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Abstract: Inspired by the parallel visual pathway model of the human neural system, we propose
an efficient and high-precision point cloud registration method based on complex network theory
(PointCNT). A deep learning network (DNN) design method based on complex network theory is
proposed, and a multipath feature extraction network, namely, Complex Kernel Point Convolution
Neural Network (ComKP-CNN) for point clouds is designed based on the design method. Self-
supervision is introduced to improve the feature extraction ability of the model. A feature embedding
module is proposed to explicitly embed the transformation-variant coordinate information and
transformation-invariant distance information into features. A feature fusion module is proposed
to enable the source and template point clouds to perceive each other’s nonlocal features. Finally,
a Multilayer Perceptron (MLP) with prominent fitting characteristics is utilized to estimate the
transformation matrix. The experimental results show that the Registration Recall (RR) of PointCNT
on ModelNet40 dataset reached 96.4%, significantly surpassing one-stage methods such as Feature-
Metric Registration (FMR) and approaching two-stage methods such as Geometric Transformer
(GeoTransformer). The computation speed is faster than two-stage methods, and the registration run
time is 0.15 s. In addition, ComKP-CNN is universal and can improve the registration accuracy of
other point cloud registration methods.

Keywords: point cloud registration; deep learning; complex network theory; nonlocal features

1. Introduction

With the rapid development of high-precision sensors such as Light Detection and
Ranging (LiDAR), point clouds have become the primary data format used to represent
the three-dimensional (3D) world [1]. In recent years, the demand for high-quality point
cloud data has increased with the rapid development of automatic driving, digital twins,
intelligent robots, industrial product quality inspection and other fields. However, these
sensors can only capture 3D scene information in a certain view and cannot capture
complete 3D scene information. Point cloud registration is a task that aligns two or more
different point clouds by estimating the relative transformation between them [2]. Therefore,
point cloud registration plays a unique and critical role in computer vision tasks.

However, there are many challenges in point cloud registration. Unlike images, point
clouds are unstructured with sparsity and disorder. Point clouds have considerable noise
due to the inherent shortcomings of scanning sensors. In addition, the problems of partial
overlap and large differences in the 3D features of the same object from different views also
bring challenges to point cloud registration.

Most traditional algorithms divide registration into two steps: first, find the corre-
spondences, and then, estimate the rigid transformation matrix according to the corre-
spondences. Obtaining the transformation matrix is simple when the correspondences
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are known. Similarly, finding the correspondences when the transformation matrix is
known is simple. Given these two observations, most algorithms alternate between these
two steps to obtain a better result [3]. However, traditional algorithms usually have high
computational complexity, require many iterations, take a long time to compute, do not
meet real-time requirements, and are nonconvex. These considerations make them sensitive
to the initial position and easily fall into the local optimal solution. The method proposed
in this paper does not need to calculate correspondences or need iterations, so it has good
real-time performance.

Deep learning has shown great advantages due to its prominent fitting characteristics
and has been widely used in automatic driving, healthcare, machine translation, damage
detection and other fields [4]. Robust and Efficient Point Cloud Registration using PointNet
(PointNetLK) [5] pioneered the application of deep learning to point cloud registration.
The application of deep learning in point cloud registration has made great progress and
significantly improved registration robustness and efficiency. Unfortunately, most deep-
learning-based methods do not deviate from the traditional algorithm design. Traditional
design is divided into two steps: finding correspondences (or computing a soft matching
matrix) and estimating the transformation matrix. These are called “two-stage methods”
in this paper. This kind of method completely separates the module for finding corre-
spondences from the module for estimating the transformation matrix. These modules are
trained separately, which causes accumulative errors. Two-stage methods have high com-
puting costs and poor real-time performance because they need to find correspondences
and calculate their confidence to eliminate outliers. An end-to-end “one-stage method”
with fast computation speed and good real-time performance is proposed in this paper.
Instead of finding correspondences between the source point cloud and template point
cloud, a deep learning model is used to directly extract the global features of the two point
clouds, and then the transformation matrix is directly estimated according to the global
features. This process makes our registration method robust to noise and able to handle the
partial overlap problem.

At present, there are few studies on one-stage methods. Most studies apply only the
deep learning model used for two-dimensional (2D) images to point cloud registration
after simple changes. Although their registration accuracy exceeds most traditional al-
gorithms, there is still a large gap compared with the two-stage methods. According to
the point cloud data characteristics, a new one-stage framework is designed to improve
registration accuracy.

In this work, a new efficient and high-precision one-stage point cloud registration
method based on complex network theory (PointCNT) is designed, which estimates the
rigid transformation matrix by global features without searching for correspondences. An
overview of PointCNT is shown in Figure 1. Our method consists of four parts. (1) Feature
extraction module. Inspired by the parallel visual pathways model [6], a multipath feature
extraction network for point clouds based on complex network theory is designed. A
self-supervised module is introduced to improve the feature extraction ability. (2) Fea-
ture embedding module. Inspired by nonlocal neural networks [7,8], Geometric-based
Self-attention (GBSelf-attention) is designed. GBSelf-attention embeds the transformation-
variant coordinate information and the transformation-invariant distance information with
geometric consistency between points into the point cloud feature. (3) Feature fusion
module. Feature-based Cross-attention (FBCross-attention) is designed to fuse the source
and template features so that the extracted features of the two point clouds can be transmit-
ted interactively. (4) Registration module. Multilayer Perceptron (MLP) [9–12] is used to
estimate the rotation and translation, and the rotation quaternion is used to represent the
point cloud rotation.
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Figure 1. Architecture of the proposed network PointCNT.

To summarize, our main contributions are threefold:

(1) An efficient, high-precision and end-to-end one-stage point cloud registration frame-
work is proposed.

(2) A deep learning network design method based on complex network theory is pro-
posed, and a multipath feature extraction network based on the above method for
point clouds is designed.

(3) A self-supervised module is introduced to improve the feature extraction ability of
the network.

(4) GBSelf-attention and FBCorss-attention based on nonlocal neural networks are designed.

In Section 2, we summarize related research work on point cloud registration, mainly
including traditional registration methods, learning-based two-stage methods and learning-
based one-stage methods. In the Section 3, we introduce the cloud registration method
PointCNT designed in this paper, which mainly includes feature extraction module, feature
embedding module, feature fusion module and registration model. In Section 4, we carry
out experiments to verify the effectiveness of PointCNT. We carry out ablation experiments
to study the effects of different modules on the model and verify the performance of the
designed feature extraction module, feature embedding module and feature fusion module.
In Section 5, we discuss the research results. Section 6 is the conclusion.

