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Abstract: Many single-land-use simulation models are available to simulate and predict Land Use
and Land Cover Change (LUCC). However, few studies have used multiple models to simulate
LUCC in the same region. The paper utilizes the CA-Markov model, Land Change Modeler (LCM),
and Patch-generating Land Use Simulation model (PLUS) with natural and social driving factors to
simulate the LUCC on the Western Sichuan Plateau, using Kappa coefficient, overall accuracy (OA),
and Figure of Merit (FoM) to verify the accuracy of the model, and selects a suitable model to predict
the LUCC and landscape pattern in the study area from 2020 to 2070. The results are as follows:
(1) The LCM has the highest simulation effect, and its Kappa coefficient, OA, and FoM are higher than
the other two models. (2) The area of land types other than grassland and wetland will increase from
2020 to 2070. Among them, the grassland area will decrease, but is still most prominent land category
in this region. The proportion of wetland areas remains unchanged. The fragmentation degree of
forest (F), grassland (GL), shrubland (SL), water bodies (WBs), bare areas (BAs), and permanent ice
and snow (PIS) decreases, and the distribution shows a trend of aggregation. The dominance of F
and C decreases but still dominates in the landscape. The overall landscape aggregation increased
and complexity decreased, and each landscape type’s diversity, evenness, and richness increased,
presenting as a more reasonable development. Using multiple models to simulate the LUCC in the
same region, and choosing the most suitable local land model is of great significance to scientifically
manage and effectively allocate the land resources in the field.

Keywords: simulation and prediction; PLUS model; CA-Markov model; LCM; Western Sichuan Plateau

1. Introduction

LUCC is a vital component of research on global environmental changes and sustain-
able development. It is influenced by natural and human factors, and can be analyzed
qualitatively and calculated quantitatively [1–4]. Scholars at home and abroad have con-
structed various simulation models for different regions or research needs. These are
classified into three categories: quantitative prediction models, spatial prediction models,
and coupled models. Quantitative prediction models only analyze changes in land-use
quantity and area and are unable to examine the spatial information of LUCC [5,6], includ-
ing the Markov model, gray model (GM) and system dynamics model (SD) [7–10]. Spatial
prediction models can respond to the spatial information of LUCC and predict its spatial
distribution pattern [11], including the cellular automaton model (CA), CLUE-S model,
etc. [12,13]. To meet the higher demands of LUCC model research, contemporary LUCC
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model research has evolved to study multiple coupled models, which combine quantitative
and spatial models, including the CA-Markov model, PLUS model, LCM and LandSDS
systems [14–17]. A large number of scholars have demonstrated the feasibility of using
coupled models for LUCC studies [18,19].

There are many studies related to simulating and predicting LUCC using a certain
model. Still, relatively few studies use multiple models to simulate and predict LUCC
in the same region [20]. Simulating LUCC in the same region with multiple simulation
models and selecting the most suitable model is necessary for the scientific use of land in
this region. Among the many models, the CA-Markov model, LCM, and PLUS model are
used worldwide in several fields. These models have received much attention recently
and are a hot topic in LUCC research. The three models have various advantages and
disadvantages [21–23], as well as similarities when using the Markov model to calculate
land demand. However, the algorithms involved in these models are different, and the
three models have both similarities and differences. Therefore, it is necessary to analyze
their similarities and differences in the same region.

The Western Sichuan Plateau is rich in natural landscape elements and serves as a
barrier to natural environmental protection [24]. The Western Sichuan Plateau is relatively
backward in terms of socioeconomic development and is relatively underdeveloped com-
pared to other regions in China [25]. There is an uncoordinated development between
ecological conservation and social economy in this area, and land-planning simultane-
ously affects local ecological conservation and social-economic development. Scholars
have been aware of these problems and used different models to simulate LUCC in the
western Sichuan plateau, but there are few research results, single analysis methods and
accuracy indicators, and most studies only used a single model, such as the CA-Markov
model [25,26]. Based on previous studies, we selected a number of different models to
simulate the research area, aiming to find a suitable model for the LUCC simulation of
the Western Sichuan Plateau, and to clarify the development trend of LUCC and land-
scape pattern in the study area to provide data support for the optimal management of
land in this region and to realize the harmonious development of the social economy and
environmental protection on this basis.

