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Abstract: Phenology is a science that is fundamental to crop productivity and is especially sensitive
to environmental changes. In Mediterranean and semi-arid climates, vineyard phenology is directly
affected by changes in temperature and rainfall distribution, being highly vulnerable to climate
change. Due to the significant heterogeneity in soil, climate, and crop variables, we need fast
and reliable ways to assess vineyard phenology in large areas. This research aims to evaluate
the performance of the phenological data assimilation model (DA-PhenM) and compare it with
phenological models based on meteorological data (W-PhenM) and models based on Sentinel-2 NDVI
(RS-PhenM). Two W-PhenM approaches were evaluated, one assessing eco- and endo-dormancy,
as proposed by Caffarra and Eccel (CaEc) and the widely used BRIN model, and another approach
based on the accumulation of heat units proposed by Parker called the Grapevine Flowering Veraison
model (GFV). The DA-PhenM evaluated corresponds to the integration between RS-PhenM and
CaEc (EKF-CaEC) and between RS-PhenM and GFV (EKF-GFV). Results show that EKF-CaEc and
EKF-GFV have lower root mean square error (RMSE) values than CaEc and GFV models. However,
based on the number of parameters that models require, EKF-GFV performs better than EKF-CaEc
because the latter has a higher Bayesian Index Criterion (BIC) than EKF-GFV. Thus, DA-PhenM
improves the performance of both W-PhenM and RS-PhenM, which provides a novel contribution to
the phenological modeling of Vitis vinifera L. cv Cabernet Sauvignon.

Keywords: vegetation indices; extended Kalman filter; earth observation; state forcing units; dormancy

1. Introduction

Several processes of crop physiology depend on the climate at different time scales.
Among them, crop phenology is fundamental as it determines crop performance over
a growing season and is commonly used for agricultural planning. An accurate representa-
tion of this process is crucial for assessing crop productivity.

Global environmental changes experienced in recent decades and those predicted for
the coming years affect the crop phenology, especially in areas with high climate variability,
such as the Mediterranean and semi-arid zones [1–5]. Vineyards represent one of the most
economically significant agricultural products in these areas. Thus, changes in vineyard
phenology will shape management practices for strategic planning in the sector, especially
regarding viticultural zoning and the selection of suitable cultivars [6–10].

Temperature is the main driver of grapevine (Vitis vinifera L.) phenology [11–16].
Values between 10 ◦C and 25 ◦C are optimal for vine development [17]. Temperatures
between 5 and 10 ◦C are also critical for accumulating cold units to complete dormancy,
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playing a fundamental role in flowering and berry formation processes [16]. Several stud-
ies have identified that average maximum temperatures during the spring months have
a strong negative correlation with the duration of the budburst–flowering interphase. In
contrast, the period of the interphases (flowering–veraison and veraison–maturity) is re-
lated to the accumulation of heat forcing units. Several studies have shown a nonlinear
effect of temperature on grapevine phenology, but these responses are different among
cultivars [12,13,18–20]. In addition to temperature, soil water availability and soil physi-
cal properties impact the phenology of grapevines, with earlier flowering and veraison
associated with water deficit or in dry years for rainfed vineyard systems [8,21,22].

Multiple tools have been used to represent phenology, including weather-based phe-
nological models (W-PhenM), which are based on the accumulation of state-forcing units
(SF) and the combination of chill and state-forcing units (CF) [23]. Forcing units are ob-
tained from the difference between mean (Tm) and base temperatures (Tb), regarded as
the minimum temperature required for grapevine growth. The accumulation starts on
a fixed date, usually January 1st in the northern hemisphere and July 1st in the southern
hemisphere, using a temperature of 10 ◦C [17]. In the grapevine flowering and veraison
(GFV) model proposed by [24], Tb is set to 0 ◦C. The starting date of accumulating forcing
units (t0) corresponds to the 60th day of the year (DOY = 60) in the northern hemisphere and
DOY = 242 in the southern hemisphere. CF models describe the dormancy phase [25,26],
which requires accumulating chill units. When a threshold is surpassed, the accumulation
of forcing units is triggered.

Grapevine phenology models with this approach are the ones proposed by [27] (CaEc)
and the BRIN model [28]. The CaEc model is based on the Chuine Unified Model [25] for
the accumulation of chilling during dormancy and a sigmoidal model of accumulation
of forcing units for the budburst, flowering, and veraison phases. The BRIN model is an
assembly between Bidabe’s Cold Action model for the dormancy phase and the Richardson
model [26], based on the accumulation of growing degree hours for the budburst phase.

SF models involve estimating a few parameters; their implementation is simple and
applies to wide varieties and locations. However, the predictive power of SF models is
not necessarily the same for all varieties and does not properly describe the differences
in development rates between stages. CF models are variety-specific and incorporate
a sub-model for each phenophase, making them more complex to implement [24,27,28].

SF and CF models must be parameterized and validated site-specifically because
such models do not consider the spatial variability of phenology [29–35]. In addition,
these models depend on the availability of meteorological data that represent vineyard
conditions [36,37]. Therefore, the uncertainty associated with W-PhenM lies mainly in
the parameterization process, which is affected by the nature of the input data and the
method used. In addition, the complexity of agricultural systems causes the parame-
terization, which is altered by biotic and abiotic factors and the associated agricultural
management [38,39].

Phenological models based on remotely sensed data, known as land surface phenology
models (LSP) [40], have the potential to overcome some of the drawbacks that SF and CF
models have, especially regarding the spatial variability of phenology [41].

There are several classifications for LSP models according to (a) specific thresholds,
(b) time series curvature, (c) previous or within-season phenology responses, and (d)
changes in the trend of remotely sensed data [42]. The within-season approach (real-time
or near real-time) aims to monitor crop development for operational planning [42,43]. The
time-series curvature approach has been used in annual crops [44–46] and vineyards [47,48].
This method requires fitting remotely sensed data to a function to identify inflection
points (dates) and local maxima and minima. Based on these methods, forest phenology
has been monitored using data from moderate-resolution imaging spectroradiometry
(MODIS) [49,50], which has a spatial resolution between 250 m and 1000 m and a daily
temporal frequency. In crops, MODIS data have been used to analyze phenology in soybean
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and maize [51,52] as well as vineyards [44,53,54], and has been tested for the development
of crop maps [32].

LSP is an indicator of the global dynamics of terrestrial ecosystems since it responds to
environmental changes, especially temperature and precipitation. Therefore, the temporal
and spatial analysis of LSP patterns provides insight into the phenology of ecosystems and
the drivers involved, making it a tool that improves phenology modeling in the face of
climate change scenarios [55].

Despite the potential of LSPs, the challenge of these models lies in the ability to
discriminate phenological metrics when compared to field observations [45], which is due
to the coarse spatial resolution of remote sensing data and the inherent complexity of the
transitions between phenophases [46]. In the early stages of development, where signals
can be disturbed by soil moisture conditions and the woody structure of perennial plants, it
generates noise that affects data quality. Additionally, the relationship between phenology
and greenness detected by remote sensing is highly dependent on the crop type, its growth
dynamics, and the effects of biotic and abiotic stressors [42].

It is relevant to consider the synchronization between the greenness and the struc-
tural development of the vineyard, which is related to the coincidence between changes
detected by remote sensors and those observed in the field that depends on chlorophyll
concentration, soil, and leaf water content. Such synchronization is critical in the abrupt
transition between dormancy and the greenness increase in bud break, poorly modeled by
the curve-fitting method [56].

