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Abstract: In recent years, tragedies caused by forest fires have been frequently reported. Forest fires
not only result in significant economic losses but also cause environmental damage. The utilization
of computer vision techniques and unmanned aerial vehicles (UAVs) for forest fire monitoring
has become a primary approach to accurately locate and extinguish fires during their early stages.
However, traditional computer-based methods for UAV forest fire image segmentation require a large
amount of pixel-level labeled data to train the networks, which can be time-consuming and costly to
acquire. To address this challenge, we propose a novel weakly supervised approach for semantic
segmentation of fire images in this study. Our method utilizes self-supervised attention foreground-
aware pooling (SAP) and context-aware loss (CAL) to generate high-quality pseudo-labels, serving
as substitutes for manual annotation. SAP collaborates with bounding box and class activation
mapping (CAM) to generate a background attention map, which aids in the generation of accurate
pseudo-labels. CAL further improves the quality of the pseudo-labels by incorporating contextual
information related to the target objects, effectively reducing environmental noise. We conducted
experiments on two publicly available UAV forest fire datasets: the Corsican dataset and the Flame
dataset. Our proposed method achieved impressive results, with IoU values of 81.23% and 76.43%
for the Corsican dataset and the Flame dataset, respectively. These results significantly outperform
the latest weakly supervised semantic segmentation (WSSS) networks on forest fire datasets.

Keywords: forest fire; UAV imagery; intelligent forestry; weakly supervised learning; semantic segmentation

1. Introduction

Forest fires pose a significant threat to forest security, leading to atmospheric pollution,
global warming, and the loss of animal habitats. This, in turn, results in substantial
economic losses and environmental damage [1]. According to statistics [2], forest fires
destroy approximately 350–450 million hectares of the soil environment each year. Manual
firefighting efforts require a significant allocation of human and material resources and
can sometimes result in casualties during the firefighting process [3]. Consequently, the
timely detection and prediction of forest fires have garnered considerable research interest
in recent years.

The initial method of monitoring forest fires involved the use of manual watchtowers,
where towers were positioned on elevated ground, and personnel were stationed to observe
the forest environment. However, this approach necessitates significant human and mate-
rial resources, and the monitoring angle can easily be obstructed by branches and leaves in
the forest, making monitoring challenging and unresponsive. With the advancement of
hardware devices, the utilization of unmanned aerial vehicles (UAVs) has emerged as a
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more cost-effective and flexible means of acquiring images, replacing traditional watch-
tower patrols for forest fire monitoring [4,5]. Concurrently, deep learning (DL) has become
a fundamental tool for various computer vision tasks, finding applications in autonomous
driving, vehicle segmentation, agricultural segmentation, and cityscape segmentation [6–8].
Consequently, the integration of DL techniques into the processing of forest fire images
captured by UAVs has become the preferred solution for forest fire detection.

Previous research has predominantly approached fire detection in forest environments
as a semantic segmentation problem. Wang et al. [9] conducted semantic segmentation
of aerial forest fire images by comparing various classical semantic segmentation models.
They selected the most applicable model for forest fire segmentation scenarios to accurately
identify fire locations and provide valuable data for firefighting and fire analysis. Classical
deep learning-based semantic segmentation networks are typically trained on datasets with
pixel-level labels. These models predict the class to which each pixel in the image belongs,
enabling the segmentation of target objects in the image. Utilizing a DL framework for
semantic segmentation of forest fire images has shown superior performance compared to
traditional methods [10,11]. Choi et al. [12] implemented intermediate skip connections
using residual networks for forest fire detection on the FiSmo dataset, yielding promising
results. However, the aforementioned experimental datasets did not employ aerial forest
fire images captured by UAVs. This is noteworthy as UAV-captured images may exhibit
dead spots due to the fixed location of surveillance cameras. When employing UAVs
for forest fire monitoring, capturing the initial fire spot from a high altitude allows for
subsequent close-range photography of the fire location and its surroundings from multiple
angles, aiding firefighting efforts.

