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Abstract: The Caribbean is one of the world’s most vulnerable regions to the projected impacts of
climate change, and changes in coral reef ecosystems have been studied over the last two decades.
Lately, new technology-based methods using satellites and unmanned vehicles, among others have
emerged as tools to aid the governance of these ecosystems by providing managers with high-quality
data for decision-making processes. This paper addresses the development of a Google Earth Engine
(GEE)-based application for use in the management processes of shallow coral reef ecosystems,
using images acquired with Remotely Piloted Aircraft Systems (RPAS) known as drones, at the
Old Providence McBean Lagoon National Natural Park; a Marine Protected Area (MPA) located
northwest of Old Providence Island, Colombia. Image acquisition and processing, known as drone
imagery, is first described for flights performed using an RTK multispectral drone at five different
monitoring stations within the MPA. Then, the use of the GEE app is described and illustrated. The
user executes four simple steps starting with the selection of the orthomosaics uploaded to GEE
and obtaining the reef habitat classification for four categories: coral, macroalgae, sand, and rubble,
at any of the five monitoring stations. Results show that these classes can be effectively mapped
using different machine-learning (ML) algorithms available inside GEE, helping the manager obtain
high-quality information about the reef. This remote-sensing application represents an easy-to-use
tool for managers that can be integrated into modern ecosystem monitoring protocols, supporting
effective reef governance within a digitized society with more demanding stakeholders.

Keywords: remote sensing; coral reefs; google earth engine; marine ecosystem management; drone
imagery; machine learning; environmental monitoring

1. Introduction

As the human population has increased [1], natural resources have become crucial
for the sustainable development of humanity. The ocean plays a key role in blue growth
and blue economy strategies since marine ecosystems provide assets, goods, and ser-
vices [2,3] that can be capitalized on sustainably, as guided by the United Nations 2030
Agenda [4]. However, the view of the ocean as a new frontier for economic development
poses challenges and potential harm for marine ecosystems that must be addressed [5].
Human activities have been increasing the rate of anthropogenic climate change [6] and
have induced accelerated ocean biodiversity loss and associated impacts on the planet’s
health [7]. The Caribbean is one of the world’s most vulnerable regions to the projected
impacts of climate change [8], and changes in coral reef ecosystems have been consistently
demonstrated across the last two decades [9,10]. Within this region, insular areas such as
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the Archipelago of San Andrés, Providencia, and Santa Catalina will be more exposed to
increasingly frequent extreme weather events as the ones seen in recent years (e.g., category
5 Hurricane Iota in 2020 and most recently category 1 Hurricane Julia in 2022). The pro-
jected future impacts of climate change are expected to further accelerate the deterioration
of Caribbean coral reefs [11] and exacerbate the effects of local stressors (e.g., overfishing,
and diving pressure, among others). Along with these factors, the new lethal disease
“Stony coral tissue loss disease” (SCTLD), first reported in Florida in 2014, is threatening
the existence of at least 30 coral species, especially brain, pillar, star, and starlet corals in the
Caribbean [12,13]. This was recorded for the first time at the Archipelago of San Andrés,
Providencia, and Santa Catalina in April 2022.

Climate change effects on coral reef ecosystems pose challenges for management, since
those ecosystems are complex and can exhibit changes at different scales, requiring the
inclusion of several stakeholders in decision-making processes to identify how society can
sustainably use such marine resources [14–16]. Lately, new technology-based methods
(e.g., satellites, and unmanned vehicles, among others) have emerged as tools to support
the management of these ecosystems, increasing optimism about management results in
large marine areas [17]. Traditional methods (mostly based on human divers) usually
collect data on abundance, community composition, and species richness, using transects
or quadrants that generally follow the reef zonation, which is expensive and labor-intensive.
Such new technologies can make data collection quicker, cheaper, and more extensive,
helping to provide high-quality data to expand our understanding of coral reefs. This
will help address the multi-dimensional interactions between reefs and humans [18], facili-
tating management processes in a digitized society with more demanding stakeholders,
and building appropriate capacities to steer reef governance by improving monitoring
and assessment [19]. The new governance paradigm needs better understanding at large-
time/space scales [20], to create pathways and achieve targets for recovery and climate
adaptation, which require globally coordinated actions [21]. Remote-sensing techniques
play a crucial role in the modernization of management processes since spatial resolution
has increased significatively since the 1960s, and emerging tools such as artificial intelli-
gence show promise for the coral reef remote-sensing specialists due to the emergence of
machine-learning algorithms for mapping and feature detection from drone imagery of
marine environments [22]. Recently, Cowburn et al. [23] demonstrated how ecosystem-
based management (EBM) strategies can benefit from remote-sensing techniques; they
addressed big-data sources, remote techniques to complement fieldwork, collaboration,
and communication using virtual platforms, and toolboxes to be used by a modern coral
reef scientist.

Remote-sensing techniques have been extensively used for coral reef monitoring and man-
agement during the last two decades, taking advantage of improvements in sensor technologies
and processing algorithms, as described by Hedley et al. [24] and Lyons et al. [25], starting from
satellite images and more recently with the use of images acquired using Remotely Piloted Aircraft
Systems (RPAS), known as Unmanned Aerial Vehicles (UAVs) or drones. Casella et al. [26] pro-
posed a novel technique to measure three-dimensional features in a shallow-water coral reef using
a small drone with a consumer-grade camera, and data processing with structure from motion
(SfM) algorithms at the inner lagoon of Tiahura, Moorea, French Polynesia. Lopera-Gil et al. [27]
described the initiative to use consumer-grade drones as potential instruments to increase the
quality of information needed in decision-making processes regarding ocean space utilization
in shallow coral reefs within a Marine Protected Area (MPA) of Providence Island, Colombia.
Bennett et al. [28] developed a semi-automatic workflow to process drone imagery with Google
Earth Engine (GEE) and free open-source software to analyze images at Heron Reef, Australia.
Sierra-Escrigas et al. [29] analyzed remotely sensed aerial images to report the status of some of Isla
Arena’s reef ecological units and to make a spatial analysis of the reef formation. Fallati et al. [30]
employed a consumer-grade drone, coupled with SfM and object-based image (OBI) analysis
to monitor changes in composition and the associated deterioration in shallow-water reef
environments of Maldives. Kennedy et al. [31] developed a classification system, named
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Reef Cover, to produce and deliver globally applicable coral reef mapping products using
data from remote sensors. Nababan et al. [32] used drone imagery and OBI analyses to map
shallow-water benthic habitats in the region of Wangiwangi, Wakatobi District, Indonesia.
Borges et al. [33] compared four different machine-learning methods in the classification of
an intertidal reef using a commercial drone equipped with RGB and multispectral sensors.
Mat-Zaki et al. [34] presented and optimized workflow using Agisoft PhotoScan Pro for
coral reef habitat mapping using drone imagery. Nieuwenhuis et al. [35] incorporated
geomorphometric variables derived from Digital Elevation Models (DEM) and spectral
information to increase the accuracy in habitat classification processes, using drone imagery
from an RTK-ready (Real-Time Kinematic) aerial vehicle. Alevizos and Alexakis [36] devel-
oped a novel approach to describe shallow bathymetry changes using drone multispectral
imagery.