Another challenge for applying LSPs in Mediterranean areas, such as central Chile,
corresponds to the high cloudiness usually found at the beginning of the growing season
(occurring in late winter and early spring), which reduces the possibility of accessing
remote sensing data. In addition, vineyards are heterogeneous surfaces that include inter-
row areas, being challenging to identify the earliest phenological stages only with remote
sensing data [57].

Recently, Sentinel-2, a remote sensing data source available since 2015, was used to
monitor phenology in forests [58], wheat [59], rice [60], and tropical fruit trees [61]. This
remote sensing data source has not been used in vineyard phenology; however, Ref. [62]
evaluated the potential of Sentinel-2 to obtain information on the agronomic importance in
viticulture, including the phenology.

Several authors have proposed integrating LSP data with ground-level phenological,
meteorological, and soil data [42,45,57,63] as a way to overcome these difficulties.

Phenological data assimilation (DA) is the process by which remote sensing mea-
surements or observations, transformed into phenological stages, are incorporated into
W-PhenMs to calibrate, replace, or update the modeled phenological processes. DA brings
the ability to reduce the difference between model-based and remote sensing estimates,
provides temporal continuity to the evaluated phenomena, and updates the state variables
of predictive models. However, such a framework is subject to different sources of error
from remote sensing data, models, and algorithms for assimilation, optimization, and
interpolation. Additionally, DA requires large amounts of data (especially remote sensing
data), which implies a high computational capacity to reduce computing times [64].

The main uncertainty of DA lies in selecting the algorithm to be used for assimilation
since data with different spatial (e.g., local and regional) and temporal (e.g., daily and
weekly) scales are usually integrated. Furthermore, DA over large areas (regional scale)
requires a previous evaluation to determine the spatial covariance of phenological patterns
affected by land heterogeneity [65].

DA uses algorithms, called filters, that are applied to time series of state variables in
both models (e.g., W-PhenMs) and observations (e.g., remotely sensed data) to improve the
estimation of state variables [66]. The Kalman Filter (KF) and its variants have been one of
the most widely used algorithms in DA [67–70].

Crop simulation models have been integrated with remote sensing data of the Leaf
Area Index (LAI) and soil moisture (SM) to improve yield prediction in grain crops through
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KF in linear processes. For nonlinear processes, the Extended Kalman Filter (EKF), Ensem-
ble Kalman Filter (EnKF), and Particle Filter (PF) have been adopted [71–77]. In vineyards,
the EnKF and PF have been used to assimilate data from high-resolution thermal infrared
sensors and Synthetic Aperture Radar (SAR), with the soil–vegetation–atmosphere transfer
(SVAT) model to improve soil moisture modeling at the surface and root zone levels [78].

In the area of phenology, DA has made possible the evaluation of the stage of several
biome types, especially those found in the Mediterranean zone [79]. Better predictions
are obtained in forest ecosystems in spring (when weather is highly uncertain) [65,80].
Additionally, DA helps to identify gaps in parameter estimation and poor relationships
between state variables simulated by meteorological models [81,82].

Given the potential for phenology modeling approaches described above, developing
a data assimilation (DA) based model in a vineyard would improve the goodness-of-fit
performance of the W-PhenM and LSP. Therefore, this research aims to evaluate a DA-
based phenology model that integrates W-PhenM with the Sentinel-2 LSP in a commercial
Cabernet Sauvignon vineyard in Central Chile.

2. Materials and Methods

Figure 1 summarizes the data assimilation approach for phenology modeling in
vineyards. Firstly, phenology, meteorological, and micro-meteorological ground data are
collected. Secondly, the evaluation of the phenology model based on remote sensing data
(RS-PhenM) by applying the Savitzki–Golay filter (SG-Filter), fitting the data to a double
Gaussian model, and then the derivation of phenological metrics are carried out. The third
step is the evaluation of models based on meteorological data: the Grapevine Flowering
Veraison model (GFV) [24], the Caffarra and Eccel approach [27] (CaEc), and the BRIN
model [28]. Finally, the assimilation process is performed by the Extended Kalman Filter
(EKF) algorithm and evaluation of the assimilated models: assimilated GFV (EKF-GFV)
and assimilated CaEc (EKF-CaEc).

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 

the estimation of state variables [66]. The Kalman Filter (KF) and its variants have been 
one of the most widely used algorithms in DA [67–70]. 

Crop simulation models have been integrated with remote sensing data of the Leaf 
Area Index (LAI) and soil moisture (SM) to improve yield prediction in grain crops 
through KF in linear processes. For nonlinear processes, the Extended Kalman Filter 
(EKF), Ensemble Kalman Filter (EnKF), and Particle Filter (PF) have been adopted [71–
77]. In vineyards, the EnKF and PF have been used to assimilate data from high-resolution 
thermal infrared sensors and Synthetic Aperture Radar (SAR), with the soil–vegetation–
atmosphere transfer (SVAT) model to improve soil moisture modeling at the surface and 
root zone levels [78]. 

In the area of phenology, DA has made possible the evaluation of the stage of several 
biome types, especially those found in the Mediterranean zone [79]. Better predictions are 
obtained in forest ecosystems in spring (when weather is highly uncertain) [65,80]. Addi-
tionally, DA helps to identify gaps in parameter estimation and poor relationships be-
tween state variables simulated by meteorological models [81,82]. 

Given the potential for phenology modeling approaches described above, develop-
ing a data assimilation (DA) based model in a vineyard would improve the goodness-of-
fit performance of the W-PhenM and LSP. Therefore, this research aims to evaluate a DA-
based phenology model that integrates W-PhenM with the Sentinel-2 LSP in a commercial 
Cabernet Sauvignon vineyard in Central Chile. 

2. Materials and Methods 
Figure 1 summarizes the data assimilation approach for phenology modeling in vine-

yards. Firstly, phenology, meteorological, and micro-meteorological ground data are col-
lected. Secondly, the evaluation of the phenology model based on remote sensing data 
(RS-PhenM) by applying the Savitzki–Golay filter (SG-Filter), fitting the data to a double 
Gaussian model, and then the derivation of phenological metrics are carried out. The third 
step is the evaluation of models based on meteorological data: the Grapevine Flowering 
Veraison model (GFV) [24], the Caffarra and Eccel approach [27] (CaEc), and the BRIN 
model [28]. Finally, the assimilation process is performed by the Extended Kalman Filter 
(EKF) algorithm and evaluation of the assimilated models: assimilated GFV (EKF-GFV) 
and assimilated CaEc (EKF-CaEc). 

 
Figure 1. Data assimilation approach for phenology modeling in vineyards. Model-based on remote 
sensing data (RS-PhenM). Savitzki–Golay filter (SG-Filter). Grapevine Flowering Veraison model 
(GFV). Caffarra and Eccel Approach (CaEc). BRIN model. Extended Kalman Filter (EKF) algorithm. 
Assimilated GFV (EKF-GFV) and assimilated CaEc (EKF-CaEc). Ground data is the reference infor-
mation that is used for the parameterization of RS-PhenM and W-PhenM. The RS-PhenMs are opti-
mized with SG-Filter and a double Gaussian model. The EKF algorithm builds the DA-PhenM from 
the RS-PhenM and W-PhenM. 