In this paper, we propose a novel pool module called self-supervised attention
foreground-aware pooling (SAP) for WSSS and introduce a new context-aware loss (CAL)
for training WSSS network models in the context of forest fire image segmentation. When
monitoring forest fires using UAVs, not all captured images depict actual fire incidents.
Therefore, before performing forest fire image segmentation, we need to classify whether
the images contain fires or not. The subsequent fire segmentation is only performed on
the images containing fire points. Thus, our proposed model’s classification network
has two tasks: (1) classifying images into two categories, with fire and without fire, and
(2) conducting various operations such as feature extraction on the images with fire to
prepare for pseudo-label generation. In weakly supervised forest fire image segmentation
tasks, the bounding box can only provide an approximate location of the foreground but
cannot accurately capture the target’s exact boundaries, while the bounding box always
includes the entire foreground. On the other hand, CAM accurately reflects the specific
location of the object during feature extraction. Our SAP method leverages CAM and
bounding boxes to generate high-quality pseudo-labels for training network models. How-
ever, noise can be introduced during the pseudo-label generation process due to various
factors. To address this, we introduce CAL, which utilizes contextual information from
the target’s image to correct noise in the pseudo-labels, making the entire network less
susceptible to such noise. We conducted extensive experiments on two publicly available
UAV forest fire datasets, namely the Flame dataset [13] and the Corsican dataset [14]. The
results demonstrate that our proposed method outperforms state-of-the-art WSSS methods
for UAV forest fire image segmentation.

Our work in this study can be summarized as follows:

• The proposed SAP pooling method is a WSSS pooling method that combines CAM
and bounding box annotation to generate pseudo-labels;

• Context-aware loss (CAL) is proposed to generate high-quality pseudo-labels. As an
alternative to manual annotation, CAL uses the contextual information of the objects
in the image to correct the noise in the pseudo-labels and jointly uses classifier weights
to reduce the effect of noise on pseudo-label generation;
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• Comparative experiments and ablation experiments on the Flame dataset and the
Corsican dataset show that our method outperforms existing models in WSSS of aerial
forest fire images at different scales.

2. Related Work
2.1. Fully Supervised Semantic Segmentation

The utilization of UAVs for real-time monitoring of forest fires and capturing aerial for-
est fire images has emerged as a prominent approach in contemporary forest fire prevention,
combining remote sensing, deep learning, and computer vision techniques [15,16].

Khryashchev et al. [17] proposed a convolutional neural network capable of auto-
matically detecting forest fires in high-resolution images. Wang et al. [18] developed a
forest fire early segmentation network model called smoke-Unet, which combines attention
mechanisms and residual blocks based on an improved U-net architecture. However, the
aforementioned methods are fully supervised models that rely on datasets with pixel-level
labels for segmenting forest fire images. The process of pixel-level annotation often de-
mands substantial manpower and resources. Annotating forest fire images at the pixel level
presents additional challenges compared to other types of images. Aerial forest fire images
captured by UAVs are taken from high altitudes and encounter various disturbances in the
forest environment where the fire is located, such as occlusions, which make it difficult to
accurately distinguish the fire boundaries. Consequently, the process of labeling such im-
ages becomes significantly challenging. Although fully supervised semantic segmentation
models have demonstrated good performance in segmenting aerial forest fire images, their
effectiveness heavily relies on the quality of the dataset labeling.

2.2. Weakly Supervised Semantic Segmentation

The high cost of data annotation poses a significant challenge in the development
of semantic segmentation models. To address this challenge, researchers have explored
the integration of semi-supervised learning [19] and weakly supervised learning [20]
approaches into existing fully supervised semantic segmentation models.

The concept behind weakly supervised semantic segmentation (WSSS) models is to
train the model using image-level labels instead of pixel-level labels, aiming to reduce
annotation costs. Consequently, weakly supervised learning has emerged as a prominent
research direction. In a study by Su et al. [21], a context decoupling augmentation (CDA)
method was proposed, which actively removes dependencies between objects and their
contextual information by modifying the inherent context in which the target object appears.
Amaral et al. [22] employed class activation mapping (CAM) and conditional random fields
(CRF) to detect fire masks at the pixel level, applying these techniques to the Corsican
dataset as a forest fire segmentation dataset. Although limited studies have applied WSSS
techniques to forest fire image segmentation, their application has the potential to assist
firefighters in protecting forests. Acquiring aerial forest fire datasets with only image-level
labels is considerably less challenging compared to obtaining datasets with precise pixel-
level labels. Utilizing WSSS methods can help overcome this challenge while achieving
satisfactory segmentation accuracy.