This paper selected the CA-Markov, LCM, and PLUS models to simulate the LUCC in
the western Sichuan plateau. The LUCC future development trends were analyzed, aiming
to provide a theoretical basis for land management and allocation, realize the adequate
configuration of land resources in the study area, and seek harmonious development with
the coexistence of the social economy and environmental conservation. The aims of this
paper are as follows: (1) explore models suitable for simulating LUCC in the Western
Sichuan Plateau, (2) simulate the 2070 LUCC with the selected optimal model in the study
area and explore the development trend of LUCC and landscape pattern from 2020 to 2070.

2. Materials and Methods
2.1. Study Area

The Western Sichuan Plateau, which is located in the western part of Sichuan Province,
mainly includes Aba Tibetan and Qiang Autonomous Prefecture (13 counties), Ganzi Ti-
betan Autonomous Prefecture (18 counties), and Muli County of Liangshan Yi Autonomous
Prefecture in Sichuan Province within the Tibetan Plateau, totaling 32 counties (Figure 1).
The region is bounded by the Sichuan Basin in the east and the Tibetan Plateau in the west,
so the topography is high in the west and low in the east, and mountains and plateaus
dominate the landform. Because of the large latitudinal span and high mountains in the
study area, the climate has noticeable differences between horizontal and mountainous
vertical zones. Influenced by the topography and terrain, the study area is rich in species,
natural resources, and water systems [26]. According to the “Sichuan Statistical Yearbook”
from 2002 to 2022, the GDP of the study area reached 95.136 billion CNY in 2021 (yuan
(CNY) is the basic unit of Chinese currency), which is 13.55 times that of 2001 and 2.79 times
that of 2011. The urbanization rate was 35.25% in 2021, compared with 17.96% in 2011
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and 16.68% in 2001. The Western Sichuan Plateau has shown rapid social development,
accelerated urbanization, and economic growth in the last 20 years.
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2.2. Technical Route

The technical route of the paper (Figure 2) includes four parts: data preparation, model
simulation process, accuracy verification, and future land use prediction.
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2.3. Data Source

This paper requires LUCC data and multiple driving factors (Table 1). The LUCC
data are the Global Land Cover with Fine Classification System at 30 m (GLC_FCS30)
product, with an accuracy of more than 82.5% [27], which can be downloaded from the
Chinese Academy of Sciences Data Sharing Service System (https://data.casearth.cn/,
accessed on 1 February 2023). The GLC-FCS30 dataset has the advantage of using huge
training samples, and this dataset is more advantageous than other land-cover products
in terms of spatial detail and land-cover diversity. According to the GLC_FCS30 dataset,
the LUCC data area is divided into nine types, namely Cropland (C), forest (F), grassland
(GL), shrubland (SL), wetland (WL), water body (WB), impervious surfaces (IS), bare
areas (BAs), and permanent ice and snow (PIS). This paper selects nine driving factors
(Figure 3) based on reference to the relevant literature and the current situation of this
region, namely DEM (km), slope (◦), aspect (◦), distance to river (Dis1), distance to road
(Dis2), distance to railway (Dis3), distance to residential area (Dis4), population density
(PD), GDP spatial distribution (GDP). The DEM data is derived from the ASTER GDEM data
of the National Aeronautics and Space Administration (NASA), which can be downloaded
from the Geospatial Data Cloud (https://www.gscloud.cn/, accessed on 3 February 2023).
We can calculate the slope and aspect from the DEM. We can download the water system,
data on road and railway, and residential points from the National Catalogue Service for
Geographic Information (https://www.webmap.cn/, accessed on 4 February 2023). GDP
spatial distribution data (yuan/km2) and population density data (people/km2) were
obtained from the Resource and Environment Science and Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/, accessed on 7 February 2023). Before
simulating LUCC, we unified the resolution of all raster data to 500 m by resampling, and
pre-processed the LUCC data and driving factors with the spatial analysis tools of ArcGIS
10.2 to make the data work properly in the model.
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Table 1. Details of LUCC, driving factors’ data.