Although much progress has been made in the use of remote-sensing data for coral reef
mapping, taking advantage of such resources and quality of information still requires high
levels of technical expertise and efforts and high-performance computing facilities [37],
limiting the reach of the benefits to researchers and managers. Google Earth Engine
(GEE) [37,38], a cloud-based computing platform for geospatial analysis, has been devel-
oped as a resource to support a variety of high-impact societal issues using data from
remote sensors within several disciplines [39–43]. Several recent works focus on marine
ecosystems. Bennett et al. [28] used GEE to develop a semi-automatic workflow to process
drone imagery from Heron Reef in Australia. Yancho et al. [44] presented the Google Earth
Engine Mangrove Mapping Methodology (GEEMMM), a platform designed to be intuitive,
accessible, and replicable, for a wide audience of non-specialist managers and decision-
makers. Williamson et al. [45] used GEE to develop the Coral Reef Stress Exposure Index
(CRSEI), for remotely monitoring coral reef exposure to environmental stressors. de Lima
et al. [46] developed and validated two models for sea-level rise prediction using GEE. Li
et al. [47] developed an automated approach to perform bathymetry mapping using the
Sentinel-2 surface reflectance dataset in GEE. Callejas et al. [48] presented a direct workflow
based on GEE to monitor water temperature to study its effects on the coral reef’s health at
several MPAs in the Caribbean.

In the case of Colombia, shallow-water coral reefs have been assessed and monitored
since 1998 [49], however, ecosystem management and scientific hypothesis are often based
on large and disparate datasets, which are mostly geographically limited or with low
resolution. As a result, coral extent and distribution at large scale have not been sufficiently
inventoried in most reefs around the country. There is, therefore, a high degree of urgency
to take advantage of modern technology-based tools to map reefs and to improve the
monitoring systems at appropriate scales, not only for the conservation and understanding
of the natural spatial extent, temporal variability, and resilience but also to enhance commu-
nication and participation with reef dependent communities. The resulting improvement
in the scientific background will underpin policy decisions concerning sustainable reef
management within modern governance schemes. The contribution of this work is based
on the development of an accessible Google Earth Engine-based application for shallow
coral reef ecosystems using drone imagery, which can be easily used by managers and
decision-makers. The work was conducted and validated for shallow coral reefs at the Old
Providence McBean Lagoon National Natural Park, a Marine Protected Area (MPA) located
northwest of Old Providence Island, Colombia, which is the only protected area in the
System of National Natural Parks located in the Colombian insular Caribbean region [27].

This paper is organized as follows. Section 2, contains the description of the study site
and the development of the GEE application. Section 3 shows the coral reef classification
based on the results obtained with different machine-learning algorithms. Section 4 contains
the discussion with the benefits and drawbacks of the application to be used by managers,
and finally, some conclusions are presented in Section 5.
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2. Materials and Methods
2.1. Study Site

The Old Providence McBean Lagoon National Natural Park is one of the most pristine
reef ecosystems in the Caribbean and the only protected area in the System of National
Natural Parks within the Colombian insular Caribbean [27]. The island extends 7.2 km
across from N-S among oceanic islands, atolls, and banks of the Archipelago of San Andrés,
Providencia, and Santa Catalina, Figure 1. The barrier reef is a calcareous platform that
stretches over 32 km, the second-largest barrier of the S-E Caribbean [50,51]. A submerged
elongated ridge in a shelf-margin position is situated at more than 25 m depth and perhaps
a drowned shelf-edge barrier reef. The geomorphology of the reef complex was described
by Geister [52] and Geister and Díaz [53]: the lagoon platform is occupied by extensive
semi-closed and gently sloped terraces up to 14 m deep with 2–6 m wide areas that are
occupied by an extensive shallow lagoonal terrace. In front of the shallow peripheral reef,
there is a fore-reef terrace (Front Reef) up to several meters wide, which slopes gently to
the Rock Terrace. A major part of the barrier reef is formed by a wide belt consisting of
numerous patch reefs, most of the pinnacle type, which rises from the seafloor at −6 to −8 m
reaching the low-tide level. Sporadic storms with westerly or north-westerly attaining
speeds over 20 m/s do occur, mostly in the second half of the year [53]. The mean annual air
temperature is 27 ◦C, with a 1 ◦C range between monthly values. Rainfall is irregular and
varies from one year to another. According to Geister and Díaz [53], the surface persistent
northward flow of the Caribbean Current through large gaps and narrow open seaways
across the top of the Nicaraguan Rise controls sedimentation processes in the area.

0 1.25 km2.5
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Figure 1. Study sites within the Old Providence McBean Lagoon National Natural Park

The park monitors the coral formations at permanent stations, using the condition-
trend indicator protocol of coral areas (ICTAC) proposed by Rodríguez-Ramírez et al. [54],
which employs permanent transects to evaluate the variables: alive hard coral cover, leafy
macroalgae cover, and algal carpet, biomass of herbivorous fish, and biomass of carnivorous
fish. The reefs in the park offer a range of critical co-benefits to the coastal communities
of these islands, including protection against storm surges, prevention of coastal erosion,
habitat for commercially important species, and recreational sites.
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2.2. Data Acquisition

Multispectral aerial imagery was collected over five monitoring reef stations (Marcela’s
Place, Three Brothers, White Shoal, Crab Cay, and Maracaibo) at Old Providence McBean
Lagoon National Natural Park using a DJI Phantom 4 RTK multispectral drone [55,56]. The
RTK-GPS measurements provide high spatial accuracy (<10 cm), which is essential when
processing drone-based imagery with a pixel resolution of a few centimeters. Based on
the methodology proposed by Lopera-Gil et al. [27], each flight plan was designed using
Pix4DCapture with existing extent data provided by the Caribbean Center for Oceano-
graphic and Hydrographic Research-CIOH, which is part of the Colombian Maritime
Directorate (DIMAR); WorldView-3 satellite images from previous surveys undertaken at
the same reefs were used also for this matter. Each mission was conducted employing a
detailed flight plan concerning the exact flying orientation, route, number of lines, number
of images, end laps, and side laps, using the DJI GS RTK app. Once the area was delimited,
the AUV’s flights were programmed in a polygon, grid, or double-grid mission pattern as
in [27]; we planned double-grid missions to obtain a 200% overlap. Flights were performed
along parallel tracks at 50–60 m altitude above sea level, with the camera oriented at the
nadir. The flight time was around 18 min (saving 15% of battery for landing), and we were
able to cover approximately an area of 320 m × 320 m in grid mode, and 210 m × 210 m in
double-grid mode. All flights took place early in the morning (6:00 a.m.–7:00 a.m.) when
the sun elevation was lower than 30 degrees from the horizon and the sea state was calm.
Furthermore, flights were conducted on days with no or little wind (less than 5 m/s) since
waves influence the capacity to map benthic communities. Drone flights and ground truth
data were collected between the 10th and the 21st of June 2022. Training and validation
were performed later between July and August of the same year, which represents a short
period of time that provided a stable behavior of the reef with no extreme events recorded.