3. Method

We propose an SAP and CAL method for weakly supervised semantic segmentation of
UAV forest fire images. Our method involves three stages for forest fire image segmentation,
and the entire network structure is illustrated in Figure 1:
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1. For any of the input images, the image features f f eature are first extracted by a feature
extractor, and the C is generated by GAP. f f eature and C are then fed into the SAP
module and a classifier is used to classify the image. If the image is a forest fire image,
then continue, otherwise terminate;

2. When this image is a forest fire image, we generate the initial pseudo-label y1 and the
final pseudo-label y2 from the generated C and the background attention map in the
SAP module after DenseCRF;

3. To correct the noise in the pseudo-labels, we introduce CAL in segmentation, which
uses contextual semantic information about the target object throughout the image.
CAL consists of the contrast loss of the initial pseudo-label y1 and the final pseudo-
label y2 and the CELoss of y2 in DeeplabV3, which effectively constrains the human
and environmental noise during the generation of the pseudo-labels.

3.1. Self-Supervised Attention Foreground-Aware Pooling

Our classification network has three main components: a feature extractor, the selective
pixel correlation module (SPCM) and a 2-way classifier. The overall structure of the
classification network is shown in Figure 2. We used the pretrained ResNet50 model as a
feature extractor. The feature extractor was trained on the ImageNet dataset with good
results and can effectively extract features from images. An image input to a classification
network is passed through the feature extractor to generate a feature map f f eature and
through GAP to generate CAM C. f f eature and C are then fed into the SPCM module to
obtain Cmodi f ied:

Cmodi f ied = S( f f eature, C). (1)

where S(·) denotes the overall algorithm in the SPAM module. To obtain the query qj,
we compute a weighted average of the binary masks M representing category-specific
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information using Cmodi f ied. Compute a background attentional map Aback and a foreground
attentional map A f ore using the query qj:

qj =
Mj · Cmodi f ied_j

Mj
, (2)

Aback_j =

{
ReLU(

f f eature_j

|| f f eature_j|| ·
qj

||qj|| ), j ∈ β

1 , j /∈ β
, (3)

Aback =
1
N

N

∑
j=0

Aback_j, (4)

A f ore = 1− Aback.A f ore = 1− Aback. (5)

where N denotes the total number of qj, ||·|| denotes L2 normalization, and Equation (4)
quantifies the probability that pixel j is background by calculating the similarity in bounding
box β via qj and controlling Aback in [0, 1] via the ReLU function. The closer the pixel is to
the background, the closer the value of Aback is to 1. Finally, a softmax classifier is applied
to each bounding box for foreground features ri and query qj, quantifying the probability
of each pixel point being a foreground. Additionally, reductive contrast loss is applied to
CAMs and masks, while CE loss is used for iterative training on the foreground features
ri and queries qj.
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3.1.1. Selective Pixel Correlation Module

Figure 3 illustrates the overall structure of the SPCM. To efficiently extract channel
features from UAV forest fire images, both mean pooling and maximum pooling are utilized.
A shared MLP consists of a two-layer neural network (MLP), the number of neurons in the
first layer is N/r (where r is the decrement rate), the activation function is Relu, and the
number of neurons in the second layer is N, which is shared by the two layers of neural
networks. Two inputs f f eature and C to the SPCM are performed for the input feature map
f f eature in the SPCM; average pooling layer compresses the spatial dimension of the feature
map while aggregating spatial information, while the maximum pooling layer is used to
extract image features and image channel feature information. Generate attention map A f
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after passing the output features of the average pooling and maximum pooling methods to
the shared network:

A f

(
f f eature) = σ(MLP(AP( f f eature)) + MLP(MP( f f eature)))