Figure 1. Data assimilation approach for phenology modeling in vineyards. Model-based on remote
sensing data (RS-PhenM). Savitzki–Golay filter (SG-Filter). Grapevine Flowering Veraison model
(GFV). Caffarra and Eccel Approach (CaEc). BRIN model. Extended Kalman Filter (EKF) algorithm.
Assimilated GFV (EKF-GFV) and assimilated CaEc (EKF-CaEc). Ground data is the reference in-
formation that is used for the parameterization of RS-PhenM and W-PhenM. The RS-PhenMs are
optimized with SG-Filter and a double Gaussian model. The EKF algorithm builds the DA-PhenM
from the RS-PhenM and W-PhenM.

2.1. Study Area

The study was carried out in a drip-irrigated vineyard (Vitis vinifera L. cv. Cabernet
Sauvignon) during 2017–2018 (S1), 2018–2019 (S2), and 2019–2020 (S3) growing seasons
(October–May). The vineyard is located in central Chile, 30 km south of Santiago. This
region is characterized by a Mediterranean climate with a mean annual temperature of
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12.2 ◦C, a mean temperature in January (summer) of 19.1 ◦C, and a mean in June of
5.6 ◦C. Precipitation is concentrated in winter (June-September) with an average annual
total of 280 mm and average total reference evapotranspiration of 485 mm. Irrigation is the
primary water source during the growing season because precipitation is concentrated in
the austral winter (June–August).

The vineyard was planted in 2010. Rows are oriented north–south, with a spacing
of 2.5 m between rows and 1.0 m between vines. Inter-rows are maintained vegetation-
free using mechanical and chemical weed control measures. Water is applied by drip
irrigation during the season. The irrigation time is calculated as a function of reference
evapotranspiration (ET0). Usually, the grower sets irrigation to restore 50% of ET0 every
seven days throughout the season. Due to the prevailing drought in the winter of 2019 and
reduced water availability for irrigation in S3, irrigation time was set to restore 25% of ET0.
Canopy management also varied among the growing seasons. In S1, the trellis system was
vertical-shoot positioned with three-wire lines, while in S2 and S3, the training system was
structured without wire lines, increasing the frequency of topped and trimmed during the
growing season.

2.2. Ground Data

Micrometeorological data were obtained using an eddy covariance system (EC), mea-
suring energy and mass exchange between the vineyard and the atmosphere [83]. Due to
the prevailing wind direction during the daytime, a west-facing EC tower was installed on
the east border of the study area (Figure 2, with coordinates 33◦42′16′′S and 70◦34′32′′W.
Installed sensors, data processing, and quality control are described in detail in Ref. [84].
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Meteorological data were collected from William Fevre agrometeorological station,
located 4 km north of the study area (33◦67′S and 70◦58′W). The station records solar
radiation (MJ m−2 day−1), air temperature (◦C), relative humidity (%), wind speed (m s−1),
and precipitation (mm).
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During the three seasons, phenological observations were recorded every seven days
using the modified Eichhorn and Lorenz (E-L) scale [85]. The E-L system identifies the
main grapevine development stages (Table 1), and for the present research, Budburst (4),
Flowering (23), Setting (27), and Veraison (35) were evaluated.

Table 1. Description of vineyard phenology according to modified Eichhorn and Lorenz (E-L) scale.

E-L Number Stages Description

1 Winter bud Winter buds pointed to rounded.
4 Budburst Budburst; leaf tips visible
23 Flowering 17–20 leaves separated; 50% caps off.

27 Setting Young berries enlarging (>2 mm diam.),
a bunch at right angles to stem.

35 Veraison Berries begin to color and enlarge.

2.3. The Remote Sensing Phenological Model (RS-PheM)

Remote sensing data were obtained from the Sentinel-2 mission, with a spatial reso-
lution of 10 m, a radiometric resolution of 12 bit, and a temporal frequency of 5 days at
latitudes near the equator and 2–3 days at mid-latitudes [86]. The spectral bands used corre-
spond to 4 (σred) and 8 (σnir), whose wavelength ranges are 0.64–0.70 µm and 0.73–0.93 µm,
respectively. Remote sensing data were filtered by date during the growing season and by
the percentage of cloudiness, selecting those with 30% or less, resulting in 96 images for the
three seasons (Table 2).

Table 2. The number of Sentinel-2 images used and the date range per season.

Season N◦ Images Start Date End Date

S1 (2017–2018) 32 16 September 2017 4 May 2018
S2 (2018–2019) 30 1 September 2018 25 March 2019
S3 (2019–2020) 34 1 September 2019 28 April 2020

The calculation of the Normalized Difference Vegetation Index (NDVI) was supported
by Google Earth Engine (GEE) [87]. GEE is based on JavaScript code for geospatial analysis
allowing data assimilation with minimum computational capabilities.

2.3.1. NDVI Time Series Smoothing

Although images are filtered by cloud cover, they still maintain a significant noise level
due to atmospheric conditions. The noise is evident by abrupt changes in NDVI values
across the time series and does not correspond to the gradual variations of the vegetation
during the growing season [88] due to atmospheric and local factors such as soil moisture
conditions and the woody structure of perennial crops.

The intra-seasonal and inter-seasonal NDVI time series were smoothed. The smooth-
ing process improves the identification of NDVI changes, which allows relating it with
the phenological changes observed in the vineyard and its application according to the
criterion of the first and second derivative for the definition of the LSP.

Although several noise removal methods have been developed, there is no agreement
on the best method to use. However, the Savitzky–Golay filter has been successfully used in
many NDVI-based studies for the assessment of vineyard LAI. Therefore, based on the good
fit between LAI and phenology, the algorithm Savitzky and Golay [89] proposed for intra-
seasonal time series was used, which is a least-squares adjustment between consecutive
values obtained by a weighted moving average given as a polynomial of a certain degree.
The general equation is given by:

Y∗j =
i=m

∑
i=−m

CiYj+i ×
1
N

(1)
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where Y is the original NDVI value, Y* is the resultant NDVI value, Ci is the coefficient for
the ith NDVI value of the filter (smoothing window), and N is the number of convoluting
integers and is equal to the smoothing window size. The subindex j is the running index of
the original ordinate data table. The smoothing array (filter size) consists of 2m + 1 points,
where m is the half-width of the smoothing window.

To smooth inter-seasonal time series, we used a second-degree asymmetric Gaussian
model with the general equation:

f (x) = a1 ∗ e(
x−b1

c1
)

2

+ a2 ∗ e(
x−b2

c2
)

2

(2)

where x is the day of the year (DOY) and a1, a2, b1, b2, c1, and c2 are parameters fitted to
the NDVI time series. For convenience, DOY starts on 1 July of each year (DOYJul = 1) and
ends on 30 June of the following year (DOYJul = 365) because the growing season starts in
the southern hemisphere in September and ends in May next year. This adjustment of the
DOY definition facilitates the evaluation of the models and allows comparison with results
obtained in the northern hemisphere.