2.3. Data Processing

Images collected from the drone flights were imported to Agisoft Metashape 1.7 [57],
a commercial structure from motion (SfM) software that offers a user-friendly workflow
providing good quality outputs. From the overlapping photographs we performed four
main steps: (i) alignment of the photos using a high-accuracy setting, (ii) the creation of a
sparse point cloud; (iii) generation of a dense point cloud with an aggressive filter setting;
and (iv) creation of high-resolution orthomosaics [30] of the five monitoring stations that
were saved in .tif format.

2.4. Ground Truth Verification points

Sufficient ground control points for image rectification/registration were needed to test
the accuracy of the information collected with the drone. Ground truth samples of benthic
habitat classes were then taken at each of the monitoring stations in the study area. These
were collected at traditional reef monitoring stations along 10 m belt transects running
from the back reef to the shoreline. Four categories were considered: coral, macroalgae,
sand, and rubble. We also collected underwater photos and videos along the transects
and recorded the coordinates on the extremes of each transect to allow the co-location
within the RTK drone orthomosaic. The number of pixels in each ground truth point at
each monitoring station is provided in Table 1.

Table 1. Number of pixels that represent ground truth points at each monitoring station

Class White Shoal Maracaibo Three Brothers Marcela’s Place Crab Cay
(px) (px) (px) (px) (px)

Coral 695 48 160 730 124
Sand 958 115 2122 3226 1312
Macroalgae 287 22 6 408 28
Rubble 79 55 35 7 180
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2.5. Reef Habitat Classification through GEE

An app was developed within GEE using a JavaScript API to (i) automatically classify
the coverage associated with the four established classes in a supervised way, (ii) obtain the
thematic accuracy metrics, and (iii) calculate the areas corresponding to the four selected
classes. The app was developed to make the mapping and monitoring of reef ecosystems
easy for managers in Colombia, and highlight the potential for their development anywhere
in the world, without requiring a dedicated in-house geospatial expert. Users do need basic
computer skills and an understanding of the key steps involved in mapping reefs, but they
are not expected to have advanced skills in remote sensing, geospatial analysis, and/or
coding. Development phases included the selection of multispectral and RGB scenes, the
selection of clipping areas within the scenes, and the location and selection of polygons
established as training zones to obtain the images corresponding to the result.

The .tif orthomosaics from each of the five sites were uploaded as an image collection
asset into GEE, see Figure 2. The four categories (coral, macroalgae, sand, and rubble)
were chosen, because these substrates were most easily recognizable in the drone imagery.
It should be noted that the rubble class includes epilithic algae matrix and dead hard
coral. In addition to the ground truth verification points, we also used the drone images to
complement the visual identification of the four classes of substrate types, which according
to Bennett et al. [28] are acceptable to use as reference data for training the classifier and
accuracy assessment. As a result, areas that best represent each class were visually identified
in the drone orthomosaics in GEE.

GOOGLE EARTH
ENGINE SERVERS

GROUND TRUTHING

ORTHOMOSAICS

DRONE RTK MULTISPECTRAL

DRONE 
IMAGERY

PHOTOGRAMMETRY

INPUTS OUTPUT

MAPPING AND
ECOSYSTEM

CLASSIFICATION

RANDOM FOREST

CLASSIFICATION AND 
REGRESSION TREES

SUPPORT VECTOR MACHINES

MINIMUM DISTANCE

MACHINE 
LEARNING

SUPERVISED 
CLASSIFICATION

70 % TRAINING

30 % TESTING

THEMATIC
ACCURACY

TRAINING SAMPLES

GEE 
APP

GEE APPLICATION

PROCESSING

Figure 2. GEE application for mapping and benthic ecosystems classification workflow

The steps to obtain the classified maps from the GEE App control panel are described
as follows, Figure 3:

1. The first section of the panel is to Select images. The user chooses one of the five
monitoring reef stations, and the relevant previously imported orthomosaic is called
to the platform with the asset tool.

2. Next, a Draw polygon button is presented for the selection or definition of the evalu-
ation areas, corresponding to the user’s desired coverage(s). The user can select the
areas by creating a Feature Collection and using the .clip() function to convert an
image into a Geometry.

3. The training sample is created using photos interpreted directly from the API by
drawing polygon geometries for each class. These polygons are joined using the
.merge() function and then used to train the algorithms. We tested the performance
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of several algorithms (Random Forest—RF; Minimum Distance—MD; Classification
and Regression Trees—CART; and Support Vector Machines—SVM) for habitat reef
classification. All the algorithms can be run in the app, but for this work, we chose to
show the results of the RF algorithm as an example. RF has been widely used to map
reefs in different locations with high accuracy [28,58].

4. Finally, in the section on creating image segmentation, the Cover Coral Maps but-
ton runs the whole process of classification and obtaining thematic accuracy metrics
including the Kappa index and the global precision from the confusion matrix ob-
tained with the .ConfusionMatrix() function. The area of each class is calculated by
counting the number of pixels and converting them to hectares.

The app provides the option to compare four different classification algorithms (ran-
dom forest, regression trees, support vector machine, and minimum distance). These
supervised classification methods have been widely used for the classification of reef habi-
tats [25,28,59] and are increasingly popular techniques for analyzing ecological datasets.
For instance, random forest is a decision tree method, where multiple decision trees are
created, and the final prediction is the mode of the prediction from all trees. The algorithm
has been also used in conjunction with GEE to classify reef geomorphology in Australian
reefs [25]. De’Ath and Fabricius [59] used regression trees to analyze survey data from the
Australian Central Great Barrier Reef, comprising abundances of soft corals and physical
and spatial environmental information. The authors highlight the capabilities of the algo-
rithm such as the flexibility to handle a broad range of response types, including numeric
and categorical ratings, the invariance to monotonic transformations of the explanatory
variables, and the ease and robustness of construction, among other capabilities. On their
part, support vector machine algorithms are binary classifiers based on the construction
of optimal hyperplanes in a high-dimensional space between a nearby training sample
and the separation hyperplane [60]. The algorithm estimates the optimum separating
hyperplane that maximizes the margin between two classes. It has been applied to map
cold water corals for its advantages when regularizing the parameters, allowing the user
to control over-fitting, the kernel trick, and the convex optimization problem [61]. It also
can be computationally faster than other classifiers [62]. Finally, the minimum distance is
a frequently used classifier that can be used with minimal modification even though it is
insensitive to the degree of variance in the spectral response of the data [63]. The algorithms
were used in Fiji coral reefs [63] to isolate the controls that the environmental features in
each scene and the sampling design used for the collection of calibration and validation
data, had on the accuracy levels of each map of the resulting study. A key advantage of all
the algorithms used in the current study is the fact that they can achieve moderate to high
overall accuracies with only small amounts of training data [60].