2. Related Work
2.1. Traditional Registration Methods

Point cloud registration is divided into coarse registration and fine registration. Typical
coarse registration algorithms include the Point Feature Histogram (PFH) [13], Fast Point
Feature Histogram (FPFH) [14], 3D Shape Context (3Dsc) [15], Normal Distributions Trans-
form (NDT) [16], 4-Points Congruent Sets (4PCS) [17] and Principal Component Analysis
(PCA) [18]. The coarse registration algorithm is not sensitive to the initial pose, but its
registration accuracy is low. The coarse registration can be considered a preprocessing
process for point cloud initialization in fine registration. Iterative Closest Point (ICP) and
its variants [19–22] are the best-known traditional fine registration algorithms. ICP alter-
nates between finding point cloud correspondences and solving a least-squares problem
to update the alignment. However, ICP-style methods are prone to local minima due to
nonconvexity. To solve the above problem, a Globally Optimal Solution to 3D ICP Point-set
Registration (Go-ICP) [23] uses a branch-and-bound method to search the motion space.
Go-ICP outperforms local ICP methods when a global solution is desired but is several
orders of magnitude slower than other ICP variants. Traditional methods do not require a
large quantity of training data and have excellent generalization ability. However, they are
usually sensitive to noise, have difficulty processing partially overlapping point clouds,
easily converge to local optimal solutions, have low registration accuracy and have long
computational times. Unlike traditional registration methods, PointCNT based on deep
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learning is an end-to-end algorithm. It is insensitive to noise and can process partial overlap
problems with high computational efficiency and registration accuracy.

2.2. Learning-Based Two-Stage Registration Methods

At present, most research adopts two-stage methods to estimate the transformation
matrix, as shown in Figure 2 and Tabel 1. In the first stage, the correspondences between
the source and template are predicted, such as the corresponding relationship of key points,
the corresponding relationship of feature points and the corresponding relationship of
all points. In the second stage, the transformation matrix is estimated according to the
correspondences. In this stage, Singular Value Decomposition (SVD) [19], Random Sample
Consensus (RANSAC) [24] or Artificial Neural Networks (ANNs) [25] are usually used to
estimate the transformation matrix.

Figure 2. The development of point cloud registration methods based on deep learning.

Table 1. Comparison of different point cloud registration methods.

Method Category Proposed Year Advantage Disadvantage

ICP
Traditional

Registration Method

1992 No need for a large
amount of data for training.

Sensitive to the initial position
of the point cloud and prone
to falling into local optima.

Go-ICP 2016 Adopting a global solution
for higher registration accuracy.

Running speed is very slow.

DCP

Learning-based
Two-stage Method

2019 Has good robustness to noise. Not applicable for partial overlap.

PointDSC 2021 High registration accuracy,
suitable for partial overlap.

Slow running speed,
requires additional algorithms
to find corresponding points.

GeoTransformer 2022
High registration accuracy,
suitable for partial overlap,
without the need for additional
algorithms to find corresponding points.

Slow running speed,
registration accuracy constrained
by key point matching.

PointNetLK

Learning-based
One-stage Method

2019 Applying deep learning
to point cloud registration
for the first time.

Low registration accuracy,
robustness and poor
generalization.

PCRNet 2019 Has good robustness to noise,
is an end-to-end model,
and runs fast.

The model has a simple
structure and low
registration accuracy.

FMR 2020
The unsupervised learning
method is used to extract
point cloud features,
and the inverse synthesis
algorithm is used to calculate
the transformation matrix.

Poor registration performance
when applied to point clouds
with only partial overlap.

As a classical two-stage method, Deep Closest Point (DCP) [3] first extracts the local
point features in a point cloud, then establishes the soft matching matrix among points
based on the extracted features and then uses weighted SVD to compute the transformation
matrix according to the soft matching matrix. DCP is robust to noise, but its performance
is poor when applied to point clouds with only partial overlap. Deep Global Registra-
tion (DGR) [26] is similar to DCP, but DGR changes the gradient propagation mode of
weighted SVD. DGR takes the derivative of the loss function with respect to the weight
w, reducing the computational complexity and improving the registration accuracy. Deep
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Virtual Corresponding Points (DeepVCP) [2], Partial Registration Network (PRNet) [27]
and Geometric Transformer (GeoTransformer) [28] all use key points for matching. First,
point cloud features are extracted by DNN, and key points are obtained according to
the features. Then, the correspondence matrix is established according to the key points,
and the transformation matrix is estimated according to the correspondence matrix. This
kind of algorithm further improves the registration accuracy and can handle the partial
overlap problem. Deep Neural Network for 3D Point Registration (3DRegNet) [29] and
Robust Point Cloud Registration using Deep Spatial Consistency (PointDSC) [7] directly
take correspondences as input, use ANN to eliminate the outliers, and then estimate the
transformation matrix according to the correspondences that eliminated outliers. This kind
of algorithm focuses on the outlier elimination method and obtains the correspondences
with a higher proportion of inliers to improve the registration accuracy. Robust Point Cloud
Registration Framework Based on Deep Graph Matching (RGM) [30] introduces the idea
of a graph, such that the point features not only include the local geometric information
but also include the structure and topology information in a wider range to find more
correct correspondences.

Two-stage methods usually combine SVD to obtain the registration transformation
matrix. Their accuracy is high, but they need to find the correspondences and compute
the confidence to eliminate the outliers. Therefore, the computational cost is high, and the
real-time performance is poor. Compared with the two-stage methods, our method does
not need to find the corresponding point relationships. Our method directly estimates the
transformation matrix according to the global features. This process avoids the accumu-
lative errors caused by the complete separation of the feature extraction network and the
module for computing the transformation matrix and improves the computational speed.

2.3. Learning-Based One-Stage Registration Methods

PointNetLK [5] pioneered the application of deep learning to point cloud registration.
First, MLP and max pooling are used to extract the global features, then the inverse
synthesis algorithm is used to improve the Lucas–Kanade Algorithm (LK) [31] and the
improved LK algorithm is used to estimate the transformation matrix according to the
global features. Point Cloud Registration Network using PointNet Encoding (PCRNet) [32]
first utilizes MLP and max pooling to extract the global features of the source and template,
concatenates the two global features, and then inputs the features into the ANN to estimate
the transformation matrix. PCRNet is robust to noise because the transformation matrix is
computed based on the global features. However, its structure is simple, and the registration
accuracy is lower than that of the two-stage model. Feature-Metric Registration (FMR) [33]
utilizes a self-supervised learning model composed of an encoder and decoder to extract
features. Then, the transformation matrix is computed by the inverse synthesis algorithm
based on the extracted features. However, this method performs poorly when dealing with
partial overlap.