= σ(W 1(W 0

(
f c

f eature_avg)) + W1(W 0

(
f c

f eature_max))).
(6)

where yc
f eature_avg and yc

f eature_max represent the features after the average pooling layer and
the maximum pooling layer, respectively, σ represents the sigmoid function, AP(·) and
MP(·) represent the average pooling and maximum pooling, respectively. After yc

f eature_avg
and yc

f eature_max pass through the shared network, the final channel attention map A f is
generated. The essence of a shared network is a multilayer perceptron (MLP) and contains
a hidden layer for reducing the number of parameters. The feature vectors after the
shared network are summed element-wise. For A f , a HW × HW lift is obtained by matrix
multiplication after 2 parallel 1× 1 convolutions respectively and is weighted and summed
with the original CAM C matrix to obtain the modified CAM Cmodi f ied.
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The SPCM improves on traditional attention mechanisms while retaining the most
primitive CAM features, while the features at the bottom of each pixel are required to
evaluate the similarity between pixel features using cosine similarity:

θ(xi, xj) =
∑ (xi × xj)√
∑ x2

i ×
√

∑ x2
j

. (7)

where i and j indicate the index of a pixel at a spatial location. The normalized cosine
similarity is then used and multiplied with the original CAM C to calculate the similarity
between the current pixel and other pixels in the feature space; the modified CAM Cmodi f ied
can be expressed as:

Cmodi f ied =
1

C(xi)
∑
∀j

ReLU(
∑ (xi × xj)√
∑ x2

i ×
√

∑ x2
j

)C. (8)

In this case, ReLU is used to suppress negative values of similarity. In contrast to
self-attention alone, the SPCM retains the activation strength of the original CAM while
having the ability to self-attention.
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3.1.2. SAP

In SAP, the implementation of the correspondence between qj and ri focuses on the
feature fusion of foreground features in each bounding box β using the A f ore generated
by qj:

ri =

∑
p∈B

A f ore f (pi)

∑
p∈B

(1− A(p))
. (9)

where p ∈ B indicates the probability that the current pixel belongs to the foreground.

3.1.3. Loss

After passing through the SPCM, the CAM obtained is a mapping relationship with
the original CAM. Points of the same class but far apart in high-dimensional space are
mapped to a closer distance in low-dimensional space after passing through the SPCM.
Conversely, points of different classes but close together in high-dimensional space will
become farther apart in low-dimensional space after being mapped through the SPCM. The
reduced contrast loss (LRC) is proposed to address this problem:

LRC =
1

2N

N

∑
n=1

yd2 + (1− y)max(m− d, 0)2. (10)

where d represents the Euclidean distance between the corresponding two points in the
SPCM and the mask, m is a set threshold, N is the number of samples, and y represents the
label of whether the two samples match.

When y = 0, it means that the two samples are dissimilar, and in this case:

LRC = max(m− d, 0)2. (11)

If d > m, indicating that the distance between the two points is greater than the
threshold m, then LRC = 0, and no processing is performed on the two sample pairs that
exceed the threshold. If d < m, indicating that the distance between the two points is less
than the threshold m, then LRC = max(m− d)2 is punished for the sample pairs that are
less than the threshold.

When y = 1, it means that the two samples are similar, and in this case:

LRC = d2. (12)

The penalty increases as the distance between the two sample pairs increases and
decreases as the distance between them decreases.

Similarly, 2-way softmax classifiers w are applied to distinguish between the fore-
ground and background regions of individual features (i.e., ri and qj). Training the network
using standard cross-entropy loss (LCE):

LCE =

{
− log(p), i f (y = 1)
− log(1− p), otherwise

. (13)

where p represents the probability of the predicted sample belonging to a certain class, and
y represents the sample label. When y = 1, the closer p is to 1, the smaller the loss value,
and when y = 0, the closer p is to 0, the smaller the loss value.

For the entire classification network, a balancing parameter α is defined. The overall
loss function in the training process is:

Lclassi f ier = LRC + λLCE. (14)
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3.2. Generate Pseudo-Label

In the process of generating pseudo-labels (Figure 4), we input the background atten-
tion map Cback and CAMs into CRF to obtain the initial pseudo-label y1. Next, we extract
the query qc from y1 and retrieve the features rc in y1 to obtain the final pseudo-label y2
using the argmax function.
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First, using the CAMs and Cback obtained from the classification network, we define a
unary term uc(p) for each of these classes c using DenseCRF [23]:

uc(p) =

{
CAMc(p)

maxp(CAMc(p)) , p ∈ B

0 , p /∈ B
. (15)

where p denotes the probability that the sample is of class c and B denotes the bounding
box of the object of class c; CAMc(p) can be expressed as:

CAMc(p) = ReLU(Cback · wc). (16)

where wc denotes the classifier weight of class c objects in the classification network. For
the background class, we use the background attention map Aback to define its unary term
uback:

uback(p) = Aback(p). (17)

We stitch the object category terms from Equation (15) and the background category
terms from Equation (17) and input them into DenseCRF to obtain y1. However, this method
causes y1 to contain some low-level features and noise, so we again supplemented the
pseudo-label generation process by putting the features f f eature obtained by the classification
network through a method similar to the query in SAP. In the pseudo-label generation
process, the query qc for each category is defined as:

qc =
1
|y1_C| ∑

p∈y1_c

f f eature(p). (18)

where y1_C is the set of locations of class c in the initial pseudo-label y1 and |·| denotes the
total number of pixels in that class; we use qc to query similar features from f f eature and
extract for them the mapping C2 for that class:

C2(p) =
f f eature(p)∣∣∣∣∣∣ f f eature(p)

∣∣∣∣∣∣ · qc

||qc||
. (19)

where p indicates the probability of the area being a fire point. Then, we obtain the pseudo-
segmentation label y2 by applying the argmax function on the relevance map C2(p).
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3.3. Context-Aware Loss

We train the network using y1 and y2 as the labels of the DeepLabV3 network, and
extract the feature map fd obtained from the penultimate layer of the DeepLabV3 network
and input fd into softmax to obtain a 2-dimensional feature probability map T. We want T
to be consistent with the label given by y2 and therefore the loss function Lseg_ce is defined
for both:

Lseg_ce = −
1

∑c|Sc|∑c
∑

p∈Sc

log Tc(p). (20)

where Tc represents the probability of class c, Sc denotes the region in which both y1 and
y2 are of class c. For the same region, but where y1 and y2 give different labels, discarding
the region directly may result in the loss of some of the true values. Here, we propose that
Lseg_con once again makes full use of parts of the region with different labels for y1 and y2:

Lseg_con =
1

2N

N

∑
n=1

(xy1_i − xy2_i)
2 + (1− z)max(margin− (xy1_i − xy2_i)

2, 0). (21)

where N represents the number of samples, xy1_i and xy2_i denotes the samples correspond-
ing to y1 and y2, respectively, z is a label indicating whether the two samples match, z = 1
means the two samples are similar or match, while z = 0 means no match, and margin is a
set threshold.

Therefore, the overall CALoss is defined as shown below, where η is the equilibrium
coefficient of the formula:

CALoss = Lseg_ce + ηLseg_con. (22)

3.4. Evaluation Metrics

Accuracy (Acc) is often used as an evaluation metric for classification networks:

Acc =
TP + TN

TP + FN + FP + TN
× 100%. (23)

We used the fire intersection ratio (IoU) as an indicator for the evaluation of forest fire
segmentation (Figure 5).
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IoU refers to the intersection area divided by its union, which can be expressed as:

IoU =
Intersection

Union
=

Srec1 ∩ Srec2

Srec1 + Srec2 − Srec1 ∩ Srec2
. (24)

4. Experiments
4.1. Dataset

This section provides a detailed introduction to two publicly available aerial forest
fire datasets. The Flame dataset and the Corsican dataset are both aerial forest fire images
captured by UAVs. Of these, the Flame dataset generally has images with smaller fire
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points and the Corsican dataset generally has images with larger fire points. The forest fire
smoke dataset from the Kaggle competition was also used.

The Flame dataset [13] is a publicly available collection of aerial forest fire imagery,
made accessible by researchers from Northern Arizona University and other academic
institutions. The dataset comprises images captured by UAVs equipped with cameras at
high altitudes. The fire points in the dataset are typically small in size and may be partially
concealed. Figure 6 provides a glimpse of the data included in the dataset.
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Figure 6. Images from the Flame dataset.

