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Abstract: Knowledge about the spatial distribution of seagrasses is essential for coastal conserva-
tion efforts. Imagery obtained from unoccupied aerial systems (UAS) has the potential to provide
such knowledge. Classifier choice and hyperparameter settings are, however, often based on time-
consuming trial-and-error procedures. The presented study has therefore investigated the perfor-
mance of five machine learning algorithms, i.e., Bayes, Decision Trees (DT), Random Trees (RT),
k-Nearest Neighbor (kNN), and Support Vector Machine (SVM) when used for the object-based
classification of submerged seagrasses from UAS-derived imagery. The influence of hyperparameter
tuning and training sample size on the classification accuracy was tested on images obtained from
different altitudes during different environmental conditions. The Bayes classifier performed well
(94% OA) on images obtained during favorable environmental conditions. The DT and RT classifier
performed better on low-altitude images (93% and 94% OA, respectively). The kNN classifier was
outperformed on all occasions, while still producing OA between 89% and 95% in five out of eight
scenarios. The SVM classifier was most sensitive to hyperparameter tuning with OAs ranging be-
tween 18% and 97%; however, it achieved the highest OAs most often. The findings of this study will
help to choose the appropriate classifier and optimize related hyperparameter settings.

Keywords: object-based image analysis; OBIA; unoccupied aerial systems; UAS; drones;
photogrammetry; machine learning; hyperparameter; seagrasses; coastal zone mapping; Limfjorden

1. Introduction

Seagrass beds are a key habitat in many coastal marine environments, providing a
wide range of important ecosystem services such as improving water quality by growth-
dependent nutrient uptake [1]; providing sediment stabilization [2]; supporting com-
plex food webs [3]; and serving as a shelter, hatching, and nursery grounds for many
species [4–6]. Despite being protected in many coastal waters, seagrass habitats around the
world are in decline due to both natural and anthropogenic stressors [7–10]. Knowledge
about the spatial distribution, habitat structure, and health status of seagrass beds is essen-
tial for the successful implementation of coastal conservation and restoration plans [11,12].
Different monitoring techniques are being used to measure these parameters, ranging from
in-water methods involving diver observations, photos, and/or video recordings, to air-
and space-borne remote sensing [13]. While in-water methods provide data of very high
spatial resolution, they are often highly limited in spatial extent, time-consuming, and labor-
intensive. Traditional air- and space-borne remote sensing techniques on the other hand
have the ability to map large areas at a lower cost per unit area [14], but are, however, often
lacking the spatial resolution required to solve specific monitoring tasks. In recent years,
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unoccupied aerial systems (UAS) have received attention due to their potential of compro-
mising between the survey methods by performing monitoring tasks with a high spatial
and temporal resolution over relatively large areas in a cost- and time-effective way [15–17].
The high spatial resolution of the data provided by UASs further allows for alternative
methods of image analysis by, for example, adopting an object-based image analysis (OBIA)
approach instead of using traditional pixel-based methods. With pixel-based methods, the
basic analysis unit is limited to individual pixels, i.e., artificial square cells. OBIA on the
other hand, groups neighboring pixels of similar character into meaningful objects in the
image segmentation process and uses those as basic analysis units instead [18,19]. This is
especially useful when working with data of high spatial resolution where a real-world
object is usually depicted by multiple pixels, making it impossible for a single pixel alone to
reflect the object’s characteristics [20]. By grouping pixels to image objects, not only spectral
but also spatial, contextual, and texture features as well as hierarchical relationships of com-
plex land-cover classes can be used to aid the classification process [18]. OBIA has therefore,
on many occasions, proven to produce better results in the classification of high spatial
resolution data than traditional pixel-based methods [18,21–23], including in shallow water
marine habitats [24]. Although OBIA can improve the classification accuracy of remotely
sensed data of high spatial resolution, the user is confronted with a number of challenges
due to the many factors that influence the final classification result [25]. Therefore, OBIA
requires careful consideration before implementation. First, meaningful image objects have
to be created in the segmentation process. Then, the number and arrangement of required
training and validation samples must be evaluated. Once the samples are collected, object
features that represent the characteristics of the targeted classes in the most appropriate
way are selected. These object features are then used to train a chosen classification algo-
rithm, which allows for further fine-tuning of the classification algorithm’s hyperparameter.
Finally, an appropriate accuracy assessment method must be implemented to evaluate
the classification outcome. Numerous studies have focused on eliminating uncertainties
regarding the segmentation process [26–28], sample schemes [29], feature selection [30,31],
and accuracy assessments [32]. Also, the performance of different machine learning clas-
sifiers on high-resolution imagery was tested by many [33–37]. However, few have used
UAS-derived imagery for a comparison of classifier performances [38–40], and even fewer
have investigated the effect of the classifiers’ hyperparameter settings on classification
accuracies [41,42]. Due to variations between study areas, data collection procedures,
and environmental conditions during data collection, it is difficult to derive generalized
conclusions regarding the optimal choice of classification algorithm and hyperparameter
settings for a specific task. A certain approach may result in a high classification accuracy
in one scenario while performing poorly in another [43]. While numerous studies have
shown that an OBIA approach is indeed very useful for analyzing imagery of coastal
vegetation, e.g., [24,44–46], the existing literature often lacks an explanation of the intricate
steps taken in the OBIA workflow and the reasoning behind using a particular classification
algorithm and related hyperparameter settings. By highlighting the importance of creating
a solid foundation for image classification within the OBIA workflow, this study for the
first time assesses the classification accuracy of five well-established machine learning
classifiers—Bayes, Decision Trees (DT), Random Trees (RT), k-Nearest Neighbor (kNN) and
Support Vector Machine (SVM)—using different hyperparameter settings on UAS-derived
imagery of a submerged seagrass bed. The results will serve as a justification for specific
classification parameter choices of future investigations and decrease the time spent on
trial-and-error procedures. To cover different potential scenarios of seagrass monitoring
tasks, images obtained from different altitudes (100 m, 30 m) during flights conducted
during different environmental conditions (favorable, unfavorable) were used along with
training sample sets of different sizes (250, 50). The overall objective of the study was to
establish, which classifier performs best in a specific combination of environmental condi-
tions, flight altitude, and available training sample set, while the more specific aim was to
analyze, how tuning of the classifiers hyperparameter affects the classification accuracy.