The one-stage method does not need to find the correspondences between the source
and template but directly computes the transformation matrix according to the extracted
features, which has a fast computation speed and good real-time performance. However,
at present, there is little research on the one-stage method. The model structure is simple,
and the registration accuracy of the one-stage model is still lower than that of the two-
stage model. This paper proposes a new and complex one-stage method framework
for registration. Inspired by the parallel visual pathway model in the human neural
system, a novel feature extraction network is designed based on complex network theory.
Additionally, a self-supervised model is introduced to improve the feature extraction ability
of the network. GBSelf-attention and FBCorss-attention are designed to integrate the source
point cloud and template point cloud features. The registration accuracy of our method is
significantly higher than that of the above one-stage method and achieves state-of-the-art
performance. PointCNT is also robust to noise, suitable for partial overlap and has a high
inference speed.
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3. PointCNT

Given two point clouds Q =
{

qi ∈ R3 | i = 1, 2, · · · , N
}

and P =
{

pt ∈ R3 | i = 1, 2, · · · , M
}

,
the point cloud registration goal is to estimate a rigid transformation T =

{
R ∈ SO(3), t ∈ R3}

that aligns the two point clouds with a rotation matrix R and a translation vector t. The
transformation can be solved by

R̂, t̂ = arg min
R∈SO(3),t∈R3

∑(pxi ,qyi )∈C ρ
(
qyi , Rpxi + t

)
, (1)

where C is the set of ground-truth correspondences between Q and P , and ρ(a, b) is some
distance. However, in this paper, C is not solved, and T =

{
R ∈ SO(3), t ∈ R3} is directly

solved according to the global features.
The pipeline of our network PointCNT is shown in Figure 1 and can be summarized

as follows:
R̂, t̂ = R{ϕ[E(φ(P)), E(φ(Q))]}, (2)

where φ(•) is the feature extraction module, E(•) is the feature embedding module, ϕ[•] is
the feature fusion module and R[•] is the feature registration module.

In this section, we introduce the one-stage point cloud registration method PointCNT
in detail. In Section 3.1, we design the point cloud feature multipath extraction network
ComKP-CNN based on the complex network theory, and introduced the self-monitoring
method to enhance the ability of the network to extract point cloud features. In Section 3.2,
we design GBSelf-attention to explicitly embed the coordinate information and distance
information of the point cloud into the features. In Section 3.3, we design FBCross-attention
to realize the interactive propagation of features between the source and template. In
Section 3.4, we realize the registration of point clouds through MLP. Section 3.5 describes
the loss function used in this paper.

3.1. Feature Extraction Module

In this section, Kernel Point Convolution (KPConv) [34] is used as the basic module
for extracting point cloud features. Inspired by the parallel visual pathway model in the
human neural system, as shown in Figure 3, a multipath feature extraction network based
on complex network theory is designed. The parallel visual pathways model considers that
the high-level brain regions related to vision do not simply receive signals from the retina
through one neural pathway but receive neural signals through multiple pathways, and
the number of neurons between different pathways is different. The network for extracting
point cloud features should have a similar topology structure to the parallel visual pathways
model. It is a complex network in which features have multiple transmission pathways
rather than a single pathway.

A large number of empirical studies [35–37] show that networks in the real world
are complex networks between regular networks and random networks, as shown in
Figure 4. Almost all of these networks have a small-world effect; that is, networks have a
smaller average path length, as shown in Equation (3), and a larger clustering coefficient,
as shown in Equation (4). However, at present, most DNNs used to extract point cloud
features [34,38–40] or even used to extract 2D image features [41–44] are not complex
networks but regular networks, which do not have a small-world effect, as shown in
Table 2. Based on the above analysis, we propose a new DNN design method based
on complex network theory and use this method to design a new point cloud feature
extraction network.

L =
1

1/2N(N − 1)
∑
i≥j

dij, (3)
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where N is the number of network nodes, and dij is the path length between node i and
node j.

C =
1
N

N

∑
i=1

2Ri
ki(ki − 1)

, (4)

where N is the number of network nodes, Ri is the number of triangles formed by node i
and its neighbor nodes and ki is the number of first-order neighbor nodes of node i.

Figure 3. Parallel visual pathways model.

Figure 4. (a) Regular network. (b) Complex network. (c) Random network.

Table 2. The average path length and clustering coefficient of a typical DNN.

DNN Average Path Length Clustering Coefficient

DNN for images VGG16 5.647 0
ResNet50 6.93 0

DNN for point clouds KP-CNN 3.972 0
ComKP-CNN 1.597 0.684

The DNN design method proposed in this paper includes three steps, as shown in
Figure 5. First, the existing network designed by researchers is selected as the backbone,
and the network is extended to a global coupling network. Then, the network is trained to
obtain each edge weight. If the edge weight is small, the edge is considered to play a small
role in extracting features, so the edge is deleted. Then, the network is retrained to obtain a
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complex network with a small-world effect. Based on complex network theory, this method
can design a DNN with excellent performance and can better extract the input data features.
This design can be used not only in the design of point cloud feature extraction networks
but also in the design of feature extraction networks for images, text, voice and other types
of data.

Figure 5. The proposed DNN design method is based on complex network theory.

In this paper, a Kernel Point Convolution Neural Network (KP-CNN) [34] is used
as the backbone to sample the point cloud. To prevent gradient explosion and gradient
disappearance, the residual structure in KP-CNN is retained. The feature extraction module
is designed using the above network design method, called the Complex Kernel Point
Convolution Neural Network (ComKP-CNN). The KP-CNN used in this paper includes a
KPConv Block (ConvBlock), as shown in Equation (5), and 10 Residual Blocks (ResBlock),
as shown in Equation (6).

Fout = AF{GN[Θ(Fin)]}, (5)

where Fin is the input features, Fout is the output features, Θ(•) is KPConv, GN[•] is group
normalization, and AF{•} is the activation function. LeakyReLU is adopted in this paper.