The Corsican dataset [14] is a publicly accessible dataset provided by the Environmen-
tal Sciences Laboratory at the University of Corsica. It consists of a collection of images
capturing wildfires under various shooting conditions, including visible and near-infrared
spectrums of burnt vegetation, diverse climatic conditions, lighting variations, and different
fire distances. Unlike the Flame dataset, the images in the Corsican dataset were not taken
from very high altitudes, resulting in larger fire sites being depicted. Figure 7 presents a
selection of data samples from this dataset.
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The Kaggle dataset (https://www.kaggle.com/datasets/kutaykutlu/forest-fire, ac-
cessed on 10 February 2023) selected for this study comprises aerial images captured by
UAVs. Specifically, it consists of 2007 images depicting smoke in forest environments.
These aerial photographs were carefully selected and included in the dataset. Figure 8
provides a glimpse of some sample images contained within this dataset.

https://www.kaggle.com/datasets/kutaykutlu/forest-fire
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4.2. Implementation Details

We present the performance evaluation of our model on each dataset through a
comparison of experimental and ablation implementations. The segmentation process of
our model consists of three stages: the classification network, pseudo-label generation, and
segmentation using DeeplabV3. We evaluate the performance of our model by assessing
the results of the classification network and the overall weakly supervised segmentation.
All experiments were done on Ubuntu 18.04, using the PyTorch deep learning framework,
with an NVIDIA RTX 3090 GPU as the hardware device.

4.3. Forest Fire Image Classification

In practice, in the case of images taken by UAVs, our segmentation task is to default
to images with fire points, but not all images taken by UAV have fire points. Before
performing semantic segmentation, the images are classified, and only the images classified
as containing a fire are subjected to subsequent segmentation operations.

To evaluate the performance of the proposed classification network in forest fire
image classification, we compare it with the current mainstream classification networks
(VGG16 [24], GoogleNet [25], ResNet50 [26], MobileNetV3 [27]) on two datasets. The
Flame dataset consists of 1007 images from the Kaggle dataset, while the Corsican dataset
comprises 1000 images from the same Kaggle dataset. We conducted comparisons among
classification networks using different proportions (5%, 10%, 30%, 50%, 80%, 100%) of the
images in the dataset. This analysis aimed to observe how the model learns additional
image features and assess its classification performance as the number of training images
increases.

The classifiers of all the networks were trained using the SGD optimizer with a mo-
mentum of 0.9, weight decay of 5 × 10−4, and a batch size of 8. The classifier weights were
randomly sampled from a Gaussian distribution with mean zero and standard deviation of
1 × 10−2. The training process was carried out for 50 epochs. The classification results are
summarized below.

The results presented in Tables 1 and 2 and Figure 9 clearly demonstrate that our
model surpasses VGG16, GoogleNet, ResNet50, and MobileNetV3 in terms of classification
accuracy on both the expanded Corsican dataset and the expanded Flame dataset at various
image scales. In the expanded Corsican dataset, where images contain larger fire points and
feature extraction is relatively simpler, our model achieves improvements of 0.08%, 0.31%,
0.04%, 0.07%, 0.13%, and 0.22% at 5%, 10%, 30%, 50%, 80%, and 100% scales, respectively,
outperforming ResNet50. Conversely, in the expanded Flame dataset, which consists
of images with smaller fire points and significant background effects, feature extraction
becomes more challenging. In this scenario, our model exhibits a significant advantage
over the other models. Across both datasets, our model achieves a highly satisfactory
classification accuracy, nearing 100% at a scale of 100%. In practice, our image classification
network extracts forest fire features from images with fire points, while images without fire
points are filtered out. This enables subsequent image segmentation operations to focus
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solely on relevant data. At smaller percentages such as 5% and 10%, our method is optimal
on both the extended Corsican dataset and the extended Flame dataset.

Table 1. Classification results for different proportions on the Corsican dataset after incorporating
images from the Kaggle dataset.

Networks
Proportions of the Expanded Corsican Dataset

5% 10% 30% 50% 80% 100%

VGG16 95.06% 95.23% 95.44% 96.73% 97.19% 98.24%
GoogleNet 95.19% 95.66% 96.17% 96.86% 97.47% 98.99%
ResNet50 96.49% 96.68% 96.99% 97.32% 98.11% 99.45%

MobileNetV3 95.75% 96.22% 96.87% 97.22% 98.05% 99.13%
Ours 96.57% 96.99% 97.03% 97.39% 98.24% 99.67%

Table 2. Classification results for different proportions on the Flame dataset after incorporating
images from the Kaggle dataset.