Remote Sens. 2023, 15, 3600 3 of 22

2. Materials and Methods
2.1. Data Collection and Processing
2.1.1. Study Area

The study area was situated along the eastern coast of the island Mors in the Limfjor-
den, Denmark (56◦46′48.1′′N 8◦51′43.6′′E) (Figure 1).
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Figure 1. Study area (C) situated along the eastern coast of the island Mors (B) in the Limfjorden,
Denmark (A).

In this area, Zostera marina beds grow on a sandy bottom to a maximum depth of 2.5 m.
In the past, seagrass distribution in the Limfjorden, as well as in many other Danish estuar-
ies, has been severely affected by oxygen depletion and reduced benthic light availability
caused by high nutrient loadings and resulting phytoplankton blooms [47]. Even though
nutrient loadings have decreased in recent years, seagrass populations have not recovered,
which explains the relatively shallow maximum growth depth of Z. marina in the study
area. Other pressure factors such as waves, ice cover during winter, high water tempera-
tures during summer, sediment perturbation by lugworms as well as anthropogenically
induced destruction from fishing gear and boating result in the partial fragmentation of
seagrass beds.

2.1.2. UAS Flights

The UAS platform used in this study was a consumer-grade, low-weight quadcopter
of the type DJI® Phantom 4 RTK. The payload was a 20 million effective pixels 1-inch
CMOS sensor-equipped RGB camera with an 84◦ field of view, 8.8 mm/24 mm focal length,
and f. 2.8–11 aperture. In total, four flights were conducted in 2021. Two on 7 April
and two on 9 September. At each date, the first flight was performed at an altitude of
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100 m and the second flight at 30 m, resulting in a Ground Sample Distance (GSD) of
27.41 mm and single image dimensions of 150 × 100 m as well as 8.22 mm GSD and
single image dimensions of 45 × 30 m, respectively. All images were taken with a nadir-
viewing angle (90◦). Image front and side overlaps were set to 75% and flight speed to
3.5 m/s during flights at 100 m altitude and 1.5 m/s during flights at 30 m altitude. One
pre-programmed flight path was used for each altitude. All flights were planned and
executed using the flight mission planning software UgCS® ver. 4.7.685 [48]. The flight
altitudes and flight dates were chosen in order to represent four different monitoring
scenarios: landscape scale studies flown at high-altitude during favorable environmental
conditions (100 m_fav), landscape scale studies flown at high-altitude during less-favorable
environmental conditions (100 m_unfav), small scale studies flown at low-altitude during
favorable environmental conditions (30 m_fav) and small scale studies flown at low-altitude
during less-favorable environmental conditions (30 m_unfav).

2.1.3. Environmental Conditions during UAS Flights

On both flight dates, the environmental conditions allowed visual detection of seagrass
on the obtained images until the maximum depth limit. Even tough turbidity (measured
with a portable turbidimeter [Hach 2100], using three samples from three locations in
the study area following UAS data collection) and chlorophyll-a (measured with a spec-
trophotometer [photoLab 7100] using three samples from three locations in the study area
following UAS data collection) concentrations were with 3.1 NTU and 4 µg/L slightly
higher on 9 September (vs. 2.3 NTU and 1 µg/L on 7 April ), the overall conditions on
7 April were less favorable for UAS-based seagrass monitoring due to other factors that
negatively affected the image quality, namely seagrass density, tidal height, and light con-
ditions. Being early in the growth season, the density of seagrass was still low, resulting in
a lower contrast to the surrounding sandy bottom. Contrasts were even further decreased
by a tidal height of +15 cm and low light conditions with a Photosynthetic Photon Flux
Density (PPFD) (measured at the shore using a handheld digital PPFD meter [Apogee
Instruments MQ-500] during UAS data collection) of 319.9 µmol/m2/s. Conditions on
9 September were, on the contrary, favorable for UAS-based seagrass monitoring. A high
shoot density, a tidal height of −9 cm, and a PPFD of 584.6 µmol/m2/s created a strong
contrast between seagrass and sand and allowed for good visibility of details. The stronger
contrast between seagrass and sand in the images obtained on 9 September is also reflected
in the classes’ mean brightness values, which differed by 21.8 on the high-altitude image
and 19.9 on the low-altitude image. On the images obtained on 7 April, the mean brightness
values of seagrass and sand differed only by 15.7 on the high-altitude image and 12.1 on the
low-altitude image. See Figure 2 for further details and visualization of the environmental
conditions during the UAS flights.

2.1.4. Production of Georeferenced Orthomosaics

Both flights conducted at 100 m altitude produced 156 images each, while 415 images
were obtained during the 30 m altitude flights. One georeferenced orthomosaic was created
for each of the four flights by stitching the obtained images using the image processing
software Agisoft Metashape Professional® ver. 1.7.4 [49]. The actual spatial resolution
of the generated orthomosaics resulting from the 100 m altitude flights conducted in
April and September was 2.9 cm/pixel and 3.1 cm/pixel, respectively. The orthomosaics
resulting from the 30 m altitude flights conducted in April and September had a spatial
resolution of 0.87 cm/pixel and 0.84 cm/pixel, respectively. For better comparability
of the classification outcomes, one rectangular Region of Interest (ROI) was defined for
each altitude. The ROI used for the 100 m altitude flights (ROI_1) covered 1.6 ha and
resulted in dimensions of 5745 × 6241 pixels and 5171 × 5617 pixels for the images based
on the flights conducted in April and September, respectively. The ROI used for the 30 m
altitude flights (ROI_2) covered 1 ha and resulted in dimensions of 15,814 × 14,962 pixels
and 16,489 × 15,601 pixels for the images based on the flights conducted in April and
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September, respectively. ROI_2 lies completely within the extent of ROI_1. The outlines of
Figure 2b,c delineate the ROIs.
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2.2. Object-Based Image Analysis
2.2.1. Experimental Setup

To assess the performance of different classification parameter settings in an OBIA
approach, the results of 240 classifications were compared. These were obtained by testing
five machine learning classifiers (Bayes, DT, SVM, RT, kNN) with different hyperparameter
settings, using two different training sample set sizes (250, 50) and images obtained from
two different altitudes (100 m, 30 m) during UAS flights conducted at different environmen-
tal conditions (favorable, unfavorable). The classification results obtained using the same
values for sample set size, flight altitude, and environmental conditions were grouped into
one scenario, resulting in eight scenarios. Each scenario produced 30 classification results
(1 × Bayes, 5 × DT, 5 × kNN, 5 × RT, 14 × SVM). See Figure 3 for an illustration of the
schematic diagram producing the 240 classification results grouped into eight scenarios.