Data Type Data Name Data Source Resolution

Natural factors

the LUCC data GLC_FCS30 dataset 30 m

DEM the Geospatial Data Cloud 30 m

Slope
Calculated from DEM 30 mAspect

River The National Catalogue Service
For Geographic Information -

Socioeconomic factors

Railway The National Catalogue Service
For Geographic Information

-
Road

Residential points -

Population density The Resource and Environment Science and Data
Center of the Chinese Academy of Sciences

1000 m
GDP spatial distribution 1000 m

2.4. LULC Simulation Model
2.4.1. CA-Markov Model

The CA-Markov model, which is composed of the cellular automaton (CA) model
and the Markov model, can handle spatial information and accurately predict land type
transformation [28]. On this basis, this paper introduces the logistic model to calculate
the probability of driving factors affecting each land type and the regression relationship
between them (Table A1), which is capable of increasing the precision of LUCC simula-
tion [29]. The key steps of the CA-Markov model are: (1) using the Markov model to
establish transformation rules and acquire the transfer probability matrix of LUCC, (2) es-
tablishing a suitability atlas using logistic regression analysis, and (3) setting the CA filter
and cycle number.

2.4.2. Land Change Modeler (LCM)

The LCM is of great value not only for effectively simulating spatial changes in com-
plex systems but also for analyzing the effects of various factors that play a decisive role in
land-use changes. The LCM is integrated into the Terr Set software jointly developed by the
Clark Laboratory of the United States and the International Conservation Council [30,31].
It is intuitive, easy to use, innovative, and has a wide range of applications for the rapid
empirical modeling of LUCC [32]. This paper mainly deals with the components of the
LCM, such as the Multi-Layer Perceptron (MLP) neural network, Markov model, and hard
prediction model. The main steps of the LCM are (1) analyzing the past LUCC, (2) con-
structing a potential transformation model using MLP to obtain a potential transfer map,
(3) predicting land-use transfer probability using the Markov model, and (4) predicting
future LUCC using the hard model.

2.4.3. PLUS Model

The PLUS model is based on raster data and developed by Liang Xun and others at
the China University of Geosciences [33]. It is coupled with the land expansion analysis
strategy (LEAS) module and the CA model based on the multi-type random patch seeds
(CARS) module. It also has unique advantages in simulating the LUCC of patch-level [34].
The steps include: (1) analyzing land expansion and calculating the contribution rate of
driving factors to each land type using the LEAS module (Figure A1), (2) calculating land
demand using the Markov model, and (3) simulating patch-level LUCC using the CARS
module.

2.4.4. Model Validation

This paper uses spatial consistency to compare the differences and consistency of the
area and spatial distribution of the simulation results of different models, and the process is
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mainly realized by the spatial overlay tool of ArcGIS. This paper uses the Kappa coefficient,
OA, producer accuracy (PA), and user accuracy (UA) derived from the confusion matrix
and introduces the FoM coefficient to check the accuracy. These precision indicators are
positively correlated with the precision of the simulation results, and the larger the value
of the accuracy indicator, the higher the simulation accuracy. The Kappa coefficient can
check the overall consistency between the simulation result and the actual LUCC, and the
value is between 0 and 1 [35]. When the Kappa coefficient value is between 0.75 and 1,
the consistency between the two results is high, and the simulation accuracy is high [36].
The FoM coefficient can quantitatively test the simulation accuracy at the cell scale, with
a value between 0 and 1 [37,38]. The OA measures the validity of the extracted overall
data, and its value ranges from 0% to 100% [39]. The result is reliable when the OA value is
more excellent than 85%. PA refers to the ratio of correctly classified pixels to the sum of all
pixels in the reference verification image, which is used to evaluate whether the study area
is accurately classified [40]. UA is the ratio of correctly classified pixels in the classified
image to all pixels classified as that class [41]. Both PA and UA range from 0% to 100%.