2.3.2. Remote Sensing Phenology Metrics

The metrics to identify NDVI variations associated with changes in the phenology
were determined using a modification of the methodology proposed by Ref. [48] in Portugal
vineyards. First, NDVI was adjusted to a seven-parameter double logistic model. Second,
the first (δ1) and second (δ2) derivatives were calculated to obtain the phenological metrics
(RS-PhenM). Third, the inflection points, local maximum, and minimum were identified.
Therefore, by interpolation, the date (DOYjul) of the Start of the Season (SOS), Left Inflection
Point (LIP), Maximum Canopy Development (MCD), and Right Inflection Point (RIP) were
estimated. These four NDVI phenological metrics were linked to the stages Budburst (4),
Flowering (23), Setting (27), and Veraison (35), respectively (Table 3).

Table 3. Phenological Metrics and their Equivalence in Phenological Stages according to first and
second derivatives from a Third-Degree Asymmetric Gaussian model applied to NDVI data.

Phenological Metric E-L Number First and Second
Derivative Criteria Description

Start of the Season (SOS) 4 δ1 = 0 and δ2 > 0 Local Minimum
Left Inflection Point (LIP) 23 δ1 = 1◦ Max and δ2 = 0 Left Inflection Point of the Curve

Maximum Canopy
Development (MCD) 27 δ1 = 0 and δ2 < 0 Local Maximum

Right Inflection Point (RIP) 35 δ1 = 2◦ Max and δ2 = 0 Right Inflection Point of the Curve

2.4. The Weather Phenological Models (W-PheM)

The W-PheM is based on grapevine phenological processes. This research is focused
on assessing the “Grapevine Flowering Veraison Model” (GFV) [24], BRIN [28], and the
model proposed by [27] (CaEc).

2.4.1. Grapevine Flowering Veraison Model (GFV)

The GFV is a model that assumes a phenological phase occurs when a critical value
(F*) of the forcing variable (Sf) is reached at a time (ts):

S f (ts) =
ts

∑
t0

R f (xt) ≥ F∗ (3)

where Rf is the daily sum of the forcing rate, starting on a day of the year (t0), which in the
Northern Hemisphere is 1 March (DOY = 60) and in the Southern Hemisphere is 29 August
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(DOYJul = 60), and xt is the daily mean temperature. The forcing rate in the GFV model is
a function of the base temperature (Tb) of 0 ◦C, and the following criteria are applied:

R f (xt) =

{
0 si xt < Tb

xt − Tb si xt ≥ Tb

}
(4)

2.4.2. BRIN Model

The BRIN model estimates the date when bud break occurs in vineyards. This model
combines two phenological models, one associated with the endo-dormancy period [90]
and the other with eco-dormancy [26]. Therefore, the bud break date (Nbb) occurs when
the critical sum (Gc) of cumulative growing degree hours (Ac) since dormancy break (Ndb)
is reached:

GC =
Nbb

∑
Ndb

AC(n) (5)

For the calculation of the growing degree hours (GDH), the hourly temperature of
day n [T(h,n)] is estimated by linear interpolation between the maximum temperature of
day n [Tnx(n)] and the minimum temperature of the following day [Tn(n + 1)]. Therefore,
assuming that the length of the day is 12 h, it follows that:

I f h ≤ 12 then T(h, n) = Tn(n) + h∗
(

Tx(n)− Tn(n)
12

)
(6)

I f h > 12 then T(h, n) = Tx(n)− (h− 12)×
(

Tx(n)− Tn(n + 1)
12

)
(7)

Equations (6) and (7) show that both the base temperature (T0Bc) and the maximum of
the eco-dormancy period (TMBc) limit the Ac response; consequently:

Ac =
24
∑

h=1
T(h, n)


I f T(h, n) < T0Bc then T(h, n) = 0

I f T0Bc < T(h, n) ≤ TMBc then T(h, n) = (h, n)− T0Bc
I f T(h, n) > TMBc then T(h, n) = TMBc − T0Bc

 (8)

The BRIN model assumes that T0Bc = 5 ◦C before bud break and TMBc = 25 ◦C.
Additionally, dormancy break (Ndb) occurs when a critical number (CC) of chilling

units (CU) counted from 1 March (when buds are dormant) is reached. The CU is calculated
based on the Q10 concept, where an arithmetic progression of 10 ◦C temperature causes
an action with a geometric regression of the Q10 ratio:

CC =
Ndb

∑
n=1 marzo

CU (9)

CU = Q
−Tx(n)

10
10c + Q

−Tn(n)
10

10c (10)

2.4.3. Caffarra and Eccel (2010) Model (CaEc)

The model proposed by Caffarra and Eccel (CaEc) has two components: (a) one
describing bud break based on the model of [25], where chilling hours act on the release of
endo-dormancy, and (b) describing flowering and veraison as the result of the accumulation
of forcing units by a sigmoidal function.

In this regard, the bud break of the CaEc model is based on the following equations:

ChState = ∑
1

1 + ea(Tm−c)2+b(Tm−c)
(11)
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ForcState = ∑
1

1 + ed(Tm−c)
(12)

Fcrit = co1 ∗ e(co2∗ChState) (13)

where Fcrit is the critical forcing units to reach the phenophases of interest; ForcState is the
accumulated forcing units; ChState is the accumulated chilling units; Tm is the mean daily
air temperature; and a, b, c, e are curved shape parameters.

On the other hand, the model CaEc models the date of flowering and veraison accord-
ing to the equation:

ForcState = ∑
1

1 + ed(Tm−e)
(14)

2.4.4. Parameterization and Evaluation of W-PhenM

The W-PheM were parameterized using the Phenology Modelling Platform (PMP) [91],
which is free downloaded software (https://www.cefe.cnrs.fr/fr/recherche/ef/forecast/
phenology-modelling-platform, accessed on 25 April 2022) developed with the purpose
of fitting phenology model parameters. PMP uses an optimization algorithm based on
the simulated annealing method [92], which simultaneously adjusts all model parameters,
obtaining effective overall convergence despite the interdependence among phenological
model parameters.

To optimize the model evaluation based on data assimilation, the W-PhenM was
parameterized with a set of phenological observations obtained from the National Network
of Phenology Observatories (TEMPO) of France (https://data.pheno.fr/, accessed on
27 May 2022), which compiles the phenological database of France. Hence, the data were
filtered according to the climate (Mediterranean), the cultivar (Cabernet Sauvignon), and
the observed phenological stages (Budburst, Flowering, and Veraison). Data matching the
search criteria were those from the Unit Experimental Domain De Vassal near Montpellier
(Lat. 43◦19′42′′N, Long. 3◦33′47′′E) between 1995 and 2012. Thus, the meteorological
data used were from the Aéroport Montpellier Méditerranée station (Lat. 43◦34′43′′N,
Long. 3◦58′07′′E), which is available from the Global Historical Climatology Network Daily
(GHCNd) for the period between 1994 and 2012 (Table 4) (https://www.ncei.noaa.gov/
products/land-based-station/global-historical-climatology-network-daily, accessed on
15 February 2022). For the data of this study, models were evaluated using data from the
William Fevre station.

Table 4. Weather stations are used to evaluate the Phenological Weather Models (W-PhenM).

Station Latitude Longitude Period 1 Tavg
◦C 2 Tmax

◦C 3 Tmin
◦C 4 Ptotal mm

Aéroport
Montpellier

Méditerranée
43◦34′N 3◦58′E 1994–2012 15.2 20.0 10.6 622.0

William
Fevre 33◦67′S 70◦58′W 2016–2020 12.3 21.7 3.7 146.8

1 Average annual temperature; 2 average annual maximum temperature; 3 average annual minimum temperature;
4 total annual average precipitation.