To obtain the 240 classification results, a number of preparatory steps were taken. First,
meaningful objects were created in the image segmentation process. Then, the number
and arrangement of training and validation samples were defined. After sample collection,
object features that represented the characteristics of the targeted classes were selected. It
followed the choice of a classification algorithm with different hyperparameter settings and,
finally, the classification outcomes were compared by performing an accuracy assessment.

2.2.2. Image Segmentation

The first step of OBIA is the segmentation of the image into meaningful image ob-
jects by clustering pixels based on their spatial characteristics and spectral features [18].
The main goal of the segmentation is to create spatially continuous and homogeneous
regions that represent the real-world objects of interest in the most appropriate way. In this
study, the multiresolution segmentation algorithm in the eCognition Developer software
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ver. 10.1 [50] was used to create such meaningful image objects. This algorithm was intro-
duced by Baatz and Schäpe [51] and is a widely used region-based segmentation procedure.
Starting with a single pixel, the algorithm creates image objects in a bottom-up approach by
pairwise clustering those neighboring objects, which results in the smallest growth of the
internal spectral heterogeneity. Image objects grow until a certain heterogeneity threshold
is reached, which is based on a user-defined scale parameter value. In order to set the
most appropriate value for this key parameter, the Estimation-of-Scale-Parameter (ESPII)
tool was used in this study, which is a fully automated, objective, and statistically based
method introduced by Drǎguţ et al. [28], and further developed by Drǎguţ et al. [26]. By
detecting scale shifts based on the idea of local variance of object heterogeneity within a
scene, the tool calculates three optimal scales, ranging from fine scales to broader scales [28].
From these suggested scale parameter values, the one resulting in the lowest over or
under-segmentation was then chosen by the authors based on a visual assessment of the
segmented image objects. To obtain the scale parameter suggestions, all ESPII tool-specific
parameters were set to default, except the “Use of hierarchy”, which was set to 0 (0 = No).
The calculated value was then used in the multiresolution segmentation algorithm to set the
scale parameter. The segmentation was performed on all three spectral bands (red, green,
and blue). The shape parameter, which defines the ratio between shape characteristics and
spectral features contributing to the homogeneity criterion, was set to 0.1, giving spectral
features more weight. The compactness parameter, which defines the relationship between
the compactness and smoothness of objects, was set to the medium value 0.5. The same
approach was used to perform the image segmentation for all four images.
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2.2.3. Training and Validation Sample Selection

Once the segmentation process was completed, subsets of the created image objects
were assigned to training and validation sample sets. For the two targeted classes in this
study, seagrass and sand, a “small” training sample set containing 50 samples and a “large”
training sample set containing 250 samples were collected for each of the four images.
The samples were distributed randomly stratified with the largest possible distance and
proportionally by class using ArcGIS Pro, ver. 2.9.2. This required an a priori classification
of the study area, which was performed manually based on expert knowledge and visual
interpretation of the generated orthomosaic. Then, validation samples were collected, using
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the same method of sample distribution. The appropriate validation sample set size needed
to generate an error matrix was calculated using the multinomial distribution equation
originally presented by Tortora [52]

n = BΠi(1−Πi)/bi
2

where n is the total sample size, B the 100th percentile of the chi-square distribution with
1 degree of freedom and 1−α/k, Π the observed class frequency, and b the desired absolute
precision of the sample. The desired confidence level was set to 95% and the desired
precision to 5%. The calculation was performed for all four images.

2.2.4. Feature Space

After sample collection, object features have to be selected that represent the char-
acteristics of the targeted classes. The feature space optimization (FSO) tool within the
eCognition software ver. 10.1 was used to find the optimal feature selection for this
study. By evaluating the Euclidean distance in the feature space of a given training sam-
ple set, the FSO tool selects a subset of pre-selected features that results in the highest
class separation distance [30]. Based on previous studies [16,39] and expert knowledge,
16 frequently used features were pre-selected in this study. These included eight textu-
ral gray level co-occurrence matrix (GLCM) features [53] (mean, homogeneity, contrast,
correlation, dissimilarity, entropy, ang. 2nd moment, standard deviation) in all directions
and eight spectral features (means and standard deviations of the RGB bands, maximum
difference, brightness).

2.2.5. Classifiers and Hyperparameter Tuning

The performance of five well-established machine learning classifiers was tested in
this study: Bayes, Decision Trees (DT), Random Trees (RT), k-Nearest Neighbor (kNN), and
Support Vector Machine (SVM). All classifications were performed using the eCognition
developer software ver. 10.1 on a 64-bit operating system, with Intel® Core™ i9-7900 CPU
@ 3.30 GHz and 64 GB RAM.

The Bayes classifier is a readily applicable simple probabilistic classifier based on Bayes’
theorem [54] without hyperparameter tuning options. Therefore, only one classification
was performed per scenario using this algorithm.

The non-parametric DT classifier [55] uses a binary recursive partitioning procedure to
create classification or regression trees. In this study, the commonly used DT classification
and regression tree algorithm (CART) was applied. Based on attribute value tests, the
growing tree divides the training samples into homogeneous subsets until no further
divisions are possible. The complexity of the tree is determined by the maximum depth
parameter. The DT classifier was tested with five different maximum depth parameter
values (1, 5, 10,1 5, 20). All other parameters were set to their default values (Min sample
count = 0, Use surrogates = No, Max categories = 16).