2.6. Accuracy Assessment

To assess the accuracy of the resulting classifications for the five monitoring reef stations,
we used 30% of the validation points to extract pixel classification information at each station
as done by [28]. The confusion matrix was used to compare how the classifier performed using
the validation points with the reference classification, and the overall accuracy was obtained
by dividing the total number of correctly classified pixels by the total number of reference
pixels sampled at each station. The Kappa index was calculated by the correspondence
between the classified image and the reality, according to the accuracy of the classification and
eliminating the random component. Both metrics are commonly used from the GEE platform
in supervised classification studies using machine learning [64]. Accuracy here represents the
possibility that the class, which has been classified on the map, represents that class in the
field [28,65].
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Figure 3. GEE App initial panel and steps to be executed by the user. It can be accessed in [66]. Visit
https://nandoceanos.users.earthengine.app/view/coralclass, (accessed on 15 November 2022).

3. Results
3.1. Drone Imagery

As has been described in Section 2, orthomosaics were obtained for all five stations
using Agisoft for the five monitoring reef stations (Marcela’s Place, Three Brothers, White
Shoal, Crab Cay, and Maracaibo) at Old Providence McBean Lagoon National Natural Park
that were collected using a DJI Phantom 4 RTK multispectral, Figure 4.
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Figure 4. Orthomosaics for the five stations. (a) White Shoal, 702 photos, 59,115 m2 (5.91 ha).
(b) Maracaibo, 609 photos, 34,313 m2 (3.43 ha). (c) Three Brothers, 545 photos, 22,447 m2 (2.24 ha).
(d) Marcela’s Place, 517 photos, 71,576 m2 (7.16 ha). (e) Crab Cay, 930 photos, 71,021 m2 (7.10 ha).

https://nandoceanos.users.earthengine.app/view/coralclass
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3.2. GEE Application Use

When the user opens the browser and goes to the GEE application for mapping and
benthic ecosystems classification [66] the interface shown can be seen in Figure 3. Then, as
described in Section 2, the first step corresponds to the image selection, as seen in Figure 5.
The second step draws the desired polygon, see Figure 6. The third step asks the user for
the training set that will be used for the classification, Figure 7. Finally, when the user
presses the last button, results are produced, as shown in Figure 8, which contains: the
coverage areas for coral, sand, macroalgae, and rubble; the classification accuracy; and the
classification result (class).

Figure 5. GEE App Step 1. Selection of the orthomosaic in the desired station.

Figure 6. GEE App Step 2. Polygon drawing over the orthomosaic.

The developed GEE app successfully generated the classification maps of the five
reef monitoring stations at the Old Providence McBean Lagoon National Natural Park,
using the orthomosaics shown in Figure 4. Figure 9 shows the results obtained for the five
selected stations, using Random Forest as the classifier in the GEE app.
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Figure 7. GEE App Step 3. Training set selection for the desired station.

Global Accuracy: 1.00

-81.34 -81.34 -81.34-81.34-81.34
13.37

13.37

13.36

13.37

13.37

Figure 8. GEE App Step 4. Classification results for the desired station.

To assess accuracy, we generated 20 maps in total, classifying each of the five ortho-
mosaics using the four algorithms described above. A consistently high overall accuracy
was achieved (above 0.8), except for the Minimum Distance algorithm, which achieved
an accuracy of less than 0.6 at Three Brothers. Table 2 shows the results achieving the
minimum requirement for mapping, as stated by Mumby [67] who established that where
habitat maps are used to provide a general inventory of resources as background to a
management plan, a thematic minimum accuracy of 60% is probably as useful as 80%. We
classified the following areas for the Old Providence McBean Lagoon National Natural
Park within the monitoring stations: coral 4.02 ha, sand 11.36 ha, macroalgae 1.45 ha, and
rubble 6.75 ha, see Table 3 and Figure 9.

Table 2 shows the performance results of the accuracy assessment for the different
classification algorithms evaluated for the five reef monitoring stations. The CART algo-
rithm achieved the highest accuracy (1), followed by RF with 0.99. The remaining classifiers
ranged from 0.93 for the SVM and finally, MD ranges between 0.94 and 0.52, respectively.
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As previously mentioned, Figure 9 shows the results obtained for the five selected stations
using the Random Forest classifier.
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Figure 9. Classification results for the five stations using Random Forest. (a) White Shoal. (b) Mara-
caibo. (c) Three Brothers. (d) Marcela’s Place. (e) Crab Cay.

Table 2. Accuracy assessment for the different algorithms provided in the GEE app for the five
monitoring reef stations

Site Index MD RF CART SVM

White Shoal Kappa 0.8138 0.9961 1.0000 0.9394
Precision 0.8752 0.9975 1.0000 0.9394

Maracaibo Kappa 0.9197 1.0000 1.0000 1.0000
Precision 0.9458 1.0000 1.0000 1.0000

Three Brothers Kappa 0.5275 0.9993 1.0000 0.9617
Precision 0.7216 0.9991 1.0000 0.9256

Marcela’s Place Kappa 0.5275 0.9984 1.0000 0.9617
Precision 0.7216 0.9984 1.0000 0.9839

Crab Cay Kappa 0.7351 0.9982 1.0000 0.9664
Precision 0.8996 0.9994 1.0000 0.9664

Table 3. Total class areas coverage estimated by the RF classifier at the five reef monitoring stations

Class White Shoal Maracaibo Three Brothers Marcela’s Place Crab Cay
(ha) (ha) (ha) (ha) (ha)

Coral 1.64 0.28 0.22 0.62 1.26
Sand 2.85 0.45 1.39 4.27 2.40
Macroalgae 0.20 0.17 0.01 0.38 0.69
Rubble 0.59 2.02 0.53 1.68 1.93

From these results, the selected example with RF algorithm (Table 2 and Figure 9)
shows that each of the four focal reef classes can be mapped well. In particular, the Sand
class, where all pixels were well classified, followed by Coral (99.99%) and finally by
Macroalgae (99.99%) and Rubble (99.98%), respectively. Table 4 shows the comparison of
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the four class assignments by the RF classifier (rows) with class assignments of reference
points (columns) at the five monitoring reef stations, also known as confusion matrices.
Values shown are numbers of pixels, with bold numbers representing correctly classified
pixels.

Table 4. Confusion matrices for the five reef monitoring stations. Classes are identified as Coral (C),
Sand (S), Macroalgae (M), and Rubble (R).

White Shoal Maracaibo Three Brothers Marcela’s Place Crab Cay

C S M R C S M R C S M R C S M R C S M R

C 694 1 0 0 124 0 0 0 160 0 0 0 729 0 1 0 124 0 0 0
S 0 958 0 0 0 1312 0 0 0 2102 0 0 0 3226 0 0 0 1312 0 0
M 1 0 286 0 0 0 28 0 0 0 6 0 2 0 406 0 0 0 28 0
R 2 1 0 76 0 0 1 179 0 2 0 33 0 0 0 7 0 0 1 179

4. Discussion

This work has demonstrated GEE to be an easy-to-use tool that can efficiently and
accurately analyze data gathered using commercial drone technology and standard algo-
rithms. This will allow managers to directly integrate the approach into modern coral reef
monitoring protocols. Applications are many, but improvements are always possible. Both
are discussed below, in the context of the case study presented.

