;

• Proposed Method: When CGAM, MF-FPN, and Focal-EIOU loss were all incorporated
into YOLOv7, our model was obtained. Compared with YOLOv7, the precision
increased by 0.5%, the recall increased by 2.1%, the mAP0.5 increased by 1.9%, and
the parameter size of our model was reduced by 0.7M compared to the baseline. The
results show that our improvement methods are very effective, and each improvement
can enhance the performance of the model;

Table 8. Ablation experiments.

Method CGAM MF-FPN Focal-
EIOU Precision Recall F1-Score mAP0.5 Params

(M) GFLOPs

YOLOv7 58.3 49.2 53.4 49.0 36.5 103.3
B1 ! 55.8 51.2 53.4 49.7 38.0 104.7
B2 ! 61.1 48.2 53.9 50.0 34.3 104.0
B3 ! 59.0 50.3 54.3 49.5 36.5 103.3
B4 ! ! ! 58.8 51.3 54.8 50.9 35.8 105.3

We plotted the change process of mAP0.5 and mAP during training, as shown in
Figure 11. It is evident from the figure that compared with YOLOv7, each of our improve-



Remote Sens. 2023, 15, 3468 19 of 24

ment points significantly improved the model’s performance. The model we proposed by
integrating all the improvement points undergoes an especially significant improvement
compared to YOLOv7.

(a) (b)

Figure 11. Comparison between mAP0.5 and mAP for different improvement points. (a) represents
the result of mAP0.5; (b) represents the result of mAP.

In addition, we also listed the changes in the convolutional parameter sizes of each
ELAN-H module in the neck part of the model. As shown in Table 1, ELAN-H_3 and
ELAN-H_4 are two additional modules that we added to our model.

To better demonstrate the effectiveness of CGMDet, we used Grad-CAM [54] to
visualize the model’s execution results in the form of heatmaps. As shown in Figure 12, the
first row of the image shows that, compared with YOLOv7, our model reduces the focus
on similar objects around small targets and can more accurately detect small targets. The
second row shows that our model alleviates the interference of background factors. The
third row shows the heat map results generated by our model in low-light nighttime scenes,
where we can observe that, even under low-light conditions, our model can accurately
focus on the target while reducing the attention to the background.

We briefly tested the effects of λ1, λ2, and λ3 in Formula (23) on the model’s perfor-
mance. As shown in Table 9, when λ1 = 0.07, λ2 = 0.7, and λ3 = 0.3, mAP0.75 and mAP
obtained the highest result, but mAP0.5 is 0.7% lower than the best result. When λ1 = 0.05,
λ2 = 0.6, and λ3 = 0.3, the mAP is also the highest, but the mAP0.5 and mAP0.75 are not
very good. When λ1 = 0.05, λ2 = 0.7, and λ3 = 0.3, the mAP0.5 is the highest, and the
mAP0.75 and mAP are only 0.2% lower than the highest result. It can be seen from the
results that, when λ1 = 0.05, λ2 = 0.7, and λ3 = 0.3, the mAP0.5, mAP0.75, and mAP can
achieve good balance, so we choose them as the final values.

Table 9. Model’s performance changes of different values of λi.

λ1 λ2 λ3 mAP0.5 mAP0.75 mAP

0.03 0.7 0.3 49.8 27.7 28.5
0.07 0.7 0.3 50.2 29.6 29.5
0.05 0.6 0.3 50.5 29.3 29.5
0.05 0.8 0.3 50.6 29.2 29.4
0.05 0.7 0.2 49.7 28.9 29.0
0.05 0.7 0.4 50.6 28.9 29.3
0.05 0.7 0.3 50.9 29.4 29.3
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Figure 12. Example of heatmap visualization. The first column is the original image, the second
column is the visualization result of YOLOv7, and the third column is the visualization result
of CGMDet.

In addition, we explored the effects of different learning rates on the performance of
our model. As shown in Table 10, the model performance gradually improves when the
learning rate increases from 0.005 to 0.010. When it is higher than 0.010, the model’s overall
performance declines slightly. When the learning rate is 0.011, mAP reaches the highest,
but mAP0.5 and mAP0.75 are lower than when the learning rate is 0.010. Similarly, when
the learning rate is 0.012, mAP0.75 reaches the highest, but mAP0.5 and mAP are relatively
low. Therefore, we chose 0.010 as our final learning rate.

Table 10. Model performance at different learning rates.