2.4.5. Landscape Pattern Analysis

Landscape pattern analysis combines different land types in space and expresses their
characteristics at the micro-level. Analyzing the landscape pattern can reveal the perfor-
mance of LUCC at the micro-level and its impact on landscape ecology [42]. The landscape
pattern index quantitatively describes the structural composition and spatial relationship
of the landscape pattern, which can be divided into three categories: patch metrics, class
metrics, and landscape metrics. Because considering that individual patch metrics indexes
can only yield landscape information for individual patches, this paper selects landscape
pattern indexes at class metrics and landscape metrics. Based on landscape fragmentation,
dominance, diversity and uniformity, shape characteristics sprawl, etc., this paper selects
the number of patches (NP), patch density (PD), aggregation index (AI), largest patch index
(LPI), Shannon’s diversity index (SHDI), Shannon’s evenness index (SHEI), landscape
shape index (LSI) and contagion index (CONTAG) [43,44].

3. Results
3.1. Comparison of Simulation Results of Different Models

We can compare the simulated LUCC with the actual LUCC area and its proportion
in 2020 (Table 2). GL and F are the largest and most widely distributed land types in
this region, and the other land types’ areas are much lower than the first two land types
(Figure 4). The actual 2020 and simulated LUCC not only show significant similarities in
their spatial distribution characteristics, but also in their area ratio. The difference in area
ratio between the simulation results and the actual 2020 is less than 2.22% for each land
type, and difference area ratios among the three models are all less than 2.70%, showing a
good simulation effect.

In order to establish a thorough query of the differences in the spatial distribution of
simulated LUCC in detail, we select the northwest, northeast, and south of the Western
Sichuan Plateau for local analysis (Figure 5). The simulation result of the CA-Markov
model is the most diverse from the real data, and the simulation result of the LCM is closest
to the actual 2020.

Table 2. The area and proportion of each land type in actual 2020 and different models.

Land-Use
Type

Area/
Proportion Actual 2020 CA-Markov LCM PLUS

C
Area/km2 2933.45 2784.23 2948.77 3142.64

Proportion/% 1.19% 1.13% 1.20% 1.28%

F
Area/km2 90,879.52 94,450.67 90,004.03 90,001.01

Proportion/% 36.94% 38.39% 36.59% 36.58%

GL
Area/km2 149,812.75 144,596.69 151,249.36 150,985.72

Proportion/% 60.90% 58.78% 61.48% 61.37%
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Table 2. Cont.

Land-Use
Type

Area/
Proportion Actual 2020 CA-Markov LCM PLUS

SL
Area/km2 108.99 247.85 64.55 61.11

Proportion/% 0.04% 0.10% 0.03% 0.02%

WL
Area/km2 27.63 27.36 25.81 25.81

Proportion/% 0.01% 0.01% 0.01% 0.01%

WB
Area/km2 544.97 707.79 494.80 484.00

Proportion/% 0.22% 0.29% 0.20% 0.20%

IS
Area/km2 98.32 457.94 62.65 103.71

Proportion/% 0.04% 0.19% 0.03% 0.04%

BA
Area/km2 743.59 1997.69 520.65 506.41

Proportion/% 0.30% 0.81% 0.21% 0.21%

PIS
Area/km2 863.50 742.50 642.11 702.31

Proportion/% 0.35% 0.30% 0.26% 0.29%
Total Area/km2 246,012.72 246,012.72 246,012.72 246,012.72