Recent reports established that Old Providence McBean Lagoon National Natural Park
has recently experienced loss in reef cover due to the passage of the Iota Hurricane as reported
by Hernández, H. et al. [68]. However, comparisons from before and after such events
are difficult due to the lack of high-resolution information that could help managers track
recoveries or declines. The GEE app has proven to be a robust platform to support this, and
its utility is only likely to grow in line with predicted increases in extreme events such as
hurricanes and tropical storms in the upcoming years for the insular areas in the Caribbean,
such as in Old Providence Island [69]. The resulting GEE app represents a good contribution
in a time where real-time thematic mapping for reef monitoring is increasing [25]. In this
case, it has allowed a baseline to be established for information about reef status that can be
integrated into an active monitoring protocol for Old Providence Island.

Although the app performs well, there are always possibilities for improvements.
Integration of orthomosaic processing into the app would allow managers to upload
simple drone images into the app and run the complete procedure on the same platform.
In addition, as indicated by Yancho et al. [44] the usage of GEE-based tools requires a
relatively stable and reasonably strong internet connection, especially to view images and
products. Therefore, there are limitations for areas such as Old Providence Island, where
internet service is not very stable.

Additionally, we used the accuracy tool, provided in the GEE library, and, in general
terms, it performs very well for four simple classes when the error matrix is analyzed.
Nonetheless, when some of the output maps were reviewed, some of the class distributions
seemed to be less accurate with some classification algorithms than others. This could
be related to the high complexity of the reef environment in the park, the number of
checkpoints of each class within the five monitoring stations, and the spectral similarity
among the classes. In particular, the rubble class includes an epilithic algae matrix that, in
some cases, can be confused with the macroalgae class. Similar difficulties have also been
found in similar works. Similar difficulties have also been found in similar works [32].

Finally, when acquiring images with adequate illumination, guidance could minimize
the difficulty of image segmentation by allowing the model to identify relevant features
and make accurate predictions. On the other hand, from GEE it is possible to make a
direct choice and adjustment of the hyperparameters, which can also determine an efficient
performance of the model. Other uncertainties could be related to the classification accuracy
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due to similar spectral responses between some benthic components of the reef such as
algae vs. corals as addressed by Zapata-Ramírez et al. [70].

5. Conclusions

This paper successfully demonstrated the development of a Google Earth Engine
(GEE)-based application for habitat classification within management processes of shallow
coral reef ecosystems. The GEE-based app uses images acquired with Remotely Piloted
Aircraft Systems (RPAS) known as drones at the Old Providence McBean Lagoon National
Natural Park; a Marine Protected Area (MPA) located northwest of Old Providence Island,
Colombia. The image acquisition/processing process was described for flights performed
using an RTK multispectral drone at five different monitoring stations within the MPA.
The GEE app yields the reef habitat classification in four categories: coral, macroalgae,
sand, and rubble, at each of the five monitoring stations. The app correctly classified
these categories for the reef ecosystem, demonstrating that the tool can help the manager
obtain high-quality information about the reef and improve our understanding of such an
important ecosystem for the Caribbean region.

We have shown the power of GEE as a geospatial analysis platform to process and
analyze geospatial data useful for reef monitoring. However, it requires computer and
programming skills that managers normally do not have. Our app provides an easy way to
automatically classify and straightforwardly analyze reef coverage, without the need to
run complex algorithms since the app already contains all the information needed to run
the analysis. In addition, since it is cloud-based, it is possible to import higher-resolution
images, such as the ones provided here that are not available in the GEE big-data catalog.
Thus, making them available as input variables in the application scripts [37]. Parallel
processing is agile and depends only on the internet speed saving processing time and
increasing the computational power needed to obtain the final thematic cartography [71].

This remote-sensing application represents an easy-to-use tool for managers that can
be integrated into modern ecosystem monitoring protocols, helping to steer reef gover-
nance in the right direction within a digitized society with more demanding stakeholders.
However, future work could address limitations such as the fact that drone imagery must
be previously done with image-processing software and that internet connections on small
islands such as Old Providence Island can be unstable and limit real-time utility. Nonethe-
less, this development can make the use of remote-sensing technology significantly easier
for non-specialist users, supporting access for managers and decision-makers by increasing
their understanding of phenomena and processes with data that benefit from higher spatial
and temporal resolutions. Furthermore, GEE can be used for the fusion of images with
different spatial and temporal resolutions [72], to extend the capabilities of the app we
developed that uses centimeter-resolution drone-acquired imagery to study local scales
in combination with meter-resolution satellite imagery, which would allow incorporating
global and regional scales into decision-making processes of the marine protected area.

Author Contributions: Conceptualization, P.A.Z.-R., C.F., R.E.V. and C.A.Z.; methodology, P.A.Z.-R.,
C.F., R.E.V. and C.A.Z.; software, P.A.Z.-R., H.H.-H., J.G. and C.A.Z.; validation, P.A.Z.-R., H.H.-H.,
M.C. and C.F.; formal analysis, P.A.Z.-R., M.C. and H.H.-H.; investigation, P.A.Z.-R., H.H.-H., C.F.,
M.C., J.G., C.A.Z. and R.E.V.; resources, P.A.Z.-R., C.F., M.C., R.E.V. and C.A.Z.; writing—original
draft preparation, P.A.Z.-R., C.F. and R.E.V.; writing—review and editing, P.A.Z.-R., C.F. and R.E.V.;
supervision, P.A.Z.-R., C.F., R.E.V. and C.A.Z.; project administration, P.A.Z.-R., C.F., R.E.V. and C.A.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Royal Academy of Engineering, the Newton Fund, the
Universidad Pontificia Bolivariana, the University of Newcastle upon Tyne, Parques Nacionales
Naturales de Colombia, and Geomares. Project IAPP18-19_210.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Remote Sens. 2023, 15, 3504 14 of 16

Data Availability Statement: The GEE App can be accessed at https://nandoceanos.users.earthengine.
app/view/coralclass, (accessed on 15 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations. World Population Prospects 2022: Summary of Results; Technical Report DESA/POP/2022/NO.3; United

Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2022. Available online:
https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (accessed on 15 November 2022.).

2. Bethel, B.J.; Buravleva, Y.; Tang, D. Blue Economy and Blue Activities: Opportunities, Challenges, and Recommendations for The
Bahamas. Water 2021, 13, 1399. [CrossRef]

3. Sumaila, U.R.; Walsh, M.; Hoareau, K.; Cox, A.; Teh, L.; Abdallah, P.; Akpalu, W.; Anna, Z.; Benzaken, D.; Crona, B.; et al.
Financing a sustainable ocean economy. Nat. Commun. 2021, 12, 3259 . [CrossRef]

4. United Nations. The Sustainable Development Goals Report 2022; Technical Report; United Nations Publications: New York, NY,
USA, 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 15 November 2022.).