The RT classifier consists of a combination of tree predictors [56]. It randomly chooses
a set of features and trains each tree with a bootstrapped sample of the training data. The
class label that obtains the most votes in the terminal nodes is then assigned to the training
sample [57]. The RT classifier was tested using five different values for the maximum depth
parameter (1, 5, 10, 15, 20). All other parameters were set to their default values (Min
sample count = 0, Use surrogates = No, Max categories = 16, Active variables = 0, Max tree
number = 50, Forest accuracy = 0.01, Termination criteria type = max tree numbers and
forest accuracy).

The kNN classifier is a non-parametric method for classifying image objects based
on the closest training examples in the feature space through an instance-based learning
approach [58], where an object gets classified according to a majority vote of its k-nearest
neighbors. The number of samples to be considered in the neighborhood of an object is
determined by the k value. The kNN classifier was tested using five different k values (1, 5,
10, 15, 20).
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The non-parametric SVM classifier [59] is a method used to find the best classification
function to distinguish members of different classes in a given training sample set [60].
Based on the concept of decision planes defining decision boundaries, the algorithm then
assigns image objects to specific classes. Different kernel functions can be applied in an
SVM model. In this study, the SVM classifier was tested using the linear and radial basis
function (rbf) kernel. An important parameter of both kernels is the cost (C) value. An
additional setting of the gamma value has to be made when using the rbf kernel. The
SVM classifier was tested using five different C values (2, 4, 6, 8, 10) with the linear
kernel while nine different combinations of C and gamma values were tested using the rbf
kernel (C = 1/g = 10−4, C = 1/g = 1, C = 1/g = 103, C = 103/g = 10−4, C = 103/g = 1,
C = 103/g = 103, C = 106/g = 10−4, C = 106/g = 1, C = 106/g = 103).

2.3. Accuracy Assessment

To evaluate the performance of the different classifiers, the producer accuracy, user
accuracy, and overall accuracy (OA) were calculated in a confusion error matrix [32], by
using the built-in accuracy assessment tool in the eCognition Developer software ver. 10.1.
The polygons created in the segmentation process served as an assessment unit, which
is the most appropriate unit for the accuracy assessment of classification using an OBIA
approach [32].

3. Results
3.1. Image Segmentation

The ESPII tool suggested three scale parameter levels for each image, ranging from
fine to broad scale. By visual assessment of the segmented objects, the second level value
was chosen for three of the four images (100 m_fav, 30 m_fav, 30 m_unfav), whereas the
first level value was chosen for 100 m_unfav. The suggested scale parameter values for the
100 m altitude flights were lower than those suggested for the 30 m altitude flights
(100 m_fav = 51, 30 m_fav = 101, 100 m_unfav = 61, 30 m_unfav = 91). The segmen-
tation of 100 m_fav produced 2442 image objects while 2735 image objects were produced
in the segmentation of 100 m_unfav. A total of 9667 image objects were produced in the
segmentation of 30_fav and 11,738 image objects resulted from the segmentation of 30_un-
fav. Table 1 shows all scale parameter values calculated by the ESPII tool, with the used
values highlighted. Figure 4 shows the segmentation performed on 30_unfav.

Table 1. Scale parameter values calculated by the ESPII tool.

Scenario Level 1 Level 2 Level 3

100 m_fav 31 51 501
30 m_fav 91 101 1521

100 m_unfav 61 91 701
30 m_unfav 59 91 1701

3.2. Training and Validation Sample Selection

The manual classification identified 67.5% (100 m_fav) and 61.7% (100 m_unfav)
seagrass cover in ROI_1 while 57.5% (30 m_fav) and 51.1% (30 m_unfav) cover were
identified in ROI_2. Sample distribution and necessary training and validation sample set
sizes resulting from these coverages are listed in Table 2. Figure 5 shows the distribution of
training and validation samples on the 30 m_unfav image.
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Table 2. Areal coverages of the targeted classes and the resulting distribution of training and
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100 m_fav 30 m_fav 100 m_unfav 30 m_unfav

Class Seagrass Sand Seagrass Sand Seagrass Sand Seagrass Sand
Areal cover 67.5% 32.5% 57.6% 42.4% 61.7% 38.3% 51.1% 48.9%

Small sample (50) 34 16 29 21 31 19 26 24
Large sample (100) 169 81 144 106 154 96 128 122
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Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 24 
 

 

Table 1. Scale parameter values calculated by the ESPII tool.  

Scenario Level 1 Level 2 Level 3 
100 m_fav 31 51 501 
30 m_fav 91 101 1521 

100 m_unfav 61 91 701 
30 m_unfav 59 91 1701 

 
Figure 4. (a) Original image 30 m_unfav; (b) Image after segmentation. 

3.2. Training and Validation Sample Selection 
The manual classification identified 67.5% (100 m_fav) and 61.7% (100 m_unfav) 

seagrass cover in ROI_1 while 57.5% (30 m_fav) and 51.1% (30 m_unfav) cover were iden-
tified in ROI_2. Sample distribution and necessary training and validation sample set sizes 
resulting from these coverages are listed in Table 2. Figure 5 shows the distribution of 
training and validation samples on the 30 m_unfav image. 

Table 2. Areal coverages of the targeted classes and the resulting distribution of training and vali-
dation samples. 

 100 m_fav 30 m_fav 100 m_unfav 30 m_unfav 
Class Seagrass Sand Seagrass Sand Seagrass Sand Seagrass Sand 

Areal cover 67.5% 32.5% 57.6% 42.4% 61.7% 38.3% 51.1% 48.9% 
Small sample (50) 34 16 29 21 31 19 26 24 

Large sample (100) 169 81 144 106 154 96 128 122 
Validation 298 143 283 208 292 183 257 245 

 

Figure 5. Sample distribution on the segmented image 30 m_unfav (yellow = sand, green= seagrass);
(a) Small training sample set (50); (b) Large training sample set (250); (c) Validation sample set.