C: cropland; F: forest; GL: grassland; SL: shrubland; WL: wetland; WB: water body; IS: impervious surfaces;
BA: bare areas; PIS: permanent ice and snow.
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3.2. Comparison of Spatial Consistency of Different Models

The spatial consistency of the simulation results is indicated in red, green, and yellow,
respectively (Figures 6 and 7). Green represents the high-consistency region (C1; three
models have the same results), yellow represents the medium-consistency region (C2; two
models have the same results), red represents the low-consistency region (C3; only one
model result is shown), and no data distribution is not shown. The spatial distribution of
spatial consistency for the three main land types and the overall LUCC is mainly shown in
the paper.

1 
 

 
  Figure 6. Percentage of the spatial consistency area of each land type. Full names of abbreviations are

listed in Table 2.

C is primarily distributed in Aba. The C3 area accounts for 28.96% of the total area of
C. The area ratios of C2 and C1 are 29.55% and 41.49%, respectively.

F covers a large area and is widely distributed, but it is less distributed in the northwest,
north, and west of the study region. The area of C1 accounts for the highest proportion,
reaching 69.76%. The proportion of C2 is only 10.10%.

GL is widely distributed in every county. The resolution of the three models for the
GL is very high, the C1 area accounts for 76.50%, and the smallest C3 area only accounts
for 8.27% of the GL.

The overall spatial consistency of the three models is high. The C3 area accounts for
only 14.07%, scattered around the canyons. The area percentage of the C2 is 13.42%. And
the area percentage of the C1 is as high as 72.51%, distributed throughout the research
region.
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3.3. Accuracy Verification

This paper selects the Kappa coefficient, FoM coefficient, and OA to validate the
exactitude of the simulated LUCC (Table 3) and uses UA and PA (Figure A2) for auxiliary
discrimination.

Table 3. Accuracy comparison of different models of LUCC in 2020.

CA-Markov LCM PLUS

Kappa 0.76 0.93 0.89
OA 0.88 0.97 0.94
FoM 0.07 0.21 0.15

The Kappa coefficients of the CA-Markov, LCM, and PLUS model are 0.76, 0.93, and
0.89, respectively. The FoM coefficients are 0.07, 0.21, and 0.15, respectively. The overall
accuracies are 0.88, 0.97, and 0.94, respectively. Among the three models, the Kappa
coefficient, FoM coefficient, and OA of the LCM model are all the best, indicating that the
simulation result of the LCM is closer to the actual situation.

3.4. Predicting Future LUCC
3.4.1. Future LUCC Forecast Analysis

To explore the LUCC of the Western Sichuan Plateau in the future over a long period
of time, this paper is based on the merit of the long-term forecast of the Markov model,
taking the 2020 LUCC as the initial data, using the LCM to predict the LUCC of 2030, and
then iterating for another ten years, and so on, until the 2070 LUCC is simulated.

We can analyze the change in land types through the area and its proportion of
the LUCC in 2070 (Table 4, Figure 8) and the sandy map of land-use transfer (Figure 9).
Regarding area changes, the area proportion of C changes from 1.19% to 1.29%. F is the
second largest land type in the study area, with the area changing from 90,879.52 km2 to
95,648.93 km2. By 2070, GL is still the largest land type, with an area of 143,113.50. The
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area ratio of SL increases to 0.12%. The area of WL in the region is the smallest, and the
area accounts for only 0.01%. The area of the WB has risen 85.29 km2 in 50 years. The area
ratioes of IS, BA, and PIS increases by 0.05%, 0.15%, and 0.38%. In terms of the direction of
land type transfer, all land types have a tendency to change to different land types.

Table 4. The area and proportion of land types in LUCC in 2020 and 2070.