5. Bennett, N.J.; Blythe, J.; White, C.S.; Campero, C. Blue growth and blue justice: Ten risks and solutions for the ocean economy.
Mar. Policy 2021, 125, 104387. [CrossRef]

6. Logan, C.A.; Dunne, J.P.; Ryan, J.S.; Baskett, M.L.; Donner, S.D. Quantifying global potential for coral evolutionary response to
climate change. Nat. Clim. Chang. 2021, 11, 537–542. [CrossRef]

7. Talukder, B.; Ganguli, N.; Matthew, R.; vanLoon, G.W.; Hipel, K.W.; Orbinski, J. Climate change-accelerated ocean biodiversity
loss & associated planetary health impacts. J. Clim. Chang. Health 2022, 6, 100114. [CrossRef]

8. McField, M. Impacts of Climate Change on Coral in the Coastal and Marine Environments of Caribbean Small Island Developing
States (SIDS). Caribb. Mar. Clim. Chang. Rep. Card Sci. Rev. 2017, 52–59.

9. Gardner, T.A.; Cote, I.M.; Gill, J.A.; Grant, A.; Watkinson, A.R. Long-Term Region-Wide Declines in Caribbean Corals. Science
2003, 301, 958–960. [CrossRef]

10. Graham, N.A.J.; Robinson, J.P.W.; Smith, S.E.; Govinden, R.; Gendron, G.; Wilson, S.K. Changing role of coral reef marine reserves
in a warming climate. Nat. Commun. 2020, 11, 2000. [CrossRef]

11. Rhiney, K. Geographies of Caribbean Vulnerability in a Changing Climate: Issues and Trends. Geogr. Compass 2015, 9, 97–114.
[CrossRef]

12. Roth, L.; Kramer, P.; Doyle, E.; O’Sullivan, C. Caribbean SCTLD Dashboard; ArcGIS: Redlands, CA, USA, 2020.
13. Bayraktarov, E.; Banaszak, A.T.; Maya, P.M.; Kleypas, J.; Arias-González, J.E.; Blanco, M.; Calle-Triviño, J.; Charuvi, N.; Cortés-

Useche, C.; Galván, V.; et al. Coral reef restoration efforts in Latin American countries and territories. PLoS ONE 2020,
15, e0228477. [CrossRef]

14. Curtin, R.; Prellezo, R. Understanding marine ecosystem based management: A literature review. Mar. Policy 2010, 34, 821–830.
[CrossRef]

15. Harvey, B.J.; Nash, K.L.; Blanchard, J.L.; Edwards, D.P. Ecosystem-based management of coral reefs under climate change. Ecol.
Evol. 2018, 8, 6354–6368. [CrossRef]

16. Mcleod, E.; Anthony, K.R.; Mumby, P.J.; Maynard, J.; Beeden, R.; Graham, N.A.; Heron, S.F.; Hoegh-Guldberg, O.; Jupiter, S.;
MacGowan, P.; et al. The future of resilience-based management in coral reef ecosystems. J. Environ. Manag. 2019, 233, 291–301.
[CrossRef] [PubMed]

17. Nyman, E. Techno-optimism and ocean governance: New trends in maritime monitoring. Mar. Policy 2019, 99, 30–33. [CrossRef]
18. Obura, D.O.; Aeby, G.; Amornthammarong, N.; Appeltans, W.; Bax, N.; Bishop, J.; Brainard, R.E.; Chan, S.; Fletcher, P.; Gordon,

T.A.C.; et al. Coral Reef Monitoring, Reef Assessment Technologies, and Ecosystem-Based Management. Front. Mar. Sci. 2019, 6,
580. [CrossRef]

19. Turner, R.A.; Forster, J.; Fitzsimmons, C.; Mahon, R. Expanding narratives of governance constraints to improve coral reef
conservation. Conserv. Biol. 2022, 36, e13933. [CrossRef]

20. Morrison, T.H.; Adger, N.; Barnett, J.; Brown, K.; Possingham, H.; Hughes, T. Advancing Coral Reef Governance into the
Anthropocene. One Earth 2020, 2, 64–74. [CrossRef]

21. Eddy, T.D.; Lam, V.W.; Reygondeau, G.; Cisneros-Montemayor, A.M.; Greer, K.; Palomares, M.L.D.; Bruno, J.F.; Ota, Y.; Cheung,
W.W. Global decline in capacity of coral reefs to provide ecosystem services. One Earth 2021, 4, 1278–1285. [CrossRef]

22. Hamylton, S.M.; Zhou, Z.; Wang, L. What Can Artificial Intelligence Offer Coral Reef Managers? Front. Mar. Sci. 2020, 7, 1049.
[CrossRef]

23. Cowburn, B.; Alliji, K.; Bluemel, J.K.; Couce, E.; Lawrance, E.; McManus, E.; van Hoytema, N.; Devlin, M. Ecosystem-based
management of coral reefs from afar—A guide for remote scientists and remote places. Environ. Sci. Policy 2023, 139, 29–38.
[CrossRef]

24. Hedley, J.; Roelfsema, C.; Chollett, I.; Harborne, A.; Heron, S.; Weeks, S.; Skirving, W.; Strong, A.; Eakin, C.; Christensen, T.; et al.
Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote. Sens. 2016, 8, 118. [CrossRef]

https://nandoceanos.users.earthengine.app/view/coralclass
https://nandoceanos.users.earthengine.app/view/coralclass
https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022
http://doi.org/10.3390/w13101399
http://dx.doi.org/10.1038/s41467-021-23168-y
https://unstats.un.org/sdgs/report/2022/
http://dx.doi.org/10.1016/j.marpol.2020.104387
http://dx.doi.org/10.1038/s41558-021-01037-2
http://dx.doi.org/10.1016/j.joclim.2022.100114
http://dx.doi.org/10.1126/science.1086050
http://dx.doi.org/10.1038/s41467-020-15863-z
http://dx.doi.org/10.1111/gec3.12199
http://dx.doi.org/10.1371/journal.pone.0228477
http://dx.doi.org/10.1016/j.marpol.2010.01.003
http://dx.doi.org/10.1002/ece3.4146
http://dx.doi.org/10.1016/j.jenvman.2018.11.034
http://www.ncbi.nlm.nih.gov/pubmed/30583103
http://dx.doi.org/10.1016/j.marpol.2018.10.027
http://dx.doi.org/10.3389/fmars.2019.00580
http://dx.doi.org/10.1111/cobi.13933
http://dx.doi.org/10.1016/j.oneear.2019.12.014
http://dx.doi.org/10.1016/j.oneear.2021.08.016
http://dx.doi.org/10.3389/fmars.2020.603829
http://dx.doi.org/10.1016/j.envsci.2022.09.018
http://dx.doi.org/10.3390/rs8020118