3.3. Feature Space

Optimal feature space dimensions calculated by the FSO too were generally larger for
the same image when more samples were used. The images obtained from low-altitude
flights showed larger optimal feature dimensions than the images obtained from high-
altitude flights on the same date, regardless of the training sample set size, with the
exception of 30 m_fav. The largest feature dimension (14) was calculated for 30 m_fav,
when the sample set size was large while the smallest feature dimension (3) was calculated
for 100 m_unfav, when only a few samples were available. Class separation distances
were generally larger with images obtained during favorable conditions. The largest class
separation distance (1.61) was calculated for 30 m_fav, when the sample set size was
small, while the smallest class separation distance was calculated for 100 m_unfav (0.09),
combined with a large sample set size. The GLCM Homogeneity feature was the only
feature that was selected for all eight scenarios. The mean values of the red and green band,
the maximum difference as well as the GLCM features Entropy and Mean were selected
in all scenarios except for 100 m_unfav, combined with a small training sample set size.
All other features were selected at least once, except for GLCM Correlation, which was
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selected in none of the scenarios. Table 3 lists the optimal feature dimensions with selected
features and class distances calculated by the FSO tool. Figure 6 shows the class separation
distance at a given feature dimension.

3.4. Supervised Classification
3.4.1. Classifier Performance with Optimal Hyperparameter Settings

Figure 7 lists the obtained OAs for all 240 performed classifications. Information on
user and producer accuracies derived from the resulting confusion error matrices of all
240 classifications as well as receiver operating characteristic curves for each classification
are presented in the Supplementary Materials. The computational time required for the
single classifications varied with the size of the used training sample set, selected feature
space, classifier, image resolution, and number of image objects and ranged from 53.2 s
in scenario 6 with the Bayes classifier to 24 min and 10.4 s in scenario 3 with the SVM
classifier. Classifiers generally performed better or equally well on images obtained at
low altitudes than high altitudes. Likewise, all classifiers reached higher or equally high
OAs on all images when provided with a large sample set compared to a smaller sample
set, except for kNN when applied to the low-altitude image obtained during unfavorable
conditions (scenario 7). Regardless of the sample size, all classifiers performed better on the
high-altitude image obtained during favorable conditions (scenarios 1 and 2) than on the
high-altitude image obtained during unfavorable conditions (scenarios 5 and 6). On the low-
altitude image obtained during favorable conditions, all classifiers reached only better or
equally high OAs as the low-altitude image obtained during unfavorable conditions when
provided with a large sample set (scenario 3). When only a few samples were available, DT
and kNN performed better on the low-altitude image when obtained during unfavorable
conditions (scenario 8) rather than during favorable conditions (scenario 4). All images
reached >85% (OA level adopted by the remote sensing community as the cutoff between
acceptable and unacceptable classification results [32]). OAs with at least four classifiers,
apart from the high-altitude image obtained during unfavorable conditions, reached the
highest OAs at 84% with a large sample set and 73% with a small sample set (scenarios
5 and 6). The highest OA (97%) was reached by the SVM classifier on images from both
altitudes obtained during favorable conditions in combination with a large sample set
(scenarios 1 and 3). The lowest OA (61%) was reached by the Bayes classifier when applied
to the low-altitude image obtained during unfavorable conditions in combination with a
small sample set (scenario 6).
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Table 3. Optimal feature dimensions with selected features and class distances are calculated by the FSO tool.

Image 100 m_fav 30 m_fav 100 m_unfav 30 m_unfav

Scenario 1 2 3 4 5 6 7 8
Samples 250 50 250 50 250 50 250 50

Dimensions 12 9 14 8 9 3 11 10
Separation

distance 0.65 1.12 1.49 1.61 0.12 0.63 0.17 0.23

Features

Mean Layer 2
GLCM Homogen.
Max. Diff.
GLCM Correlat.
Mean Layer 1
GLCM Entropy
Mean Layer 3
GLCM Mean
St. Dev. Layer 3
Brightness
St. Dev. Layer 2
St. Dev. Layer 1

GLCM Correlat.
Mean Layer 2
GLCM Homogen.
Max.Diff.
Mean Layer 1
GLCM Entropy
GLCM Mean
Mean Layer 3
Brightness

St. Dev. Layer 1
Mean Layer 2
GLCM Homogen.
GLCM Correlat.
Mean Layer 1
GLCM Entropy
Max. Diff.
GLCM Mean
St. Dev. Layer 3
St. Dev. Layer 2
Brightness
GLCM Dissimilar.
GLCM StdDev
Mean Layer 3

Mean Layer 1
GLCM Homogen.
Mean Layer 2
Max. Diff.
GLCM Mean
GLCM Entropy
Brightness
GLCM Correlat.

GLCM Homogen.
GLCM Correlat.
Max. Diff.
GLCM Mean
St. Dev. Layer 2
Mean Layer 1
GLCM Entropy
St. Dev. Layer 1
Mean Layer 2

GLCM Correlat.
St. Dev. Layer 2
St. Dev. Layer 3

Mean Layer 1
Max. Diff.
GLCM StdDev
Mean Layer 2
St. Dev. Layer 1
GLCM Mean
GLCM Correlat.
GLCM Homogen.
Brightness
St. Dev. Layer 2
GLCM Entropy

Mean Layer 2
Mean Layer 1
Max. Diff.
GLCM StdDev
GLCM Mean
Brightness
GLCM Correlat.
St. Dev. Layer 1
St. Dev. Layer 2
GLCM Entropy
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The Bayes classifier outperformed the other classifiers in two out of the eight scenarios.
With an OA of 94%, Bayes was the best-performing classifier on the images from both
altitudes obtained during favorable conditions when provided with a small sample set
(scenarios 2 and 4). Equally high OAs were reached on the same images when provided
with a large sample set (scenarios 1 and 3). When images were obtained during unfavorable
conditions, the classifier only reached a good OA (90%) on the low-altitude image when
provided with a large sample set (scenario 7).