2.5. Phenological Model Based on Data Assimilation (DA-PhenM)

Phenological data assimilation takes the system model’s (W-PhenM) predictions and
updates them with the observation model’s (RS-PhenM) outputs. The processes described
by both RS-PhenM and W-PhenM are nonlinear. DA algorithms for these processes, such
as the Particle Filter (PF), require many observations and high computing capacity, making
them complex to implement. Less complex algorithms, such as the Kalman Filter (KF),
are implemented in linear systems and are suitable for nonlinear processes. The Extended
Kalman Filter (EKF) is a modification of the KF, which incorporates Jacobians or partial

https://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform
https://www.cefe.cnrs.fr/fr/recherche/ef/forecast/phenology-modelling-platform
https://data.pheno.fr/
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
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derivatives to linearize nonlinear systems. In this regard, the prediction of the state variable
is given by the following state-space model of the system:

xk|k−1 = Ak−1xk−1 + Bk−1uk−1 + vk−1 (15)

where the subscripts k and k − 1 are the current and previous time, respectively; x is
the state variable of the system (e.g., cumulative forcing units); u is the driving input of
the system (e.g., daily mean temperature); v is the process noise, assuming it is normally
distributed with a mean of 0 and variance equal to Qk−1 (v~N(0, Qk−1)); A is the matrix
that describes the transition of the state variable between time k − 1 and k; and B is the
matrix that describes the change in the system state from time k − 1 to k due to the effect of
the driving variables. Additionally, differing from the KF, the system’s nonlinear equations
are linearized in matrix A by calculating the partial derivatives of each state variable versus
time (Jacobians). Similarly, in matrix B, the partial derivatives are calculated for the state
variables with respect to the driving variables of the system.

Additionally, the DA-PhenM and hence the EKF process involve an observation model,
which estimates the measurement at time k (yk) from the prediction of the state variable at
the same time, with the general expression given by:

yk = Hkxk + wk (16)

where H is the observation matrix used to estimate the sensor observation (e.g., Sentinel-2)
at time k, and w is the measurement noise, assumed to be w ~ N (0, Rk). The NDVI from
Sentinel-2 measurements is fitted to a nonlinear function (Equation (2)), so the matrix H is
calculated from the Jacobian of the NDVI as a function of time.

After the state-space model of the system (Equation (15)) and the observation model
(Equation (16)) are derived, the DA-PhenM model is run iteratively, assuming the initial
conditions of the system for xk−1 (e.g., xk−1 = 0 forcing units) and uk−1 (e.g., the temperature
at time k − 1).

2.6. Model Assessment

All models (RS-PheM, W-PheMs, and DA-PheMs) are evaluated using the following
metrics to quantify the goodness of fit to the observed phenological data:

• Root mean squared error (RMSE):

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(17)

where yi is the observed, ŷi is the simulated data, and n is the number of observations.
The RMSE has the constraint that it is sensitive to outliers. However, outliers decrease

when the systematic error is reduced. On the other hand, the RMSE has the advantage of
quantifying the error in relative terms, allowing intercomparison between models. In data
assimilation, the RMSE is considered an objective function that must be minimized to fit
the model parameters.

• Model Efficiency (EF):

EF = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (18)

where y is the average of observed dates. The model efficiency is the ratio between the
model error (MSE) and the MSE of the average of observed dates. Therefore, EF ≈ 1 refers
to a perfect model, while EF ≈ 0 means that the average of the observations is a better
predictor than the model.

• Data Assimilation Skill (DAskill):



Remote Sens. 2023, 15, 3537 11 of 25

DAskill = 1− RMSEDA

RMSEWM
(19)

where RMSEDA is the RMSE of DA-PhenM (EKF-GFV and EKF-CE); RMSEWM is the RMSE
of W-PhenM (GFV and CE).

DAskill is an indicator that allows comparison only between DA-PhenM since it
shows the degree of the RMSE changes without DA and with DA. Positive values indicate
that DA-PhenMs improve the prediction of W-PhenMs, while negative values show that
DA-PhenMs do not improve the prediction of W-PhenMs.

• Bayesian Information Criterion (BIC). According to [66], the BIC corrected for small
samples is given by:

(
Y|θ M̂L, σ̂2

ML

)
=

1
n
√

2πσ 2̂
ML

× e
∑n

i=1 (yi−ŷi)
2

2σ̂2
ML (20)

where σˆ2
ML is the estimator of the maximum likelihood of the residual variance, which is

given by:

σ 2̂
ML =

(
1
n

) n

∑
i=1

(yi − ŷi)
2 (21)

The BIC allows evaluating models with different parameters to calculate, as in the
W-PhenM, RS-PhenM, and DA-PhenM. Therefore, the BIC favors the simpler models since
it has a component that penalizes the number of parameters. Thus, when comparing the
BIC of the models, the best model is the one with the smallest value.

The evaluation of the models will be performed in two stages. In the first stage, the
RMSEs are compared. The model with the best performance is the one with the lowest
RMSE. In the second stage, the models are compared according to the BIC, with the best
performance being the lowest BIC. Although DA-PhenMs are expected to have the highest
BIC value, the best model based on data assimilation will be the one with the lowest DAskill.

3. Results and Discussion
3.1. Environmental Drivers of Wine Grape Phenology

The environmental drivers of wine grape phenology addressed in this research are
temperature and evapotranspiration. Figure 3 shows the average daily temperature of
the evaluated seasons from DOYjul 60 (29 August) to DOYjul 275 (1 April). The largest
temperature difference among seasons occurs at the beginning of the season, between
DOYjul 60 and 90 (28 September), which is in line with the high interannual variability of
average air temperature in September, accounting for a coefficient of variation (CV%) of
69.2%, according to the records of William Fevre station between 2016 and 2022.

The interannual variability of phenology is closely associated with air temperature
one or two months before each stage [7,12,93]. Table 5 shows that in S3, the budburst stage
occurs nine days earlier than S2 and four days earlier than S1, which responds to a higher
GDDac due to warmer temperatures in late winter (August–September). Additionally,
flowering in S1 is delayed by 13 and 12 days compared to S2 and S3, while veraison in S3 is
delayed by eight and five days compared to S1 and S2.

Figure 4 shows the cumulative evapotranspiration of wine grapes from DOYjul 124
(1 November) to 274 (31 March). The S1 had the highest water consumption of 316.8 mm, S2
with 304.5 mm, and S3 had the lowest water consumption of 202.6 mm. Evapotranspiration
depends on irrigation management. S1 and S2 were irrigated according to the vineyard
water demand or crop evapotranspiration (ETc), 322.8 mm in S1 and 314.8 mm in S2,
corresponding to 98% and 97% of ETc, respectively.



Remote Sens. 2023, 15, 3537 12 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 26 
 

 

flowering in S1 is delayed by 13 and 12 days compared to S2 and S3, while veraison in S3 is 
delayed by eight and five days compared to S1 and S2.  

 
Figure 3. Average daily temperature for S1 (2017–2018), S2 (2018–2019), and S3 (2019–2020). Vertical 
dotted lines represent the earlier and later observed dates for each stage. 

Table 5. Summary of observed budburst, flowering, and veraison dates in S1 (2017–2018), S2 (2018–
2019), and S3 (2019–2020). 