Fout = UB2{CB[UB1(Fin)]}+ UB3[Max(Fin)], (6)

where CB[•] = AF{GN[Θ(•)]} is ConvBlock, UB(•) = AF{GN[MLP(•)]} is a unary
block, which is mainly responsible for integrating the feature channels, MLP(•) is MLP
and Max(•) is max pooling. When the channels of Fin are not equal to the channels of Fout,
UB3(F) = AF{GN[MLP(F)]}; otherwise, UB3(F) = F. When the point cloud is sampled
down by the ResBlock, Max(•) is used to sample the input features at the short edge;
otherwise, Max(•) is not used.

KP-CNN constructs a simple chain network with features as nodes and feature extrac-
tion layers as edges. In this paper, UB2{CB[UB1(Fin)]} (AddBlock) is used as the added
edge to build a global coupling network, which is called the global coupling KP-CNN, as
shown in Figure 6a. Then, we train the network, remove the edges with small weights
and retrain the network to obtain a complex network with a small-world effect, called
ComKP-CNN, as shown in Figure 6c.
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Figure 6. The structure of the global coupling KP-CNN (a), global coupling KP-CNN after training
(b) and ComKP-CNN (c).

The feature extracted from ComKP-CNN is input to the decoder, and the coordinates
of each point are output. The KP-FCNN is utilized as the decoder, which consists of nearest
upsampling and unary convolution. Features are transmitted from the intermediate layers
of the encoder to the decoder through skip links, as shown in Figure 7.

Figure 7. The structure of the self-supervised model.

3.2. Feature Embedding Module
3.2.1. GBSelf-Attention

Global context has proven critical in many computer vision tasks [28,45,46]. Since our
model estimates the transformation matrix through the global features of the point cloud,
rather than through the correspondences, the model needs to obtain the transformation-
variant information of the point cloud. Therefore, the point coordinates are explicitly
embedded into the features so that the features have transformation-variant characteristics.
Additionally, the geometric features of the overlapping part of the source point cloud and
template point cloud have geometric consistency, so we explicitly embed the distance
information between points with transformation invariance into the features. Inspired by
nonlocal neural networks, we design a geometric GBSelf-attention, as shown in Figure 8, to
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learn the global correlations in both feature and geometric spaces among the downsampled
points for each point cloud. We describe the computation for downsampled points P̃, and
the same goes for Q̃. The feature of FP̃ ∈ R|P̃|×d f is taken as the input feature of GBSelf-
attention and the output feature P̃, and the same goes for Q̃. The feature of FP̃GB ∈ R|P̃|×d f

can be computed by

FP̃GB = MLP[so f tmax(SP̃P̃)(FP̃V)] + FP̃, (7)

where MLP[•] is the MLP, so f tmax(•) is a row-wise softmax function and SP̃P̃ ∈ R|P̃|×|P̃|
is the attention score matrix, which can be computed as

SP̃P̃ =

|P̃|
∑

i=1

[
(FP̃Q)(EiR)T

]
+ (FP̃Q)(FP̃K)T√

d f

, (8)

where Q, K, V, R ∈ Rd f×d f are the respective projection matrices for queries, keys and
values, E ∈ R|P̃|×|P̃|×d f is the geometric structure embedding and Ei ∈ R|P̃|×d f is the ith
element of E.

Figure 8. The computation graph of GBSelf-attention.

3.2.2. Coordinate Embedding

The coordinate embedding eC
i,j between p̃i and p̃j is computed by Equation (9):

eC
i,j =

1
2

xi + yi + zi + xj + yj + zj

|x|max + |y|max + |z|max
, (9)

where (xi, yi, zi) and
(
xj, yj, zj

)
are the coordinates of p̃i and p̃j, respectively, and |x|max,

|y|max and |z|max are the maximum distances between point cloud P̃ and the origin along
the coordinate axis.

3.2.3. Distance Embedding

Give any two points p̃i, p̃j ∈ R3 in P̃, and define the distance between them as
di,j =

∥∥ p̃i − p̃j
∥∥

2. The distance embedding eD
i,j between them is computed by applying a

sinusoidal function [47] on di,j
/

αd. Here, αd is a hyperparameter used to tune the sensitivity
to distance variations.
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Finally, the geometric structure embedding ei,j is computed by aggregating the coordi-
nate embedding and the distance embedding:

ei,j = copy
(

eC
i,j, d f

)
C + copy

(
eD

i,j, d f

)
D, (10)

where copy(x, d) ∈ Rd represents copying x as a vector with dimension d, and C, D ∈
Rd f×d f are the respective projection matrices for the distance embedding and the coordi-
nate embedding.

3.3. Feature Fusion Module

Given the GBSelf-attention feature FP̃GB, FQ̃GB with the distance and coordinate
embedding for P̃ and Q̃, respectively, the FBSelf-attention feature FP̃FB of P̃ is computed
with the GBSelf-attention feature FP̃GB and FQ̃GB:

FP̃FB = MLP
[
so f tmax

(
SP̃Q̃

)(
FQ̃GBV

)]
+ FP̃GB, (11)

where SP̃Q̃ ∈ R|P̃|×|Q̃| is the attention score matrix, which is computed as the feature
correlation between FP̃GB and FQ̃GB:

SP̃Q̃ =
(FP̃GBQ)

(
FQ̃GBK

)T√
d f

. (12)

GBSelf-attention embeds the coordinate information as transformation-variant and the
distance information as transformation-invariant into each individual point cloud so that
the features can explicitly capture the geometric structure information. FBCors-attention
enables two point clouds to perceive each other’s features so that the geometric consistency
of the overlapping part can be transmitted interactively between the two point clouds.
Finally, symmetric function max pooling is used to capture the global features FP̃g ∈ Rd f

and FQ̃g ∈ Rd f and stacks FP̃g and FQ̃g in the channel dimension to obtain FP̃Q̃ ∈ R2d f . The
process is as follows:

FP̃Q̃ = Cat
[

Max(FP̃FB), Max
(

FQ̃FB

)]
, (13)

where Cat[a, b] represents stacking a and b in the channel dimension, and Max(•) :
R|P̃ or Q̃|×d f → Rd f represents the max pooling of point cloud features in the dimension
of points.

3.4. Registration Module

MLP is used to estimate the transformation matrix because of its prominent fitting
characteristics. The registration module has five hidden layers, 1024, 1024, 512, 512, 256, and
an output layer of size M + 3, whose parameters represent the estimated transformation T.
The first M of the output values are used to represent the rotation, and last three represent
the translation vector t̂ ∈ R3. The rotation matrix R̂ ∈ SO(3) can represent the point
cloud rotation, where M = 9, or by the rotation quaternion q̂ ∈ so(3), where M = 4. The
experimental results show that PointCNT achieves better registration results when the
rotation quaternion is used to represent rotation. Therefore, we use the rotation quaternion
to represent point cloud rotation.