The DT classifier with an OA of 73% was the best-performing classifier on the low-
altitude image obtained during unfavorable conditions combined with a small sample set
(scenario 6). High OAs of ≥89% were produced in all low-altitude scenarios (scenarios
3, 4, 7, and 8), while the highest OA of 93% was reached when provided with a large
sample set (scenarios 3 and 7). With a small sample set, DT reached an OA of 92% on the
low-altitude image obtained during unfavorable conditions (scenario 8), which is higher
than the 89% OA reached on a low-altitude image obtained during favorable conditions
(scenario 4). When applied to the high-altitude images, the highest OA was reached at
85% when provided with a large sample set, and the image was obtained during favorable
conditions (scenario 1).

The kNN classifier was outperformed by all other classifiers in all scenarios even
though high OAs of 94% and 95% were reached on images of both altitudes obtained
during favorable conditions in combination with large sample sizes (scenarios 1 and 3,
respectively). With 90%, the kNN classifier reached a higher OA on the low-altitude image
obtained during unfavorable conditions when provided with a small sample set (scenario 8)
than on the image obtained during favorable conditions (scenario 4) or with a large sample
set on the same image (scenario 7), which both reached an OA of 89%.

The RT classifier was with an OA of 94% the best performing classifier on the low-
altitude image obtained during unfavorable conditions when provided with a large sample
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set. An equally high OA was reached on the low-altitude image obtained during favorable
conditions when also a large sample set was provided.

The SVM classifier outperformed the other classifiers in four out of the eight scenarios.
With an OA of 97%, it was the best-performing classifier on the images from both altitudes
obtained during favorable conditions when a large sample set was available (scenarios
1 and 3). On the images obtained during unfavorable conditions, it was the best-performing
classifier with an OA of 84% on the high-altitude image combined with a large sample set
(scenario 5) and with an OA of 93% on the low-altitude image when provided with a small
sample set (scenario 8).

3.4.2. Sensitivity to Hyperparameter Tuning

Figure 8 illustrates variations of OAs with changing hyperparameter settings of DT, as
well as those of kNN, RT, and SVM (when linear kernel used), while Figure 9 shows the
ranges of produced OAs of all five classifiers per scenario, considering the produced OAs
resulting from all tested hyperparameter settings.
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The DT classifier was tested using five tree depth values (1, 5, 10, 15, and 20). From
all classifiers, DT was the least sensitive to changes in hyperparameter settings. On the
images taken from both altitudes during favorable conditions, no changes at all occurred
when provided with a small sample set. In four out of the eight scenarios (scenarios 1,
3, 7, and 8), the only changes in OA were observed when changing the tree depth value
from 1 to any other value. The strongest changes in OA were observed when applied to
the high-altitude image obtained during unfavorable conditions combined with a small
sample size (scenario 6), where the OA declined by 9% from 73% to 64% with a growing
tree depth value from 1 to 20. Declines of OA with growing tree depth were also observed
on the low-altitude image obtained during unfavorable conditions, regardless of sample
size (scenarios 7 and 8), as well as on the high-altitude image obtained during favorable
conditions combined with a large sample set. The largest improvement with growing tree
depth was by 4%, observed when large sample sets were available for the low-altitude
image obtained during favorable conditions as well as for the high-altitude image obtained
during unfavorable conditions.
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The kNN classifier was tested using five different k values (1, 5, 10, 15, & 20). No
changes in OA were observed on the low-altitude image obtained during unfavorable
conditions, regardless of sample size (scenarios 7 and 8). The strongest fluctuations of
OA with changing k values were 6% and 11%, which occurred on the high-altitude image
obtained during unfavorable conditions in combination with both a small and a large
sample set, respectively (scenarios 5 and 6).
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The RT classifier was tested using five tree depth values (1, 5, 10, 15, and 20). Changes
of those affected OAs in all scenarios, ranging from 3% when small sample sets were
used on images obtained during favorable conditions (scenarios 2 and 4) to 10% on
the high-altitude image obtained during unfavorable conditions combined with a large
sample set.

The SVM classifier was tested using two different kernels (linear and rbf). Tested
hyperparameters in combination with the linear kernel where five different C values (2, 4,
6, 8, 10), while nine different combinations of C and gamma values were tested using the
rbf kernel (C = 1/g = 10−4, C = 1/g = 1, C = 1/g = 103, C = 103/g = 10−4, C = 103/g = 1,
C = 103/g = 103, C = 106/g = 10−4, C = 106/g = 1, C = 106/g = 103). The SVM classifier
was the most sensitive classifier to changes in hyperparameter settings. The strongest
fluctuation occurred with 75% on the low-altitude image obtained during unfavorable
conditions when provided with a large sample set (scenario 7), where the OAs ranged
from 18% to 93%. Lowest changes in OA were observed at 26% on the high-altitude image
obtained during unfavorable conditions, where they ranged between 46% and 72% when
provided with a small sample set (scenario 6). When the rbf kernel was chosen, lowering
the g value increased the OAs in all scenarios and in combination with a C value set to
1000, produced the highest OAs.

Contrasting the superior performance of the SVM classifier in four out of eight sce-
narios with optimal hyperparameter settings, the SVM classifier also produced the lowest
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OAs in all scenarios, when non-optimal hyperparameter settings were chosen. Figure 10
shows the produced OAs of the SVM_rbf classifier with different C and gamma values
per scenario.
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4. Discussion
4.1. Object-Based Image Analysis Workflow