Seasons Budburst Flowering Veraison 
1 DOY Date 2 GDD 1 DOY Date 2 GDD 1 DOY Date 2 GDD 

S1 92 9/30 30.2 158 12/5 287.1 214 1/30 772.7 
S2 97 10/5 32.6 145 11/22 215.2 217 2/2 774.2 
S3 88 9/26 36.3 146 11/23 277.9 222 2/7 900.0 

1 DOY refers to the number of days since 1 July. 2 GDD is the growing degree days since 1 July 
product of GDD = Tm − Tb. Tb is the base temperature set to 10 °C. 

Figure 4 shows the cumulative evapotranspiration of wine grapes from DOYjul 124 (1 
November) to 274 (31 March). The S1 had the highest water consumption of 316.8 mm, S2 
with 304.5 mm, and S3 had the lowest water consumption of 202.6 mm. Evapotranspira-
tion depends on irrigation management. S1 and S2 were irrigated according to the vineyard 
water demand or crop evapotranspiration (ETc), 322.8 mm in S1 and 314.8 mm in S2, cor-
responding to 98% and 97% of ETc, respectively. 

Figure 3. Average daily temperature for S1 (2017–2018), S2 (2018–2019), and S3 (2019–2020). Vertical
dotted lines represent the earlier and later observed dates for each stage.

Table 5. Summary of observed budburst, flowering, and veraison dates in S1 (2017–2018), S2

(2018–2019), and S3 (2019–2020).

Seasons
Budburst Flowering Veraison

1 DOY Date 2 GDD 1 DOY Date 2 GDD 1 DOY Date 2 GDD

S1 92 9/30 30.2 158 12/5 287.1 214 1/30 772.7
S2 97 10/5 32.6 145 11/22 215.2 217 2/2 774.2
S3 88 9/26 36.3 146 11/23 277.9 222 2/7 900.0

1 DOY refers to the number of days since 1 July. 2 GDD is the growing degree days since 1 July product of
GDD = Tm − Tb. Tb is the base temperature set to 10 ◦C.

3.2. Phenological Model Based on Remote Sensing Data (RS-PhenM)

Figure 5 shows the NDVI time series before (Figure 5a–c) and after applying the
Golay–Savitzki filter (Figure 5d–f). Once the filter is used, the noise removal has been
evident since mid-December, when the NDVI decreases. Furthermore, the filtered curves
preserve their contours related to maximums and the pattern of changes, an essential
feature of the Golay–Savitzki filter [88,94,95] and for calculating phenological metrics from
remote sensing data. However, it has been reported that this method is subject to NDVI
overestimation when the noise is strong [94–96]. However, to mitigate this error, it used
images with a cloud cover percentage lower than 30%.

On the other hand, Figure 6 shows the NDVI fitted to a Gaussian model (Figure 6a–c)
and their respective first (Figure 6d–f) and second derivatives (Figure 6g–i), which eases
the identification of the maximums, minimums, and inflection points of the curves.

Figure 6a–c show the variability of NDVI from one season to another, where it is
evident that in S3, the peak is lower (0.363) than in S1 (0.553) and S2 (0.502). Minimum
NDVI values, S1 (0.21) and S2 (0.195), were lower than S3 (0.252), which results in a higher
amplitude in S1–S2 and lower oscillation in S3. Despite the differences in NDVI among
seasons, extreme values are consistent with those reported in vineyards with MODIS [53]
and SPOT [47] remote sensing data.

Table 6 shows the Root Mean Square Error (RMSE) in days and the Bayesian Informa-
tion Criterion (BIC) of the Remote Sensing Phenological Model (RS-PhenM), represented
by the phenological metrics from NDVI. Therefore, the budburst stage is given when the
first derivative (δ1) is equal to zero (Figure 6d–f) and the second derivative (δ2) is positive
(Figure 6g–i), yielding an RMSE of 4.8 days.
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Table 6. Performance summary of Remote Sensing Phenological Model (RS-PhenM), Weather
Phenological Models (W-PhenM), and Phenological Model Based on Data Assimilation
(DA-PhenM) Models.

Stage Budburst Flowering Veraison Overall
Models 1 RMSE 2 BIC RMSE BIC RMSE BIC RMSE

R
S-

Ph
en

M

3 NDVI 8.8 19.2 18.6 21.0 11.7 20.4 12.0

W
-P

he
nM 4 BRIN 7.7 12.9 - - - - -

5 GFV 10.7 11.5 20.8 12.4 16.5
6 CaEc 6.0 18.0 6.9 13.1 7.0 13.1 6.0

D
A

-P
he

nM

7 EKF-GFV - - 6.1 - 16.7 - 11.9

8 EKF-CaEc 5.4 27.5 5.3 - 6.5 - 5.8
1 RMSE: Root Mean Square (days). 2 BIC: Bayesian Index Criterion (dimensionless). 3 Normalized Difference
Vegetation Index. 4 BRIN model. 5 Grapevine Flowering Veraison model. 6 Caffarra and Eccel Approach, 2010.
7 Assimilated GFV (EKF-GFV) and 8 assimilated CaEc (EKF-CaEc).

The flowering stage is the left inflection point of the NDVI curve, where the rate
of NDVI changes and δ1 is the primary maximum and δ2 = 0. Therefore, the flowering
stage based on the NDVI gives an RMSE of 22.3 days, which, in contrast to budburst, is
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a high value compared to Cunha’s results, in which applying the inflection point criterion,
the error reported ranges between 3 and 6.5 days and showed a correlation coefficient of
0.81. The higher RMSE shown in flowering could be related firstly to a short time interval
between flowering and setting (14 to 20 days), and secondly to the lack of coordination
between the phenological observation in the field and the satellite overpass, which could
be amplified due to unfavorable atmospheric conditions that block the data capture by
the satellite.

3.3. Phenological Models Based on Weather Data (W-PhenM)

Table 7 shows the parameterization goodness-of-fit of BRIN, GFV, and CaEc models,
while Appendix B lists the parameters used to evaluate the W-PhenM. In the budburst
stage, the CaEc model performs better than BRIN, while in the flowering and veraison
stages, the GFV model achieves better goodness-of-fit than the CaEc model.

Table 7. Parameterization goodness-of-fit of the Phenological Weather Models (W-PhenM).

Budburst Flowering Veraison
1 RMSE 2 EF RMSE EF RMSE EF

3 BRIN 6.5 0.1
4 GFV 3.4 0.6 4.3 0.7
5 CaEc 4.6 0.5 3.6 0.5 6.0 0.3

1 RMSE: Root Mean Square (days). 2 EF: Model efficiency (dimensionless). 3 BRIN model. 4 Grapevine Flowering
Veraison model. 5 Caffarra and Eccel Approach.

Furthermore, the models evaluated in S1, S2, and S3 during the budburst stage main-
tain the trend in parameterization, where CaEc performs better than BRIN. However,
considering the number of parameters required by each model, BRIN performs better with
a BIC of 12.9, in contrast to 18.0 for CaEc (Table 6).

Evaluating models in the flowering and veraison stages, CaEc has lower prediction
error than GFV. Despite that, GFV performs better than CaEc, since it requires fewer
parameters. Thus, BIC from the GFV model is lower in flowering (11.5) and veraison (12.4).
The GFV model has better performance in flowering (RMSE = 10.7 days) than in veraison
(RMSE = 20.8 days), which agrees with [24,97]. Still, the prediction error reported by those
authors is lower, ranging between 4 and 5 days in flowering and between 5 and 7 days
in veraison.