Networks
Proportions of the Expanded Flame Dataset

5% 10% 30% 50% 80% 100%

VGG16 94.11% 94.13% 94.23% 95.74% 96.12% 96.99%
GoogleNet 95.13% 95.37% 95.81% 96.41% 96.74% 97.15%
ResNet50 95.87% 96.05% 96.16% 96.77% 98.43% 98.74%

MobileNetV3 94.64% 95.18% 95.44% 96.04% 97.13% 99.01%
Ours 96.33% 96.45% 96.55% 96.89% 98.99% 99.23%

4.4. Forest Fire Image Segmentation
4.4.1. Segmentation Results and Analysis

In the context of forest fire image segmentation, the primary task is to accurately
segment the background and fire points in the image. Here, we compare our model with
four of the latest weakly supervised models (IRNet [28], Puzzle-CAM [29], SEAM [30], and
BABA [31]) for this purpose on the Corsican dataset and the Flame dataset.

From the experimental results (Figures 10 and 11 and Table 3), our model achieved an
IoU of 81.23% and 76.43% on the Corsican dataset and the Flame dataset, respectively. From
the segmentation visualization, the segmentation results of our model can be generally
consistent with GroundTruth, but there are some shortcomings in our model in details
such as slight errors in the segmentation results due to the high transparency at the flame
boundary.
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Figure 10. Visualization of semantic segmentation results on the Corsican dataset. (a–c) represent
representative images from the Corsican dataset. Specifically, (a) depicts a close-range forest fire
image taken during daylight, (b) illustrates a close-range forest fire image captured at night, and
(c) showcases a distant forest fire image taken during the evening.
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Figure 11. Visualization of semantic segmentation results on the Flame dataset. (a–c) represent
representative images from the Flame dataset. Specifically, (a) depicts a forest fire image captured by
a horizontal view without obstruction, (b) illustrates a forest fire image taken by a UAV at a higher
distance with obstruction, and (c) showcases a forest fire image captured by a UAV at a lower distance
with obstruction.
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Table 3. Semantic segmentation results on Corsican dataset and Flame dataset.

NetWorks IoU (Corsican) IoU (Flame)

IRNet 77.91% 71.64%
Puzzle-CAM 79.89% 74.99%

SEAM 76.67% 72.89%
BABA 78.60% 74.38%
Ours 81.23% 76.43%

In the close-up UAV images of forest fires (Figure 10 and Table 3), the flame details
are obvious, the flames take up a larger proportion of the overall image, and extracting
flame features is relatively straightforward. The segmentation results are better for several
networks (Table 3), but from the visualization results (Figure 10), our model has a finer
edge segmentation of the fire points and the segmentation profile is closer to GroundTruth
than those of the other four compared networks. The segmentation profile of the BABA
network is also closer to that of GroundTruth, but its treatment of the flame boundary is
more ambiguous. Both the IRNet and SEAM segmentation plots have large noise levels,
and the Puzzle-CAM segmentation plots are too smooth for the flame boundary and fail to
segment the flame boundary in detail.

In UAV images of forest fires taken at a distance (Figure 11 and Table 3), feature
extraction and segmentation are more challenging due to the small proportion of flames
in the overall image in the Flame dataset. The segmentation results of our model in this
case can still outperform the comparison network. Our model is able to locate the fire
point accurately, and the background noise has minimal effect on the experimental results
(Figure 11). As shown in Figure 11c, our model has the ability to accurately split the outlines
of the two fire points, despite the fact that this photograph was taken at a high altitude
and is densely wooded and poorly lit. There are a large number of false detections in the
IRNet, Puzzle-CAM, and SEAM segmentation results, and the right part of the fire point
is clearly missed in BABA. Although the central part of the fire point on the right is not
as well segmented by our model compared to that in GroundTruth, our model is much
better at segmenting small fire points at long distances compared to the four comparison
networks.

4.4.2. Ablation Experiments

To validate the contribution of the proposed SAP and CAL to UAV forest fire image
segmentation, we performed ablation experiments on the same datasets (Table 4). Baseline
refers to the use of only the pre-trained ResNet50 as the feature extractor during feature
extraction and only DeepLabV3 as the segmentation network during segmentation.