3.5. Loss Function

The loss function L consists of registration loss LReg and self-supervised loss LUnsup:

L = LReg + αLUnsup, (14)
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where α ∈ (0, 1) is the self-supervised coefficient, which is used to balance the role of the
self-supervised module on the model.

Referring to DCP [3], we use the following loss function to measure our model’s
agreement with the ground-truth rigid motions:

LReg =
∥∥∥R̂TRg − I

∥∥∥2

2
−
∥∥t̂− tg

∥∥2
2 − λ‖θ‖2

2, (15)

where R̂ and t̂ represent the rotation matrix and translation vector estimated by PointCNT,
respectively, and Rg and tg denote the ground truth. The first two terms define a simple
distance on SE(3). The third term denotes Tikhonov regularization of the PointCNT
parameters θ, which serves to reduce the network complexity.

A self-supervised module is introduced to enhance the feature extraction capability of
our method. The loss function of the self-supervised module is as follows:

LUnsup =
1
|P|

|P|

∑
i=1

ρ
(

pi, ψ
[
φ
(

Fpi

)])
+

1
|Q|

|Q|

∑
i=1

ρ
(
qi, ψ

[
φ
(

Fqi

)])
, (16)

where φ(•) is the ComKP-CNN, ψ[•] is the decoder and ρ(a, b) represents some distance
between a and b. In this paper, ρ(a, b) = ‖a− b‖2.

4. Experiments and Results

In this section, we carry out experiments to study the point cloud registration method
proposed in this paper. In Section 4.1, we introduce the details of the experiment, including
the dataset and evaluation metrics. In Section 4.2, our method is evaluated on the CAD
simulation dataset ModelNet40 and the outdoor dataset KITTI. In Section 4.3, ablation
experiments are carried out to study the effects of ComKP-CNN, self-supervised module,
coordinate embedding, distance embedding, FBCross-attention, max pooling as symmetric
function and rotation quaternion as the representation of point cloud rotation on the
model. The improvement of ComKP-CNN on other point cloud registration methods
is also studied, which verifies the performance of the DNN design method proposed in
this paper.

4.1. Implementation Details

We implement PointCNT in PyTorch. The experiment was carried out on a single
Graphic Processing Unit (GPU) server. The GPU is an NVIDIA GeForce RTX3090, and the
operating system is Ubuntu 20.04. The initial learning rate is set to 10−4, and the Adam [48]
optimization method and cosine annealing warm restart [49] learning rate adjustment
method are utilized. All models are trained for 100 epochs.

4.1.1. Dataset Used in the Experiments

ModelNet40 [50] contains 3D CAD models from 40 categories. It is a widely used
dataset for training 3D deep learning networks. We split ModelNet40 into two parts, each
of which contains 20 point cloud categories. One part is split into a training set and a testing
set according to the proportion of 8:2 to perform same-category testing. The other part is
used to perform cross-category testing. ModelNet40 is a simulation dataset with similar
characteristics to industrial products. This paper conducts experiments on the ModelNet40
dataset because point cloud registration has been applied to industrial product quality
inspection. To verify the effectiveness of our model, we also conduct experiments on the
3DMatch dataset and KITTI dataset. 3DMatch [51] contains 62 scenes, among which 46 are
used for training, 8 for validation and 8 for testing. KITTI contains point clouds captured
with a Velodyne HDL64 LiDAR in Karlsruhe, Germany, together with the “ground truth”
poses provided by a high-end GNSS/INS integrated navigation system. KITTI [52] contains
point clouds captured with a Velodyne HDL64 LiDAR in Karlsruhe, Germany, together
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with the “ground truth” poses provided by a high-end GNSS/INS integrated navigation
system.

4.1.2. Evaluation Metrics

We evaluate PointCNT with three metrics: (1) Relative Rotation Error (RRE), the
geodesic distance between estimated and ground-truth rotation matrices; (2) Relative Trans-
lation Error (RTE), the Euclidean distance between estimated and ground-truth translation
vectors; and (3) Registration Recall (RR), the fraction of point cloud pairs whose RRE and
RTE are both below certain thresholds (i.e., RRE < 5° and RTE < 0.01).

RRE
(
R̂
)
= arccos

trace
(
R̂TRg

)
− 1

2
. (17)

RTE
(
t̂
)
=
∥∥t̂− tg

∥∥
2. (18)

4.2. Model Evaluation Experiment

Following PointNetLK [5], we train and evaluate PointCNT on ModelNet40. During
the training, the rigid transformation Tg is randomly generated, where the rotation is in the
range of [0, 45] degrees with arbitrarily chosen axes, and translation is in the range [0, 0.8].
For a fair comparison, initial translations for testing are in the range [0, 0.3], and initial
rotations are in the range of [0, 80] degrees. The traditional methods, ICP and one-stage
methods, PointNetLK, PCRNet and FMR, and two-stage methods, DCP, GeoTransformer
and PointDSC, are selected as the baseline.

4.2.1. Train and Test on Same Object Categories

We use 20 ModelNet40 object categories to train our model and use the same 20 object
categories to test our model. The results are shown in Figure 9 and Table 3. When the
initial rotation angle is less than 40 degrees, the RRE, RTE and RR of PointCNT are close to
those of the two-stage model. When the initial rotation angle is greater than 40 degrees,
the RR of PointCNT is slightly lower than that of GeoTransformer and PointDSC, but it
still exceeds DCP, traditional methods and one-stage methods. Compared with traditional
methods and other one-stage methods, PointDSC is less sensitive to the initial position of
the point cloud. This is because we utilize complex network theory to design a feature
extraction network ComKP-CNN, which can extract the point cloud features better, and
we explicitly embed the coordinate information and distance information to features in
the feature embedding module. The results also show that compared with the traditional
methods and other one-stage methods, our method is insensitive to the initial angle and
achieves registration accuracy similar to that of two-stage methods.

Figure 9. Comparison results of different methods under the same categories.
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Table 3. Comparison results of different methods under the same categories.