The presented study has investigated the performance of five well-established ma-
chine learning algorithms, i.e., Bayes, Decision Trees (DT), Random Trees (RT), k-Nearest
Neighbor (kNN), and Support Vector Machine (SVM) when used for the object-based
classification of submerged seagrass beds from high-resolution imagery collected by an
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unoccupied aerial system (UAS). A challenge of using an object-based image analysis
(OBIA) approach is the flexibility of its framework, which requires careful consideration
during the required preparatory steps leading to the classification. These include image seg-
mentation and feature selection, which are often conducted in a subjective manner or based
on time-consuming trial-and-error procedures, e.g., [30,39,61–63]. The general high overall
accuracies (OAs) achieved by the tested classifiers in this study in at least some scenarios,
could be an indicator of the good performance of the tools used to aid the decision on
these initial but crucial steps. By applying the Estimation-of-Scale-Parameter (ESPII) tool
developed by Drǎguţ et al. [26] to determine the most appropriate scale parameter for the
image segmentation, this step was conducted in a statistically based, automated, repeatable,
and objective way. Providing the ESPII tool with images of enhanced local contrast could
further improve the performance of the tool, which could be achieved by increasing the
radiometric resolution. This might prove more important than spatial resolution in the
segmentation step when working with images of low spectral variance, as is often the
case in the remote sensing of submerged habitats. Another adjustment of the ESPII tool to
reduce over-segmentation is possible. The ESPII tool-generated scale parameter chosen in
this study resulted in segments that were considerably smaller than the real-world objects.
This over-segmentation was more appropriate compared to the next higher suggested scale
parameter value, which resulted in under-segmentation and therefore would have required
additional steps in the workflow to reclassify the under-segmented areas. Adjusting the
step size parameter of the ESPII tool could be a way to obtain less over-segmentation. The
feature space optimization (FSO) tool calculated the optimal feature space dimension in the
feature selection step. Even though the tool is best used for feature reduction in Nearest
Neighbor classifications and is known for its “black box” feature selection approach, low
accuracies, and unclear feature ranking [30], it was able to reduce the number of redundant
features, calculate class separation distances and therefore aid the choice of selected features.
The application of other feature selection tools might have further improved this step. For
example, the feature analyzing tool SEaTH (SEparability and THresholds) developed by
Nussbaum et al. [31] calculates the Jeffries–Matusita distance, which is more adequate in
a case of a two-class comparison, as was the case in this study. Incorporating these tools
into the OBIA workflow would have a great potential of improving classification results
while minimizing subjectivity and time spent on trial-and-error testing of parameters.
Yet, only a few studies seem to make use of them. Hossain and Chen [27] summarized
available tools and software packages for segmentation and optimization methods, while
Laliberte et al. [30] evaluated feature selection tools in the context of object-based classifica-
tion of high-resolution imagery.

4.2. Classifier Performance

As expected, the results of this study confirmed that the performance of the five
machine learning classifiers depends on image quality and resolution, the size of the
available training data set, and the algorithm-specific tuning of hyperparameter when
used to classify submerged seagrass beds from UAS-derived high-resolution imagery.
While in general, all classifiers were able to produce high OAs, each classifier had its
strengths and weaknesses in relation to the tested scenarios. The Bayes classifier produced
consistently high OAs when images were obtained during favorable conditions, even when
the sample set size was small. This can be attributed to the Bayes classifier being based
on conditional probability estimation. Conditional probabilities computed for objects that
were created using images taken during favorable conditions provided better separation
properties between classes as compared to those computed for objects that were created
using images taken during unfavorable conditions, as those provided less contrast. The
tree-based algorithms DT and RT performed better when applied to low-altitude images as
the low-altitude images provided a better level of detail compared to the images obtained
from higher altitudes. The kNN classifier was outperformed in all scenarios while still
producing high OAs. Interestingly, it also performed better with fewer available training
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samples on the low-altitude image obtained during unfavorable conditions. This behavior,
as well as the algorithm’s equally good performance on images obtained from both altitudes
during favorable conditions, could be attributed to the fact that the kNN classifier does
not construct an internal model in the form of mathematical equations. Instead, it uses
instances of each observation and their similarity to the k-number of neighbors and assigns
a class to an image object which is commonly occurring among those k neighbors. The
SVM classifier achieved the highest OAs most often and generally performed very well
in all scenarios; however, only when the optimal hyperparameter settings were selected.
This high sensitivity to hyperparameter tuning as well as the highest produced OAs when
tuning parameters were optimally set was likewise observed by Qian et al. [41]. When
images were taken at low altitudes during unfavorable conditions, the SVM classifier in
combination with a linear kernel performed better when provided with few samples. An
explanation for this behavior could be that the increased complexity produced by using
many training samples decreases the capability of linear separation between classes.

The ranges of produced OAs in each scenario varied strongly between the classifiers.
However, generally speaking, the results show that when images were obtained during
unfavorable conditions, the ranges of produced OAs were larger. This higher sensitivity
to hyperparameter tuning is most likely caused by the low contrast and lack of details
in the image, which makes the class separation more difficult and increases the effect of
changes in the hyperparameter settings. A similar trend can be observed when comparing
the ranges of produced OAs from images obtained at high and low altitudes, where the
higher detail and contrast of low altitude images in many cases resulted in smaller ranges
of produced OAs. The SVM classifier produced the largest ranges, spanning from the
highest or second highest to the lowest produced OAs in all scenarios. The other tested
classifiers (DT, kNN, and RT) were less sensitive to hyperparameter tuning and therefore
produced smaller ranges of OAs.

4.3. Recommendations for Classifier Application and Related Hyperparameter Settings

The consistently high OAs (94%) of the Bayes classifier and the simplicity of its
application made it a robust choice when images were obtained during favorable conditions,
even with few available training samples. When images were obtained at low altitudes
and many training samples were available, both tested tree-based classifiers proved to
be a solid choice, as they produced consistently high OAs between 91% (unfavorable
conditions) and 94% (favorable conditions), as long as the tree depth values were set
between 5 and 20. Very little to no hyperparameter tuning was necessary when the kNN
classifier was applied to images obtained during favorable conditions in combination with
large training sample sets, as it produced OAs of >91% in all cases. Greater attention to
hyperparameter settings is required when applying the SVM classifier. The high sensitivity
of the algorithm requires several trial runs to identify the scenario-dependent optimal
combination of hyperparameter settings. While failing to do so could lead to the lowest
performances of all tested classifiers, the highest OAs are likely to be achieved once the
optimal hyperparameter settings are identified (97% OA in this study). This process is
more time-consuming, and therefore, depending on the respective scenario, at least one of
the other tested classifiers can be used to achieve similar high OAs, if time is constrained. If
the data collection unavoidably was conducted during unfavorable conditions and at high
altitudes, it is important to collect enough training samples as none of the tested classifiers
was able to obtain OAs higher than 73% (DT) when few training samples were available.
By increasing the number of training samples, the Bayes classifier managed to reach 83%
OA and the SVM classifier 84% OA, with optimal hyperparameter settings.