Table 4. Results of the ablation experiments conducted on the Corsican dataset and Flame dataset.

Baseline SAP CAL IoU (Corsican) IoU (Flame)
√

78.54% 71.38%√ √
80.04% 73.29%√ √
80.77% 74.35%√ √ √
81.23% 76.43%

The quality of pseudo-label is decisive for the segmentation effect of WSSS networks.
The addition of the SAP module resulted in a significant increase in IoU, indicating a
significant improvement in pseudo-label quality, by 1.5% and 1.91% on the Corsican dataset
and Flame dataset, respectively. In UAV wildfire imagery, the images are taken in a
forested environment and at high altitude, and the image background often contains a lot
of noise. Our proposed CAL is a loss function specifically designed for UAV wildfire image
segmentation. CAL uses contextual information about objects in the image to correct for the
noise in pseudo-label and minimize the effect of ambient noise on feature extraction and
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segmentation. By adding CAL, compared with the baseline, the network improved by 2.23%
and 2.97% on the Corsican dataset and Flame dataset, respectively. Since environmental
noise can cause a large amount of noise to be included in the generated pseudo-labels for
UAV wildfire images, CAL is specifically designed to address the environmental noise in
pseudo-labels, greatly improving network segmentation accuracy.

The SAP module improves the quality of the generated pseudo-labels and CAL cor-
rects the noise in the pseudo-labels by adding contextual information, confirming both
theoretically and experimentally the synergistic effect of the two.

5. Discussion

In this study, we proposed a weakly supervised semantic segmentation (WSSS) model
for UAV forest fire images, addressing the challenges of data annotation and noise. Our
model utilized the self-supervised attention foreground-aware pooling (SAP) and context-
aware loss (CAL) techniques to generate high-quality pseudo-labels and improve segmen-
tation accuracy.

One of the major challenges in forest fire monitoring using UAVs is the need for
manual annotation of pixel-level labels, which is time-consuming and resource-intensive.
Wang et al. [9] applied a variety of classical segmentation models to segmentation of aerial
forest fire images, and Choi et al. [12] also achieved good segmentation results on forest
fire datasets. However, all the above methods are based on datasets with pixel-level labels
and do not achieve segmentation based on datasets without pixel-level labels. The weakly
supervised approach we employed alleviated this challenge by using image-level labels
instead, significantly reducing annotation costs.

By utilizing SAP, we incorporated class activation mapping (CAM) and bounding
box annotation to generate pseudo-labels that accurately captured the location of fire
points. This method improved the segmentation accuracy by effectively distinguishing the
foreground fire points from the background. Moreover, we introduced the CAL technique
to address the issue of noise in the generated pseudo-labels. By leveraging contextual
information from the fire point’s surroundings, CAL helped refine the pseudo-labels,
making them more accurate and closely resembling the real labels.

However, our model still exhibited some limitations. In certain scenarios, such as
when there was high transparency at the flame boundary, slight errors in segmentation
results were observed. Further improvements are needed to address these challenges and
enhance the accuracy of fire point segmentation.

In terms of practical applications, our model provides a cost-effective and accurate
solution for UAV-based forest fire monitoring. By automating the segmentation process
and reducing the need for laborious manual annotation, our approach can significantly
improve the efficiency of forest fire prevention and control efforts.

6. Conclusions

We present SAP in WSSS of UAV forest fire images for the generation of high precision
pseudo-labels. In forest fire image semantic segmentation, it is difficult to accurately label
the boundaries of fire point objects, which are located in the foreground of bounding boxes.
The CAM generated during feature extraction can accurately reflect the specific location
of the fire point object. SAP uses CAM and bounding box annotation to generate high
quality pseudo-labels for training semantic segmentation networks for forest fire images.
However, during the process of generating pseudo-labels, there is inevitable background
noise due to the large interference of the environmental background. We introduce CAL
to correct the noise in the generated pseudo-labels by using contextual information from
the image where the fire point is located. We experimented on two publicly available UAV
forest fire datasets and compared our model with other models. The IoU of the semantic
segmentation results of this model on the Corsican dataset and Flame dataset can reach
81.23% and 76.43% respectively. Our results show a significant breakthrough in WSSS of
UAV forest fire images.
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