Initial
Angle (°) ICP PointNetLK PCRNet FMR DCP GeoTransformer PointDSC PointCNT

(Ours)

RRE

0 9.0583 0.0291 0.0867 0.0559 0.0484 0.0341 0.0574 0.0081
10 11.1343 3.1020 2.1663 1.5260 0.6368 0.6518 0.5333 0.5488
20 12.0865 5.1491 3.1363 2.6720 2.1669 1.1784 1.0502 2.1426
30 13.1300 6.0747 4.0494 3.1946 2.0129 2.0468 1.1013 2.5567
40 16.0468 7.0898 6.0083 3.1537 2.6155 2.0655 1.5227 3.1776
50 20.1213 10.0190 8.0598 4.0932 4.1018 3.6256 1.8021 3.4471
60 31.1141 16.1352 9.0943 6.0841 4.3775 4.0737 2.5845 4.0157
70 37.1181 32.1661 13.0590 10.0162 7.1807 4.0254 3.0133 8.1355
80 56.0147 58.1466 30.1745 42.0883 12.1429 5.1880 4.0809 12.1752

RTE

0 0.0752 0.0001 0.0001 0.0003 0.0003 0.0001 0.0002 0.0002
10 0.0702 0.0031 0.0031 0.0031 0.0020 0.0011 0.0002 0.0021
20 0.0653 0.0041 0.0031 0.0021 0.0011 0.0020 0.0012 0.0021
30 0.0661 0.0062 0.0041 0.0031 0.0018 0.0012 0.0010 0.0031
40 0.0801 0.0080 0.0062 0.0050 0.0033 0.0018 0.0020 0.0037
50 0.0903 0.0102 0.0090 0.0075 0.0043 0.0031 0.0017 0.0053
60 0.1000 0.0202 0.0171 0.0121 0.0083 0.0047 0.0033 0.0083
70 0.1201 0.0402 0.0251 0.0402 0.0111 0.0051 0.0042 0.0122
80 0.1300 0.0701 0.0452 0.0601 0.0141 0.0102 0.0072 0.0140

4.2.2. Train and Test on Different Object Categories

We train PointCNT with 20 ModelNet40 object categories and then test PointCNT
with another 20 object categories. The results are shown in Figure 10 and Table 4. The
performance of our model is obviously better than that of other one-stage methods, which
shows that our model has good generalization performance.

Figure 10. Comparison results of different methods under the different categories.

Table 4. Comparison results of different methods under the same categories.

Initial
Angle (°) ICP PointNetLK PCRNet FMR DCP GeoTransformer PointDSC PointCNT

(Ours)

RRE

0 9.0959 0.1845 0.1469 0.0092 0.0133 0.0554 0.1145 0.0278
10 11.0771 3.1107 3.1902 1.6782 0.7943 0.5084 1.1477 1.0007
20 12.0457 5.6493 3.0634 2.6482 2.1269 1.1253 1.1978 2.3915
30 13.0583 7.0153 5.1618 3.0255 2.3756 2.4167 1.3391 2.6777
40 16.0784 8.1973 6.9155 3.2291 3.1534 3.0080 1.7222 3.0906
50 20.0064 12.1962 9.0828 8.1173 4.0734 3.8179 2.1880 5.1831
60 31.1160 17.0211 13.1846 15.0505 4.6581 4.0699 2.5154 5.3267
70 37.1035 33.1767 20.1443 28.1324 8.1459 4.0913 3.5691 9.0556
80 56.0563 62.0186 34.0484 39.1745 12.1727 6.1058 4.1685 13.0916
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Table 4. Cont.

Initial
Angle (°) ICP PointNetLK PCRNet FMR DCP GeoTransformer PointDSC PointCNT

(Ours)

RTE

0 0.0749 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0699 0.0030 0.0029 0.0020 0.0020 0.0010 0.0000 0.0022
20 0.0650 0.0041 0.0029 0.0019 0.0014 0.0021 0.0011 0.0020
30 0.0659 0.0070 0.0050 0.0036 0.0018 0.0014 0.0009 0.0033
40 0.0799 0.0090 0.0080 0.0044 0.0034 0.0016 0.0024 0.0037
50 0.0901 0.0130 0.0119 0.0079 0.0050 0.0036 0.0017 0.0055
60 0.1185 0.0251 0.0190 0.0150 0.0079 0.0050 0.0031 0.0110
70 0.1150 0.0459 0.0300 0.0501 0.0130 0.0060 0.0045 0.0140
80 0.1271 0.0750 0.0549 0.0701 0.0169 0.0120 0.0079 0.0181

4.2.3. Gaussian Noise Experiments

We conduct experiments to study the robustness of PointCNT to noise. PointCNT
is trained and tested on the same 20 object categories of ModelNet40. The range of the
standard deviation of Gaussian noise is [0, 0.05]. The results are shown in Figure 11 and
Table 5. Our model is robust to noise, and the registration results are almost unaffected by
noise. This is because GBSelf-attention and FBSelf-attention are nonlocal neural networks
that can perceive global point features.

Figure 11. Comparison results of different Gaussian noises.

Table 5. Comparison results of different methods under the same categories.

Gaussian
Standard Deviation 0 0.01 0.02 0.03 0.04 0.05

RRE

0 0.0029 0.0123 0.0133 0.0125 0.0071 0.0002
10 0.5095 0.4869 0.5851 0.7079 0.6462 0.6709
20 2.0118 2.1917 2.1138 2.3090 2.2119 2.3873
30 2.5086 2.5101 2.6973 2.6055 2.7947 2.6089
40 3.0057 3.4008 3.1896 3.5051 3.4001 3.1924
50 3.3896 3.6013 3.6986 3.4945 3.7084 3.7896
60 3.9989 4.2122 4.3876 4.1903 4.4972 4.5954
70 7.9855 8.3915 8.1942 8.4931 8.7858 8.6007
80 11.9947 13.0138 13.0043 13.4954 13.1888 13.7911

RTE

0 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001
10 0.0020 0.0020 0.0017 0.0021 0.0021 0.0024
20 0.0019 0.0022 0.0025 0.0024 0.0024 0.0026
30 0.0029 0.0029 0.0035 0.0038 0.0036 0.0036
40 0.0036 0.0039 0.0036 0.0037 0.0040 0.0042
50 0.0051 0.0053 0.0054 0.0054 0.0055 0.0056
60 0.0082 0.0084 0.0083 0.0083 0.0083 0.0084
70 0.0119 0.0118 0.0130 0.0133 0.0125 0.0135
80 0.0143 0.0155 0.0150 0.0152 0.0161 0.0161
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4.2.4. Partial Overlap Experiments

Partial overlap is a problem that point cloud registration has to face. A model has
practical application value only if it can achieve acceptable registration results in the case of
partial overlap. We manually remove part of the point cloud to compare the performance
on the partial overlap. PointCNT is trained and tested on the same 20 object categories of
ModelNet40. The range of the standard deviation of Gaussian noise is 0.05. The results
are shown in Table 6, and the qualitative visualization results are shown in Figure 12.
PointCNT achieves a registration result similar to two-stage methods, and the computation
speed is faster than that of two-stage methods. This is because our model is end to end
and does not need to find correspondences. The RR of our model is much higher and the
RRE and RTE are much lower than those of traditional methods and other one-stage and
two-stage methods. This is because FBSelf-attention enables the source point cloud and the
template point cloud to perceive each other’s features so that the geometric consistency of
the overlapping part can be transmitted interactively between the two point clouds.