3.4. Phenological Models Based on Data Assimilation (DA-PhenM)

Data assimilation aims to improve predictions through the enhancement of goodness-
of-fit metrics. Thus, in Figure 7, the EKF-CaEc improves the prediction of the budburst
stage for CaEc, which means a reduction in RMSE (DAskill) of 10%. EKF-GFV has the best
flowering performance, while EKF-CaEc performs best in veraison (Table 6). However, the
simplest model is EKF-GFV, with the lowest BIC in both phenological stages. EKF-GFV
improves GFV performance in flowering and veraison, giving it a DAskill of 42.9% and
19.7%, respectively. Furthermore, EKF-CaEc improves CaEc prediction in flowering with
DAskill of 19.7% and in veraison with DAskill of 5%.

The phenological models based on data assimilation proposed herein are novel in the
phenological modeling of Vitis vinifera L. cv Cabernet Sauvignon since they are based on
Sentinel-2 remote sensing data and models based on forcing (GFV) and chilling (CaEc)
units. The results are consistent with data assimilation approaches to improve phenol-
ogy and yield simulation in wheat and rice at regional scales with MODIS remote sensing
data [98,99] and coupled to crop simulation models such as the World Food Study
(WOFOST) [97]. Additionally, the improved predictions are similar in error magnitude
to that reported with Sentinel-2 data in tropical dry forests and temperate deciduous
forests [100], bamboo forests [101], and several global-scale biomes [65,79] with MODIS
remote sensing data.
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Figure 7. Data assimilation skill in percentage (DAskill %). It represents the percentage reduction in
the Root Mean Square Error (RMSE in days) of the assimilated models (EKF-GFV and EKF-CaEc)
compared to the respective non-assimilated models (GFV and CaEc).

4. Discussion

Interannual variability in budburst, flowering, and veraison dates is reported by [102]
with variations of eight days in budburst, while Ref. [13] showed variations of 19 days in
budburst, nine days in flowering, and 13 days in veraison. On the other hand, the dates
reported in Table 5 are consistent with those observed for cv. Cabernet Sauvignon in Central
Chile between 2004 and 2006 [102] and 2009 and 2013 [31].

On the other hand, the irrigation in S3 only accounted for 65% of the ETc (313 mm)
due to Central Chile’s drought, responsible for a diminishing water supply in channels.
Although water consumption dropped in S3, budburst and flowering dates were similar to
S1 and S2, while veraison was delayed compared to the previous seasons. Thus, water stress
is reported to have a greater impact at the berry formation stage (E-L 27) [103]. However,
water availability in grapevine phenology is coupled with other environmental variables,
such as the soil type and temperature [20,21].

The fitted Gaussian model provides a daily time series, increasing the accuracy in
estimating phenological stages [95]. Additionally, it is a valuable tool for identifying
inter-annual NDVI variations since curve parameters allow a valid estimation for large
areas [104–106]. However, it cannot identify specific dates of phenological stages around
the curve peaks [105].

Regarding phenological metrics extracted from NDVI, the days between the Start of
the Season (SOS) and Maximum Canopy Development (MCD) in S1 and S2 were 70 and
72 days, respectively. In comparison, in S3, it was 55 days, which contrasts with an average
of 102 days reported by Ref. [53] in Washington State and an average of 90 days reported by
Ref. [47] in the Douro region of Portugal. In both Washington State and the Douro Region,
the vineyards are under a rainfed system, where the total annual rainfall is around 300 mm
and 580 mm, respectively. In our study area, the vineyard is under irrigation, particularly
in S3, which consumed 65% of the ETc, equivalent to 203 mm. The latter suggests that
the phenological metrics derived from NDVI are related to the water available for wine
grapes, thus defining the extremes of NDVI and the duration of the periods based on the
intra-annual behavior of the vegetation index. Taking into account that prior to and during
budburst, the vineyard is transparent to NDVI, the vineyard surface is characterized by the
presence of vegetation in the inter-row area and high soil water content as a result of winter
precipitation, which is explained by a correlation coefficient of −0.88 reported by Ref. [47].

The RMSE of veraison based on the NDVI criterion is 8.6 days; this criterion differs
from Ref. [49], which pointed out that veraison correlates to the local maximum of the NDVI
curve, showing a correlation coefficient of 0.87. However, it should be considered for this
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research that the NDVI was fitted to an asymmetric Gaussian model. In contrast, Ref. [47]
study was fitted to a double logistic model and did not conclude, due to lack of evidence,
on the phenological meaning of the right inflection point of the NDVI curve. The present
research proposes a phenological Vitis vinifera L. cv model. Based on Sentinel-2 NDVI data,
Cabernet Sauvignon is fitted to an asymmetric double Gaussian model identifying the
budburst, flowering, setting, and veraison stages. The proposed model should be improved
considering the NDVI time series longer than four seasons and further fine-tuning of the
criteria to identify the flowering stage to reduce estimation error.

In evaluating W-PhenM, BRIN model performance is slightly better than those re-
ported for Cabernet Sauvignon by Ref. [28] (RMSE = 9.7 days) and Ref. [29] (RMSE = 11.1),
although Ref. [34] obtained a better performance with RMSE around 6.0 days. Compared
to the CaEc model, mixed results have been reported, with better performance with RMSE
between 4.5 and 5.7 days in Cabernet Sauvignon [34] and a higher RMSE of 22.8 days
in Chardonnay [37]. In addition, the higher efficiency of CaEc compared to BRIN in the
budburst phase is due to the ability of CaEc to capture the behavior of the system in the
eco-dormancy phase, which is supported by the results shown by [27], where the CaEc
model explains about 40% of the variance in the modeled budburst date and about 30% of
the observed budburst date variance.

This research evaluated models that consider endo-dormancy. Since most climate
change scenarios predict an increase in temperature at the end of winter, this group of
models would have higher accuracy in predicting budburst [7,34]. However, assessments
of the current climate have concluded that models based on forcing units, such as Degrees
Growing Days with a base temperature of 5 ◦C (GDD5) and 10 ◦C (GDD10), predict the
budburst date better. Thus, models such as BRIN and CaEc do not provide higher accuracy
despite the higher number of parameters required [24,28,29,34].

On the other hand, Ref. [37] reported higher RMSE values in flowering and lower in
veraison. In addition, the CaEc model has not been evaluated for Cabernet Sauvignon in the
flowering and veraison stages. Hence, the reference evaluations apply to the Chardonnay
variety. In this regard, the errors reported for CaEc are consistent with those obtained,
around seven days for flowering and five days for veraison, with better performance
than GFV.

The GFV model is more efficient than the CaEc model, especially in the veraison satge.
The good performance of the GFV model is likely due to the 0 ◦C Tb used by the model,
which can encompass some important physiological processes not captured by the CaEc
model and, as [24] points out, Tb = 0 ◦C is a threshold that allows the convergence of the
thermal sum simultaneously in the flowering and veraison stage.