Remote Sens. 2023, 15, 3504 15 of 16

25. Lyons, M.B.; Roelfsema, C.M.; Kennedy, E.V.; Kovacs, E.M.; Borrego-Acevedo, R.; Markey, K.; Roe, M.; Yuwono, D.M.; Harris,
D.L.; Phinn, S.R.; et al. Mapping the world's coral reefs using a global multiscale earth observation framework. Remote. Sens. Ecol.
Conserv. 2020, 6, 557–568. [CrossRef]

26. Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using
consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2016, 36, 269–275. [CrossRef]

27. Lopera-Gil, M.; Vásquez, R.E.; Zuluaga, C.A.; Zapata-Ramírez, P.A. On the Use of Consumer-Grade Remotely Piloted Aircraft
Systems for Monitoring Shallow Coral Reefs in Colombia: Case Old Providence Island. In Proceedings of the ASME 38th
International Conference on Ocean, Offshore and Arctic Engineering OMAE Volume 6: Ocean Space Utilization. American
Society of Mechanical Engineers, Glasgow, Scotland, 9–14 June 2019. [CrossRef]

28. Bennett, M.K.; Younes, N.; Joyce, K. Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth
Engine. Drones 2020, 4, 50. [CrossRef]

29. Sierra-Escrigas, S.L.; Peluffo, D.R.; García-Urueña, R. Shallow coral reef community mapping and update on its ecological units
using aerial images at Isla Arena, Colombian Caribbean. Int. J. Remote. Sens. 2020, 41, 8198–8215. [CrossRef]

30. Fallati, L.; Saponari, L.; Savini, A.; Marchese, F.; Corselli, C.; Galli, P. Multi-Temporal UAV Data and Object-Based Image Analysis
(OBIA) for Estimation of Substrate Changes in a Post-Bleaching Scenario on a Maldivian Reef. Remote. Sens. 2020, 12, 2093.
[CrossRef]

31. Kennedy, E.V.; Roelfsema, C.M.; Lyons, M.B.; Kovacs, E.M.; Borrego-Acevedo, R.; Roe, M.; Phinn, S.R.; Larsen, K.; Murray, N.J.;
Yuwono, D.; et al. Reef Cover, a coral reef classification for global habitat mapping from remote sensing. Sci. Data 2021, 8, 196.
[CrossRef]

32. Nababan, B.; Mastu, L.O.K.; Idris, N.H.; Panjaitan, J.P. Shallow-Water Benthic Habitat Mapping Using Drone with Object Based
Image Analyses. Remote. Sens. 2021, 13, 4452. [CrossRef]

33. Borges, D.; Padua, L.; Azevedo, I.C.; Silva, J.; Sousa, J.J.; Sousa-Pinto, I.; Goncalves, J.A. Classification of an Intertidal Reef by
Machine Learning Techniques Using UAV Based RGB and Multispectral Imagery. In Proceedings of the 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [CrossRef]

34. Mat-Zaki, N.H.; Chong, W.S.; Muslim, A.M.; Reba, M.N.M.; Hossain, M.S. Assessing optimal UAV-data pre-processing workflows
for quality ortho-image generation to support coral reef mapping. Geocarto Int. 2022, 37, 1–25. [CrossRef]

35. Nieuwenhuis, B.O.; Marchese, F.; Casartelli, M.; Sabino, A.; van der Meij, S.E.T.; Benzoni, F. Integrating a UAV-Derived DEM in
Object-Based Image Analysis Increases Habitat Classification Accuracy on Coral Reefs. Remote. Sens. 2022, 14, 5017. [CrossRef]

36. Alevizos, E.; Alexakis, D.D. Monitoring Short-Term Morphobathymetric Change of Nearshore Seafloor Using Drone-Based
Multispectral Imagery. Remote. Sens. 2022, 14, 6035. [CrossRef]

37. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote. Sens. Environ. 2017, 202, 18–27. [CrossRef]

38. Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote. Sens. 2018,
10, 1509. [CrossRef]

39. Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote. Sens. 2019, 11, 591. [CrossRef]
40. Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.;

Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications:
A Comprehensive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 5326–5350. [CrossRef]

41. Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data
applications: A meta-analysis and systematic review. ISPRS J. Photogramm. Remote. Sens. 2020, 164, 152–170. [CrossRef]

42. Zhao, Q.; Yu, L.; Li, X.; Peng, D.; Zhang, Y.; Gong, P. Progress and Trends in the Application of Google Earth and Google Earth
Engine. Remote. Sens. 2021, 13, 3778. [CrossRef]

43. Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Chen, H.; Lippitt, C.D. Google Earth Engine and Artificial Intelligence (AI): A
Comprehensive Review. Remote. Sens. 2022, 14, 3253. [CrossRef]

44. Yancho, J.; Jones, T.; Gandhi, S.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology
(GEEMMM). Remote. Sens. 2020, 12, 3758. [CrossRef]

45. Williamson, M.J.; Tebbs, E.J.; Thompson, H.J.; Dawson, T.P.; Head, C.E.I.; Jacoby, D.M.P. Application of Earth Observation Data
and Google Earth Engine for Monitoring Coral Reef Exposure to Environmental Stressors. Preprints 2021, 2021060473. [CrossRef]

46. de Lima, L.T.; Fernández-Fernández, S.; Gonçalves, J.F.; Filho, L.M.; Bernardes, C. Development of Tools for Coastal Management
in Google Earth Engine: Uncertainty Bathtub Model and Bruun Rule. Remote. Sens. 2021, 13, 1424. [CrossRef]

47. Li, J.; Knapp, D.E.; Lyons, M.; Roelfsema, C.; Phinn, S.; Schill, S.R.; Asner, G.P. Automated Global Shallow Water Bathymetry
Mapping Using Google Earth Engine. Remote. Sens. 2021, 13, 1469. [CrossRef]

48. Callejas, I.A.; Osborn, K.; Lee, C.; Mishra, D.R.; Gomez, N.A.; Carrias, A.; Cherrington, E.A.; Griffin, R.; Rosado, A.; Rosado, S.;
et al. A GEE toolkit for water quality monitoring from 2002 to 2022 in support of SDG 14 and coral health in marine protected
areas in Belize. Front. Remote. Sens. 2022, 3, 103. [CrossRef]

49. INVEMAR. Manual de Métodos del SIMAC (Sistema Nacional de Monitoreo de Arrecifes Coralinos); Instituto De Investigaciones
Marinas y Costeras “José Benito Vives De Andréis”; INVEMAR: Santa Marta, Colombia, 2002.