Table 6. Comparison results of different methods in the case of partial overlap.

Model RRE (°) RTE RR (%) Time (s)

ICP 17.3752 0.0253 82.3 0.12

PointNetLK 17.3752 0.0253 82.3 0.12
PCRNet 9.5863 0.0229 85.7 0.16
FMR 8.8724 0.0183 88.2 0.08

DCP 4.7283 0.0067 95.2 0.21
GeoTransformer 3.6878 0.0042 97.1 0.23
PointDSC 3.4586 0.0036 97.3 0.24

PointCNT (Ours) 4.5128 0.0064 96.4 0.15

Figure 12. Partial overlap qualitative visualization registration results of different methods at different
initial angles. The initial angles of (a–d) are 80, 60, 40 and 20, respectively. Green represents the
source point cloud, red represents the template point cloud, and blue represents the registered source
point cloud.

4.2.5. Effectiveness of PointCNT

In order to verify the effectiveness of the proposed model on different types of datasets,
we carried out experiments on the indoor dataset 3DMatch and the outdoor dataset KITTI.
We use 3DMatch training data preprocessed by [53]. We split KITTI into two groups,
training and testing. The training group includes 00–07 sequences, and the testing group
includes 08–10 sequences. As shown in Table 7, PointCNT achieves good point cloud
registration results on 3DMatch and KITTI, which proves the effectiveness of our model.
Kitti is a natural object dataset. The excellent performance of the model on KITTI proves
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that the feature extraction capability will not be limited according to the attributes and
characteristics of the point cloud spatial distribution.

Table 7. Point cloud registration results of PointCNT on 3DMatch and KITTI.

Dataset RRE (°) RTE (cm) RR (%)

3DMatch 0.3258 7.3854 93.6
KITTI 0.2614 7.9368 97.2

4.3. Ablation Experiments

We conduct ablation experiments on ModelNet40 to study the effects of ComKP-CNN,
self-supervised module, coordinate embedding, distance embedding, FBCross-attention,
max pooling as the symmetric function and rotation quaternion as the point cloud ro-
tation representation on the model. The effect of each module on registration accuracy
improvement is verified. PointCNT is trained and tested on the same 20 object categories
of ModelNet40 with partial overlap. The range of the standard deviation of Gaussian noise
is 0.05. The results are shown in Table 8.

Table 8. The results of ablation experiments.

CK SS CE DE FB MP AP RQ RM RRE (°) RTE RR (%)

baseline X X 6.7322 0.0135 85.9
CK X X X 5.3264 0.0083 89.3
SS X X X 5.7217 0.0087 87.4
CE X X X 5.6429 0.0086 87.6
DE X X X 5.8141 0.0088 86.9
FB X X X 5.5833 0.0085 88.1
MP X X 6.0135 0.0090 86.6
RQ X X 6.1078 0.0091 86.4
SS+CE+DE+FB+MP+RQ X X X X X X 4.8463 0.0075 94.1
CK+CE+DE+FB+MP+RQ X X X X X X 4.7234 0.0067 95.2
CK+SS+DE+FB+MP+RQ X X X X X X 4.7832 0.0070 94.8
CK+SS+CE+FB+MP+RQ X X X X X X 4.7138 0.0066 95.3
CK+SS+CE+DE+MP+RQ X X X X X X 4.8195 0.0073 94.4
CK+SS+CE+DE+FB+AP+RQ X X X X X X X 4.6618 0.0069 95.6
CK+SS+CE+DE+FB+MP+RM X X X X X X X 4.6576 0.0068 95.8
CK+SS+CE+DE+FB+MP+RQ (Ours) X X X X X X X 4.5128 0.0064 96.4

Note: CK is ComKP-CNN, SS is self-supervised module, CE is coordinate embedding, DE is distance embed-
ding, FB is FBCross-attention, MP is max pooling, AP is average pooling, RQ is rotation quaternion and RM is
rotation matrix.

The results show that the complex ComKP-CNN, self-supervised module, coordinate
embedding, distance embedding and FBCross-attention all improve the model registration
accuracy. Among them, ComKP-CNN contributes the most to the model and reduces RRE
and RTE by 0.3335 and 0.0011, respectively, and RR increases by 2.3%, which indicates that
ComKP-CNN designed in this paper is effective for extracting the point cloud features.
The registration accuracy improvement by FBCross-attention is only second to that of
ComKP-CNN. This is because FBCross-attention realizes the interactive propagation of
point cloud features, including geometric consistency and coordinate difference between
source and template. Table 8 shows that the registration effect when max pooling is used
as the symmetric function in the model is better than that when average pooling is used
as the symmetric function. This is because average pooling is too smooth, which makes
the difference in global features of different point clouds become insignificant, while max
pooling does not have such a problem. When the rotation quaternion is used to represent
the rotation of the point cloud rather than the rotation matrix, the model registration effect
is better, which is the same as the experimental result of 3DRegNet [29].

Experiments are carried out to study the influence of our designed feature extraction
module (ComKP-CNN and self-supervised module), feature embedding module (coordi-
nate embedding and distance embedding) and feature fusion module (FBCross-attention
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and symmetry function) on the registration results under different initial angles. PointCNT
is trained and tested on the same 20 object categories of ModelNet40 with partial overlap.
The range of standard deviation of Gaussian noise is 0.05. The results are shown in Table 9.

Table 9. Comparison results of different models with and without ComKP-CNN.