The differences obtained in flowering and veraison prediction are likely due to errors in
selecting external parameterization data, which involve differences in soil texture, available
water, rootstock, pruning, and micrometeorological conditions that are not necessarily
represented by the selected weather stations [37,96]. In addition, the performance of
models reflects the amount of data used in the evaluation, such as Refs. [24,107], who had
for the flowering stage, 70 and 62 observations for calibration and validation, respectively,
while for the veraison stage, they had 66 (calibration) and 105 (validation) observations,
which is proportional to the regional validity of the study.

Despite the promising results, proposed DA-PhenMs are limited to local conditions
similar to those performed in this evaluation. On the other hand, there is uncertainty in
the climatic reliability of the William Fevre and Montpellier Airport stations because of
the influence of microclimatic conditions on vineyard phenology [98]. In addition, this
evaluation does not consider variables that determine phenology, such as photoperiod, soil
texture, fertility management, and pruning.

However, limitations can be mitigated with the incorporation of proximal sensors such
as phenological cameras [101] or remote sensors such as synthetic aperture radars (SAR),
which have provided valuable insights into vineyard water balance modeling [71,108].
Regarding assimilation algorithms, the Particle Filter (PF) is more suitable for nonlinear
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processes [71,99,108]. Therefore, considering CaEc fits a logistic model, data assimila-
tion with CaEc is likely improved with PF, as reported in the phenological modeling
of bamboo forests [109]. Moreover, DA-PhenM performance could be enhanced with
the inclusion of variables such as the Leaf Area Index (LAI) since it is closely related to
phenology [78,79,98,101,110].

Finally, the novel tools proposed in this research have the potential to support near-
real-time monitoring of phenology [108,111], which would improve irrigation manage-
ment [108], water use efficiency [110], and agronomic practices such as pruning and fer-
tilization [47]. Moreover, DA-PhenM is also coupled to crop and primary productivity
models for yield and carbon balance predictions to optimize resource use [97,112].

5. Conclusions

Data assimilation involves the integration of different data sources to improve the
modeling process. In this research, a phenological model based on NDVI (RS-PhenM) was
optimized, and three phenological models based on meteorological data (W-PhenM) and
two novel models based on data assimilation (DA-PhenM) were evaluated.

RS-PhenM performs well in identifying the three most critical phenological stages of
wine grapes, budburst, flowering, and veraison. Additionally, the setting stage (Onset fruit)
was successfully included in the evaluation, contributing to the development of RS-PhenM.
The performance of the RS-PhenM is supported by the noise removal process that was
applied, consisting of two phases, one using the Golay–Savitsky algorithm and the second
adjusting the NDVI to an asymmetric Gaussian model.

The evaluation of the W-PhenMs yielded satisfactory performance in terms of root
mean square (RMSE). However, considering the required parameters, the General Flow-
ering Veraison (GFV) model performed better than the Caffarra and Eccel model (CaEc).
Although the CaEc could be parameterized to minimize the required parameters and
simplify its practical application. Additionally, it is worth highlighting the contribution
of the ability of the CaEc model to simulate flowering and veraison stages for Cabernet
Sauvignon, which had only been reported for Chardonnay cultivars.

Two models based on data assimilation through the Extended Kalman Filter (EKF)
algorithm, EKF-GFV and EKF-CaEc, were evaluated. The DA-PhenMs are a novel con-
tribution to the phenological modeling of Vitis vinifera L. cv Cabernet Sauvignon since
both models performed well compared to those assessed models in wheat and rice and
diverse forest formations. However, the application of the proposed models is limited
to the local conditions due to the reduced number of phenological observations utilized
(three seasons). Additionally, other variables that influence the phenology of wine grapes
were not considered, such as the photoperiod, soil texture, microclimatic conditions, and
agronomic management. Despite the limitations of models, improvements could be made
by incorporating in the assimilation process the leaf area index (LAI) data, additional
remote sensing sources such as synthetic aperture radars (SAR), proximate sensors such
as phenological cameras, and algorithms more suited to nonlinear processes such as the
Particle Filter (PF). Finally, the proposed approach could contribute to monitoring vine-
yards’ phenology, representing an effective tool to optimize water consumption, irrigation
management, agronomic practices, and yield prediction.
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Appendix A

The second step of DA-PhenM is to predict the state variable at time k from the driving
and state variables at time k − 1, according to the state-space model (Equation (15)). Next,
the third step is to calculate the covariance of the state variable, which is an estimate of the
accuracy of the prediction made in the second step, given in the following general form:

Pk|k−1 = Ak−1Pk−1|k−1 AT
k−1 + Qk−1 (A1)

where Pk|k−1 is the covariance of the state variable at time k given the covariance at time k
− 1; Pk−1|k−1 is the covariance at time k − 1; AT

k−1 is the transposed A matrix; and Qk is
the noise covariance matrix of the state-space model.

The fourth step of DA-PhenM calculates the residual (yk) between the actual observa-
tion (zk) and the estimated observation (yk) according to the following expression:

yk = zk − yk (A2)

Then, the fifth step calculates the covariance of the residual of the observations (Sk),
given by:

Sk = HkPk|k−1HT
k + Rk (A3)

where HT
k is the transpose matrix of Hk; and Rk is the matrix of sensor noise covariance.

High values of Rk are related to high measurement uncertainty, while values close to zero
denote a low measurement uncertainty.

The Kalman Gain (Kk) is calculated in the sixth step of the DA-PhenM, which ac-
counts for the magnitude in which the state variable predictions and their covariance must
be corrected:

Kk = Pk|k−1HT
k S−1

k (A4)

The Kalman Gain (Kk) is tunable by adjusting the covariances of the predictions of the
system and the observations. Thus, if the measurement noise is large, Kk approaches 0, and
the measurements have slight weighting on the best estimate. Conversely, if the process
noise of the state-space model is high, Kk is close to 1; hence, the sensor measurements have
higher weights in the state variable prediction.

Finally, the last steps of DA-PhenM involve updating the estimated state variable and
its covariance, which are given by the following expressions:

.
xk|k = xk + Kkyk (A5)

Pk = (I − Kk Hk)Pk|k−1 (A6)

Equation (21) calculates the state of the system after a new measurement of the sensor
at time k (updated), based on values from step 2 (xk), step 4 (yk), and step 6 (Kk). In Equation
(A6), where I is the identity matrix, the covariance of the system is estimated once it is
updated with a new measurement.

This research describes the system by the GFV (Equations (3) and (4)) and CaEc
(Equations (11)–(14)) models. At the same time, the observations are outlined by the NDVI
time series model (Equation (2)). Therefore, two DA-PhenMs, the GFV (EKF-GFV) and CE
(EKF-CE) assimilated with NDVI, are evaluated.



Remote Sens. 2023, 15, 3537 20 of 25

Appendix B

Table A1. Parameters of the Cafarra and Eccel model (CaEc).

Phenological Stage Parameter Value

Budburst (BBCH 9) Ccrit 173
tc 135

Fcrit 8.14
a 0.69307
b −17.38292
c −2.78794
d −0.13144
e 19.67472

co1 1347.518
co2 −0.43418

Flowering (BBCH 61) Fcrit 24.76
d −0.06570
e 19.44234

Veraison (BBCH 81) Fcrit 64.47
d −28.09575
e 4.02449

Ccrit: critical chilling requirement; tc: last day of effect of chilling on Fcrit; Fcrit: critical number of forcing units
required to reach the phenophase of interest; a, b, c, d, e, co1, co2 curve shape parameters.
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