4.4. Limitations

The recommended application of classifiers and related hyperparameter settings
resulting from this study is based on the foundation of the conducted preparatory steps
within the OBIA workflow. The tested classifiers might behave differently when deviating
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from the applied methodologies used in this study. Therefore, when put into practice, all
preparatory steps including image segmentation, sample collection, and feature selection
should be conducted as presented. Furthermore, the two-class scenario of this study should
be kept in mind when applying the results to study sites that contain more target classes
such as macroalgae and blue mussels which often coexist with seagrasses and are difficult
to separate spectrally from each other [64]. The RT classifier has for instance shown to
produce high classification accuracies in such multiclass scenarios characterized by low
inter-class separability and high intra-class variability [65]. Further research is needed to
assess the performance of the tested classifiers in mixed shallow-water marine habitats.
It should also be noted that the images used in this study contained seagrass habitats
that were fully submerged. The classifiers tested in this study might perform differently
when applied to images of exposed seagrass habitats in intertidal areas. Another aspect to
consider is that there are several other environmental factors that affect image properties
and therefore the performance of the tested classifiers than the ones dealt with in this
study. Wind speeds were, for example, low which resulted in minimal wave action and
related sun glint. Sun altitude was likewise low during all flights while cloud cover was
either high or low. However, environmental conditions that were not considered in this
study are usually avoided by practitioners due to their known negative effects on the
obtained data [66–68]. The findings of this study will therefore be relevant for the majority
of monitoring campaigns of submerged seagrass in temperate regions.

4.5. Implications for Coastal Conservation Efforts

The findings of this study provide a solid foundation for the classification parame-
ter choice when mapping submerged seagrass habitats using UAS-derived imagery. By
decreasing uncertainties around this topic and minimizing the need for time-consuming
trial-and-error approaches usually taken to solve this task, the workflow of UAS-based
seagrass monitoring becomes more user-friendly. This could encourage decision makers to
increase the use of UAS-based monitoring methods in coastal monitoring programs, which
would result in more accurate spatial information about existing seagrass beds over rela-
tively large areas and their growth/decline over time (naturally or after restoration). The
spatial distribution of seagrasses is of high ecological relevance and therefore an important
indicator for environmental quality in numerous ecological assessments. Thus, increasing
the use of UAS-based techniques would improve coastal monitoring campaigns compared
to those that rely solely on traditional methods, such as in-water surveys, which are limited
in their spatial extent, or air and space-born methods that often lack the appropriate spatial
resolution.

4.6. Future Recommendations

In combination with the tested classifiers, the applied OBIA workflow was able
to achieve high OAs, and thus proved to be an adequate choice when monitoring and
mapping seagrass beds over larger areas. Even higher OAs should be achievable when
including more recently developed but well-represented deep learning methods such
as convolutional neural networks (CNNs) or recurrent neural networks (RNNs). CNN
and RNN architecture is a hot topic in the deep learning community and a number of
studies have already demonstrated the potential of such methods. Tallam et al. [69], for
example, applied a deep learning CNN for the image segmentation and classification of
UAS-derived imagery of intertidal seagrasses, while Csillik et al. [70] used a simple CNN
to map the complex agricultural environment of a citrus tree plantation from UAS-derived
imagery. Other studies have shown that the combination of OBIA and CNN resulted in less
misclassification of fragmented coastal areas [71] and wetlands [38] than with SVM and RF or
have shown the general benefits of using the OBIA framework for CNN applications [72–74].
In particular, fine-scale change detection studies of seagrass beds could benefit from this
approach as they require highly accurate delineation of class borders. Furthermore, a
neural network trained on a large number of seagrass images obtained during a variety of
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scenarios such as the ones used in this study will most likely reduce the need for scenario-
dependent classification parameter choices. While this study has focused on the most
frequently used machine learning methods in order to address the end-user’s immediate
need for solid parameter choice support, the authors therefore encourage future studies
to investigate the potential of deep learning methods for the classification of seagrass
habitats from UAS-derived imagery. Another approach that potentially could improve
the classification results is the combination of multiple machine learning classifiers to
solve a specific task. This concept of ensemble classifiers often outperforms single ones by
using decision fusion strategies, such as majority vote, to merge the results of the different
classifiers into one combined output and has been successfully applied, amongst others, in
the mapping of wetlands [75] and arctic ecosystems [76] using satellite imagery. Finding a
suitable ensemble configuration for a particular dataset remains, however, a labor-intensive
task, as multiple arrangements of classifiers and combination strategies can be coupled.
Testing the performance of ensemble classifier configurations for the purpose of seagrass
mapping from UAS-derived imagery would therefore be worthwhile exploring.

5. Conclusions

The high OAs produced by the different tested supervised machine learning classifiers
showed that OBIA performed on UAS-derived high-resolution imagery has great potential
when used for the classification of submerged seagrasses in temperate regions. The robust
OBIA workflow applied in this study, including the tools used to aid the decision on
the initial but crucial steps such as image segmentation and feature selection, is likely to
have supported the achievement of the general high OAs. The performance of the tested
classification algorithms, however, varied with image quality and resolution, the size of
the available training data set, and the algorithm-specific tuning of hyperparameters. The
highest OAs were most often achieved by the SVM classifier, which was also most sensitive
to changes in hyperparameter settings. Depending on the scenario, at least one of the
other tested classifiers was able to produce similar high OAs; however, with less need for
hyperparameter tuning. The findings of this study will benefit practitioners in selecting
the appropriate classifier and optimizing the algorithm-related hyperparameter tuning for
achieving the best possible classification accuracy when analyzing UAS-derived images
of submerged seagrass beds. By decreasing uncertainties and time and effort spent on
choosing the most appropriate classifier set-up, the use of UAS-based techniques in coastal
monitoring programs might become more widespread, resulting in more accurate spatial
information about existing seagrass habitats and their growth/decline over time.
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