Initial Angle 20° 40° 60° 80°
Metrics RRE (°) RTE RRE (°) RTE RRE (°) RTE RRE (°) RTE

Using ComKP-CNN 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162
Using KP-CNN 2.5185 0.0031 3.5017 0.0048 4.8912 0.0097 14.376 0.0177
Using self-supervised
modeule 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162

No self-supervised modeule 2.5032 0.0029 3.4926 0.0045 4.8128 0.0092 14.1734 0.0169
Using coordinate embedding 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162
No coordinate embedding 2.4984 0.0028 3.4586 0.0044 4.8326 0.0091 14.0128 0.0168
Using distance embedding 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162
No distance embedding 2.4815 0.0029 3.4125 0.0044 4.8402 0.0091 13.9821 0.0166

Using FBCross-attention 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162
No FBCross-attention 2.5148 0.003 3.4824 0.0046 4.8621 0.0094 14.2675 0.0172
Using max pooling 2.4273 0.0026 3.2351 0.0041 4.6168 0.0085 13.8413 0.0162
Using average pooling 2.4637 0.0028 3.3861 0.0043 4.8236 0.0087 13.9643 0.0165

The results show that our designed feature extraction module, feature embedding
module and feature fusion module can improve the registration accuracy of the model
when the point cloud has different initial angles. And the larger the initial angle, the more
obvious the effect of the module we designed on improving the accuracy of registration.
Experiments prove the effectiveness of the designed feature extraction module, feature
embedding module and feature fusion module in different initial angles.

4.4. Effectiveness of ComKP-CNN

One of the important contributions of this paper is to propose a DNN design method
and design a new point cloud feature extraction framework ComKP-CNN. Therefore, we
use ComKP-CNN to replace the feature extraction module of other point cloud registration
frameworks to verify the effectiveness of ComKP-CNN. Table 10 shows that ComKP-
CNN reduces the registration errors of PointNetLK, PCRNet, FMR, DCP, PointDSC and
GeoTransformer to varying degrees and improves the registration accuracy. This indicates
the correctness of our DNN design idea based on complex network theory. This idea is
expected to be extended to the design of deep learning frameworks in other fields.

Table 10. Comparison results of different models with and without ComKP-CNN.

PointNetLK PCRNet FMR DCP GeoTransformer PointDSC

Without ComKP-CNN
RRE (°) 17.3752 9.5863 8.8724 4.7283 3.6878 3.4586
RTE 0.0253 0.0229 0.0183 0.0067 0.0042 0.0036
RR (%) 82.3 85.7 88.2 95.2 97.1 97.3

With ComKP-CNN
RRE (°) 14.8463 7.8362 7.2156 3.6748 3.1163 3.0376
RTE 0.0221 0.0204 0.0168 0.0055 0.0037 0.0034
RR (%) 86.6 87.8 90.4 96.3 97.7 97.9

5. Discussion

It can be concluded that PointCNT is a novel and competitive registration algorithm for
partial assignment tasks from the above extensive experiments. Mainly, some meaningful
discussions are summarized below.

We conducted an experiment on the same object categories and different object cate-
gories on ModelNet40. The experiment shows that the accuracy of deep learning methods
is significantly better than traditional methods, and our method’s registration accuracy is
close to that of two-stage methods, and it has good generalization performance. The noise
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experiment shows that our method is minimally affected by noise. Our method shows
advanced robustness in point cloud registration under noise interference. Partial overlap
is a problem that point cloud registration has to face. The partial overlay experiment
shows that our method achieves high registration accuracy in cases where point clouds
only partially overlap, and the registration accuracy is much higher than other one-stage
methods. The ablation experiment shows that ComKP-CNN contributes the most to the
model and reduces RRE and RTE by 0.3335 and 0.0011, respectively, and RR increases by
2.3%, which proves the effectiveness of the deep learning model design method based on
complex network theory proposed in this paper.

However, the point cloud registration accuracy of the proposed method is still lower
than that of the two-stage method. In addition, although the method proposed in this paper
is a one-stage method with fast inference speed and real-time performance, PointCNT is
still complex and not easy to deploy.

6. Conclusions

We propose an efficient and high-precision one-stage point cloud registration method.
The DNN design method based on complex network theory can not only be used for the
design of point cloud feature extraction network but is also expected to be applied to
the design of feature extraction networks for image, text, voice and other types of data.
The results show that the designed ComKP-CNN can efficiently extract the features of
point clouds, significantly reduce the error of point cloud registration and is expected to be
applied to 3D target detection, semantic segmentation and other tasks. The results also show
that the self-monitoring module is helpful for the model to better extract the features of the
point cloud. In addition, the feature embedding module explicitly embeds the geometric
information into the point cloud feature, which is helpful for point cloud registration. We
also find that FBCross-attention makes the features of source point cloud and template
point cloud perceptible to each other and improves the point cloud registration accuracy.

The proposed method of explaining and designing a deep learning model based on
complex network theory is a novel idea. The method proposed in this paper is expected to
be applied to 3D reconstruction, map reconstruction, digital twinning and other fields. In
the future, we will carry out further detailed research on this method in the field of image
recognition. We will also carry out research on model compression and model deployment.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-Dimensional
3D Three-Dimensional
3DRegNet Deep Neural Network for 3D Point Registration
3Dsc 3D Shape Context
4PCS 4-Points Congruent Sets
ANNs Artificial Neural Networks
CAD Computer-Aided Design
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ComKP-CNN Complex Kernel Point Convolution Neural Network
ConvBlock KPConv Block
DCP Deep Closest Point
DeepVCP Deep Virtual Corresponding Points
DGR Deep Global Registration
FBCross-attention Feature-based Cross-attention
FMR Feature-Metric Registration
FPFH Fast Point Feature Histogram
GBSelf-attention Geometric-based Self-attention
GeoTransformer Geometric Transformer
Go-ICP A Globally Optimal Solution to 3D ICP Point-set Registration
GPU Graphic Processing Unit
ICP Iterative Closest Point
KP-CNN Kernel Point Convolution Neural Network
KPConv Kernel Point Convolution
LiDAR Light Detection and Ranging
LK Lucas–Kanade Algorithm
MLP Multilayer Perceptron
NDT Normal Distributions Transform
PCA Principal Component Analysis
PCRNet Point Cloud Registration Network using PointNet Encoding
PFH Point Feature Histogram

PointCNT
A One-Stage Point Cloud Registration Approach Based on Complex
Network Theory

PointDSC Robust Point Cloud Registration using Deep Spatial Consistency
PointNetLK Robust and Efficient Point Cloud Registration using PointNet
PRNet Partial Registration Network
RANSAC Random Sample Consensus
ResBlock Residual Blocks
RGM Robust Point Cloud Registration Framework Based on Deep Graph Matching
RR Registration Recall
RRE Relative Rotation Error
RTE Relative Translation Error
SVD Singular Value Decomposition
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