LUCC Type Area/
Proportion Actual 2020 Simulation 2070

C
Area/km2 2933.45 3070.63

Proportion/% 1.19% 1.29%

F
Area/km2 90,879.52 95,648.93

Proportion/% 36.94% 38.88%

GL
Area/km2 149,812.75 143,113.50

Proportion/% 60.90% 58.17%

SL
Area/km2 108.99 306.59

Proportion/% 0.04% 0.12%

WL
Area/km2 27.63 27.24

Proportion/% 0.01% 0.01%

WB
Area/km2 544.97 630.26

Proportion/% 0.22% 0.26%

IS
Area/km2 98.32 222.04

Proportion/% 0.04% 0.09%

BA
Area/km2 743.59 1102.98

Proportion/% 0.30% 0.45%

PIS
Area/km2 863.50 1790.55

Proportion/% 0.35% 0.73%
Total Area/km2 246,012.72 246,012.72

Full names of abbreviations are listed in Table 2.
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3.4.2. Analysis of Landscape Pattern Change

Analyzing the landscape indexes at the class metrics (Table 5), it can be seen that, in
both 2020 and 2070, the areas of NP and PD of F are the largest. The value of LPI for GL is
52.6044 in 2020 and 49.9947 in 2070. F and GL have the highest AI value of all land types,
and WL has the smallest AI value of only 2.9046.

Table 5. Landscape index calculated at class metrics.

Landscape
Index Year C F GL SL WL WB IS BA PIS

NP (n)
2020 8282 14,518 9450 455 119 1745 278 1656 838
2070 8732 13,580 6995 551 119 2255 328 1958 1440

PD (n/100 ha)
2020 0.0337 0.0590 0.0384 0.0018 0.0005 0.0071 0.0011 0.0067 0.0034
2070 0.0355 0.0552 0.0284 0.0022 0.0005 0.0092 0.0015 0.0080 0.0059

LPI (%)
2020 0.0199 24.7708 52.6044 0.0006 0.0004 0.0023 0.0026 0.0108 0.0485
2070 0.0199 23.4059 49.9947 0.0145 0.0004 0.0060 0.0026 0.0204 0.0841

AI (%)
2020 15.8997 73.2543 82.4134 5.4860 2.9046 12.1744 15.0485 22.4496 47.5178
2070 15.8870 76.0336 82.4636 40.3364 2.9046 17.1084 15.0485 25.9814 53.1743

Full names of abbreviations are listed in Table 2. n: number of patches.

Analysis of the landscape index at the landscape metrics (Table 6) found that the value
of NP and PD decreased by 1433 and 0.0059, respectively, the value of AI increased by
0.5929, the value of LSI decreased from 113.6849 in 2020 to 110.7741 in 2070, the value of
CONTAG decreased from 68.1057 to 66.5422, and the value of SHDI and SHEI increased by
6.76% and 6.75%, respectively.

Table 6. Landscape index calculated at landscape metrics.

Time NP (n) PD (n/100 ha) LSI CONTAG (%) SHDI SHEI AI (%)

2020 37,341 0.1518 113.6849 68.1057 0.7974 0.3629 77.4706
2070 35,908 0.1459 110.7741 66.5422 0.8513 0.3874 78.0635

n: number of patches.
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4. Discussion
4.1. Model Analysis

In this paper, by simulating the LUCC of the study area in 2020 and comparing its
spatial distribution consistency, we found that the overall distribution trend of C is that
the further to the northeast of the research region, the lower the consistency. The principal
reason for its C3 formation is the difficulty in distinguishing adjacent GL. The F is widely
distributed and highly recognizable, with C1 as the main distribution, C2 partly distributed
around the highly consistent area, and C3 mainly distributed in the canyon area. The three
models have a high recognition of GL, with C1 mainly distributed in areas with gentle
topography and C3 distributed primarily in areas bordering F or with obvious topographic
relief, such as ravines and mountains. The spatial consistency of the overall landscape is
high, and C1 is the largest area in this region. The main reason for the formation of C2 is
that the BA and PIS are difficult to distinguish, and the topography of the study is undulating.