Learning Rate mAP0.5 mAP0.75 mAP

0.005 48.5 27.9 28.0
0.008 49.4 28.9 28.9
0.009 50.3 29.0 29.3
0.010 50.9 29.4 29.3
0.011 50.7 29.1 29.5
0.012 50.4 29.6 29.4

4.3.4. Extended Experiments

To verify the generalization ability of our model, we conducted experiments on the
generic dataset VOC2012 [55]. We use VOC2012 train for training and VOC2012 val for
validation. The training set contains 5717 images, and the validation set contains 5823
images. The value of mAP0.5 for each category is shown in Table 11. Our model is superior
to the baseline model in some categories. However, some categories are worse than the
baseline model. For further analysis, we list the detection results of different scales on the
VOC2012 dataset in Table 12. Our model improves by 1.8% on APS and 0.3% on APM but
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decreases by 3.3% on APL. This shows that our model is more suitable for detecting small
and medium targets.

Table 11. Experimental results of different categories on the VOC2012 validation set.

Method Horse Person Bottle Dog TV Car Aeroplane Bicycle Boat Chair Table

Baseline 81.1 83.2 55.3 80.5 65.6 78.1 80.4 79.6 60.4 56.9 61.5
Ours 80.1 83.8 56.9 81.7 68.0 77.5 79.2 77.0 60.5 57.3 62.9

Plant Train Cat Sofa Bird Sheep Mbike Bus Cow Head Foot Hand

49.7 84.6 86.9 66.8 69.9 74.4 82.6 82.1 69.0 13.5 8.9 10.8
50.8 82.5 86.0 64.9 68.6 74.5 83.0 82.1 64.8 17.7 15.7 12.2

Table 12. Experimental results of different scales on the VOC2012 validation set.

Method APS APM APL

Baseline 14.2 32.0 55.9
Ours 16.0 32.3 52.6

From the results of the extended experiment, our model’s performance on the VOC2012
dataset is not very good, which indicates that our model is more suitable for UAV images.
However, it also shows that the generalization ability of our model needs to be stronger. The
result of our analysis is that after adding the P2 layer to the model for feature fusion, the fea-
ture proportion of small and medium targets increases, resulting in the model paying more
attention to small and medium targets while ignoring large targets. Therefore, our model is
more suitable for detecting UAV images with more small- and medium-sized targets.

5. Discussion

In Table 6, although the PAFPN and MF-FPN are similar in performance, our CGMDet
needs to integrate more features. If we use the PAFPN, the model’s number of parameters
will increase. Therefore, the MF-FPN is more suitable for use in our CGMDet to avoid
increasing the number of parameters in the model.

In Table 8, MF-FPN, although higher than Focal-EIOU on mAP0.5, is 0.4% lower on
the F1-Score. This is because the precision of MF-FPN is increased by 2.8%, but the recall
is reduced by 1.0%. However, Focal EIOU has improved both precision and recall. This
shows that Focal-EIOU is better at balancing precision and recall. It can also be seen from
the index F1-Score that the Focal EIOU has a better balance between precision and recall
than MF-FPN, which helps improve the network’s quality.

In addition to the above successes, our CGMDet has certain limitations. The perfor-
mance of CGMDet on natural images is not very good, which indicates that the model’s
generalization ability needs to be stronger. In addition, in the UAV image, the distant target
is usually densely arranged, and the target may be blocking another target. In this scenario,
it is difficult for the model to determine the area and number of targets, resulting in the
model generating many redundant detection boxes or detection boxes with inaccurate
scopes. Therefore, the detection performance of CGMDet in this scenario needs to be
improved. In addition, after the above improvements, the model complexity of CGMDet
has increased, affecting the model’s inference time. Therefore, the model’s complexity
needs to be further improved.

6. Conclusions

This study proposed a multi-scale object detector based on coordinate and global
information aggregation for UAV aerial images. This detector can focus more on the
features of the objects and better detect multi-scale objects. We designed the CGAM
that integrates local, coordinate, and global information to obtain more robust features,
effectively alleviating the interference of background factors such as occlusion and weak
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light in the feature extraction process. The proposed FFM can integrate the features
of different scales more fully by automatically learning the importance of features of
different scales in fusion. Furthermore, by reusing features, the expression ability of
multi-scale features is enhanced, and the detector’s perception ability of different scale
targets is improved. Finally, by modifying the loss function, the localization effect of the
model on the target is improved. The experiments show that, compared with the baseline
detector, the CGMDet improves mAP0.5 by 1.9% on the VisDrone dataset and 3.0% on the
UAVDT dataset. Moreover, it can better detect multi-scale targets. In future work, we will
focus on detecting dense objects and developing lightweight models while improving the
generalization ability of models.
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UAV Unmanned Aerial Vehicle
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SIFT Scale Invariant Feature Transform
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FCOS Fully Convolutional One-Stage Object Detection
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ECA Efficient Channel Attention
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