50. Sánchez, J.A.; Zea, S.; Díaz, J.M. Patterns of Octocoral and Black Coral Distribution in the Oceanic Barrier Reef-complex of
Providencia Island, Southwestern Caribbean. Caribb. J. Sci. 1998, 34, 250–264.

http://dx.doi.org/10.1002/rse2.157
http://dx.doi.org/10.1007/s00338-016-1522-0
http://dx.doi.org/10.1115/omae2019-95385
http://dx.doi.org/10.3390/drones4030050
http://dx.doi.org/10.1080/01431161.2020.1763495
http://dx.doi.org/10.3390/rs12132093
http://dx.doi.org/10.1038/s41597-021-00958-z
http://dx.doi.org/10.3390/rs13214452
http://dx.doi.org/10.1109/igarss47720.2021.9554221
http://dx.doi.org/10.1080/10106049.2022.2037732
http://dx.doi.org/10.3390/rs14195017
http://dx.doi.org/10.3390/rs14236035
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.3390/rs10101509
http://dx.doi.org/10.3390/rs11050591
http://dx.doi.org/10.1109/JSTARS.2020.3021052
http://dx.doi.org/10.1016/j.isprsjprs.2020.04.001
http://dx.doi.org/10.3390/rs13183778
http://dx.doi.org/10.3390/rs14143253
http://dx.doi.org/10.3390/rs12223758
http://dx.doi.org/10.20944/preprints202106.0473.v1
http://dx.doi.org/10.3390/rs13081424
http://dx.doi.org/10.3390/rs13081469
http://dx.doi.org/10.3389/frsen.2022.1020184


Remote Sens. 2023, 15, 3504 16 of 16

51. Díaz, J.M.; Barrios, L.M.; Cendales, M.H.; Garzón-Ferreira, J.; Geister, J.; López-Victoria, M.; Ospina, G.H.; Parra-Velandia, F.;
Pinzón, J.; Vargas-Angel, B.; et al. Áreas Coralinas de Colombia; Serie Publicaciones Especiales No.5; Instituto de Investigaciones
Marinas y Costeras “José Benito Vives De Andréis” INVEMAR: Santa Marta, Colombia, 2000.

52. Geister, J. Modern reef development and cenozoic evolution of an oceanic island/reef complex: Isla de Providencia (Western
Caribbean sea, Colombia). Facies 1992, 27, 1–69. [CrossRef]

53. Geister, J.; Díaz, J.M. Reef Environments and Geology of an Oceanic Archipelago: San Andrés, Providence and Santa Catalina (Caribbean
Sea, Colombia); Ministerio de Minas: Bogotá, Colombia; INGEOMINAS: Bogotá, Colombia, 2007.

54. Rodríguez-Ramírez, A.; Reyes-Nivia, M.C.; Zea, S.; Navas-Camacho, R.; Garzón-Ferreira, J.; Bejarano, S.; Herrón, P.; Orozco,
C. Recent dynamics and condition of coral reefs in the Colombian Caribbean. Rev. Biol. Trop. Int. J. Trop. Biol. Conserv. 2010,
58, 107–131. [CrossRef]

55. DJI. Phantom 4 RTK. 2022. Available online: https://www.dji.com/phantom-4-rtk (accessed on 15 November 2022).
56. DJI. Phantom 4 Multispectral. 2022. Available online: https://www.dji.com/p4-multispectral (accessed on 15 November 2022).
57. Agisoft. Agisoft. 2022. Available online: https://www.agisoft.com/ (accessed on 15 November 2022).
58. Wicaksono, P.; Aryaguna, P.A.; Lazuardi, W. Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning

Classification Algorithms. Remote. Sens. 2019, 11, 1279. [CrossRef]
59. De’Ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis.

Ecology 2000, 81, 3178–3192. [CrossRef]
60. Burns, C.; Bollard, B.; Narayanan, A. Machine-Learning for Mapping and Monitoring Shallow Coral Reef Habitats. Remote. Sens.

2022, 14, 2666. [CrossRef]
61. Liu, P.; Choo, K.K.R.; Wang, L.; Huang, F. SVM or deep learning? A comparative study on remote sensing image classification.

Soft Comput. 2016, 21, 7053–7065. [CrossRef]
62. Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006.
63. Roelfsema, C. Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of

coral reef benthic community maps. J. Appl. Remote. Sens. 2010, 4, 043527. [CrossRef]
64. Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-

derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine
cloud computing platform. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 325–340. [CrossRef]

65. Chuvieco, E. Fundamentals of Satellite Remote Sensing: An Environmental Approach, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016.
66. Hernández, H.; Zapata, P. GEE Application for Mapping and Benthic Ecosystems Classification. 2022. Available online:

https://nandoceanos.users.earthengine.app/view/coralclass (accessed on 15 November 2022).
67. Mumby, P.J. Remote Sensing Handbook for Tropical Coastal Management; Chapter Methodologies for Defining Habitats; UNESCO:

Paris, France, 2000; pp. 131–140.
68. Hernández, H.; Zapata-Ramírez, P.; Vásquez, R.E.; Zuluaga, C.A.; Santana-Mejía, J.D.; Cano, M. Climate Change Adaptation and

Mitigation in the Seaflower Biosphere Reserve: From Local Thinking to Global Actions; Chapter Rapid remote sensing assessment
of impacts from Hurricane Iota on the coral reef geomorphic zonation in Providencia; Springer Nature: Berlin/Heidelberg,
Germany, 2023; In press.

69. Rey, W.; Ruiz-Salcines, P.; Salles, P.; Urbano-Latorre, C.P.; Escobar-Olaya, G.; Osorio, A.F.; Ramírez, J.P.; Cabarcas-Mier, A.;
Jigena-Antelo, B.; Appendini, C.M. Hurricane Flood Hazard Assessment for the Archipelago of San Andres, Providencia and
Santa Catalina, Colombia. Front. Mar. Sci. 2021, 8, 766258. [CrossRef]

70. Zapata-Ramírez, P.A.; Blanchon, P.; Olioso, A.; Hernandez-Nuñez, H.; Sobrino, J.A. Accuracy of IKONOS for mapping benthic
coral-reef habitats: A case study from the Puerto Morelos Reef National Park, Mexico. Int. J. Remote. Sens. 2012, 34, 3671–3687.
[CrossRef]

71. Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing Cloud Computing to address big geospatial data challenges. Comput. Environ.
Urban Syst. 2017, 61, 120–128. [CrossRef]

72. Nietupski, T.C.; Kennedy, R.E.; Temesgen, H.; Kerns, B.K. Spatiotemporal image fusion in Google Earth Engine for annual
estimates of land surface phenology in a heterogenous landscape. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102323. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02536804
http://dx.doi.org/10.15517/rbt.v58i1.20027
https://www.dji.com/phantom-4-rtk
https://www.dji.com/p4-multispectral
https://www.agisoft.com/
http://dx.doi.org/10.3390/rs11111279
http://dx.doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
http://dx.doi.org/10.3390/rs14112666
http://dx.doi.org/10.1007/s00500-016-2247-2
http://dx.doi.org/10.1117/1.3430107
http://dx.doi.org/10.1016/j.isprsjprs.2018.07.017
https://nandoceanos.users.earthengine.app/view/coralclass
http://dx.doi.org/10.3389/fmars.2021.766258
http://dx.doi.org/10.1080/01431161.2012.716922
http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.010
http://dx.doi.org/10.1016/j.jag.2021.102323

	Introduction
	Materials and Methods
	Study Site
	Data Acquisition
	Data Processing
	Ground Truth Verification points 
	Reef Habitat Classification through GEE
	Accuracy Assessment

	Results
	Drone Imagery
	GEE Application Use

	Discussion
	Conclusions
	References