Although only a few scholars have explored land use simulation prediction in the west-
ern Sichuan plateau, they have achieved credible and reliable results [25,26]. Additionally,
a large number of scholars have conducted research and achieved reliable results through
the CA-Markov model, PLUS model, and LCM model [45–47]. In this study, the Kappa
coefficients of the simulation results are all greater than 0.75, and the Kappa coefficient of
the LCM even reaches 0.93. The OA of the models are all above 0.85, which shows that the
simulation results are highly accurate and effective. The FoM of the LCM is 0.21, which is
greater than that of the other two models. Therefore, the LCM has the highest accuracy in
this study, and its simulation result is closer to the actual data. Therefore, the accuracy of
the result of this paper is also trustworthy compared with these articles.

To date, a large number of scholars have conducted LUCC simulation and prediction
studies. The difference between this paper and some studies is that different models are
selected to simulate LUCC instead of a single model. The CA-Markov model predicts the
land demand of each region through the spatial pattern distribution of the Markov model
and calculates the LUCC transfer probability (Table A2) with a relatively simple algorithm.
At the same time, logistic regression analysis linearly fits different land types and various
driving factors. This creates a suitability atlas through a regression analysis of all factors
according to a trend. This method simplifies the analysis process of driving factors in
preparing suitability maps. Still, because some land types are relatively scattered in this
study, the overall fitting cannot fully show the impact of driving factors on LUCC [29].
Logistic regression also has certain limitations that may lead to errors in the suitability
atlas [48], such as the spatial autocorrelation of independent variables, which may be the
reason for the low accuracy of the simulation result of the CA-Markov model. In the
LCM, before calculating the LUCC transfer probability using the Markov model, the MLP
neural network establishes the nonlinear relation between the LUCC and the driving factors
through machine learning algorithms to simulate the conversion potential of the LUCC. The
MLP neural network has the ability to calibrate, model, and predict the temporal and spatial
phenomena of the nonlinear relation between the dependent variable and the independent
variable [49,50] and can analyze the position and change trend of the LUCC [51]. The LEAS
module of the PLUS model uses the random forest (RF) algorithm to analyze the relation
between the expansion results of each category and the driving factors one by one, obtain
the conversion rules of each land type, and then obtain the contribution of each factor
to the expansion of each category in the period [52]. In the PLUS model, the calculation
results of the Markov model show only the land demand of the model. Compared to other
algorithms, the RF algorithm is less prone to overfitting problems during the simulation
process and has a better prediction ability [53]. The PLUS model and the LCM involve
more complex algorithms, and the simulation process is more complicated than that of the
CA-Markov model, which may also result in higher accuracy and better simulation results
for the two models. Although the simulation results of both the PLUS model and the LCM
are good, the lower accuracy of the PLUS model may be because the MLP neural network
has a greater advantage in terms of long-term simulation, and the algorithm of the PLUS
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model has shortcomings compared to the LCM [54]. According to the analysis results in
this paper, we summarize the advantages and disadvantages of the three models (Table 7).

Table 7. Summary of the advantages and disadvantages of the three models from this research.

CA-Markov LCM PLUS

Advantages
Simple algorithms;

easy simulation process;
easy to implement.

The MLP neural network can
analyze the relationship between
driving factors and LUCC, and

generate a more accurate map of
LUCC change potential.

Suitable for the evolution of
patch-level LUCC;

the contribution rate of
influencing factors to different
land expansions is provided.

Disadvantages
The impact of socio-economic

factors cannot be fully expressed;
limitations of logistic model.

Complex algorithm and
cumbersome to analyze.

Complex algorithms and
deficiencies in long-term

simulation compared to other
models.

4.2. Predicting Future LUCC

In this paper, we used the LCM to predict the LUCC in 2070 in the research area and
combined it with landscape pattern analysis. From the perspective of land type transfer in
LUCC from 2020 to 2070, there is a trend of shifting to different land types in all regions,
and the following land types are more obvious: F is mainly transformed into F and GL, and
a tiny part is transferred to IS and BA; GL is mainly converted into C, F, GL, and BA; BA
are mainly transformed into GL, BA, and PIS; PIS is mainly transformed into GL, WB, and
PIS. In terms of area change, the area of GL decreased, the area of WL remained almost
unchanged, and the area of other land types increased. The research area is rich in natural
resources, and animal husbandry is relatively developed. Over-harvesting and over-grazing
may lead to GL degradation. With the development of society, urbanization is accelerating,
and the population is increasing, “human-land conflict” may be one of the reasons for the
decrease in GL area. In recent years, the Forestry Bureau in the Western Sichuan Plateau
has actively carried out ecological restoration and strengthened the protection of forest
resources. This measure is also likely to lead to a reduction in grassland area and increase
in forest area. Although long-term ecological protection measures are needed to restore
forest resources, it can be seen from Figure 9 that GL will be transformed into F from 2020
to 2070, which proves that these protection measures are effective.

According to the landscape index analysis of the class metrics, the changes in the PD
and NP of each land type were similar from 2020 to 2070, with F and GL decreasing, WL
remaining unchanged, and other land types increasing. The meaning of AI is similar to
that of NP and PD, and both can indicate the degree of fragmentation and dispersion of
the landscape. According to the changes in the major categories of AI from 2020 to 2070,
the fragmentation of land types other than C, WL, and IS is weakening, and the spatial
distribution is also becoming more concentrated. LPI can describe the dominance of land
types. In 2020 and 2070, F and GL will occupy a dominant position in the entire landscape.
The LPI of SL, WB, BA, and PIS cover is increasing, indicating that the dominance of these
land types is increasing. Analyzing the landscape indexes at the landscape metrics, it can
be seen that the NP and PD of the landscape are decreasing while the AI is increasing,
indicating that the degree of fragmentation of the overall landscape is decreasing and the
degree of aggregation is increasing. The reduction in LSI indicates that the complexity of
the landscape is decreasing. The reduction in CONTAG indicates that the degree of land
scape extension has decreased. The increase in SHDI and SHEI shows that the various
landscape types in this region are developing in an orderly and reasonable manner, the
diversity and uniformity have been improved, and the richness has been improved.

4.3. Disadvantages and Limitations

When analyzing the impact of driving factors on LUCC, this paper only consideres
some natural factors and socioeconomic factors, and does not think about the impact of
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climate data, such as temperature, as well as the constraints on LUCC, such as policy
formulation and protected areas. This paper explores the development trend of LUCC
in the western Sichuan Plateau from 2020 to 2070 based on a natural development sce-
nario without policy constraints. In subsequent studies, it is more practical to explore
the spatial distribution pattern of LUCC under different scenarios by setting different
simulation scenarios.

At present, most LUCC simulation studies use a single land use simulation model.
However, dissimilar models have various algorithms, different benefits and different
shortcomings, and different results can be obtained [55]. Therefore, using multiple different
LUCC simulation models in the same region is beneficial to regional LUCC simulation
research and is more conducive to the selection of a model that is suitable for this region.
Although this paper selects three different models for simulation and prediction, it is not
enough for multi-model comparison and analysis, and more models need to be considered
for comparison in future research. Although the simulation results in this paper can
meet the basic demands, there is still a certain gap with reality. In future research, some
parameters can be added to the model, or multiple land use models can be coupled to
combine different advantages to improve the simulation accuracy [56].

5. Conclusions

We used the CA-Markov model, LCM, and PLUS model to simulate the land use status
of the western Sichuan plateau in 2020, compare their results with the actual situation,
and verify the accuracy. The LCM with the highest accuracy in the simulation result
was selected to explore the development trend of LUCC structure in the future to supply
theoretical support for the optimal management of land, social economy, and ecological
protection of the Western Sichuan Plateau. The major conclusions of this article include
three points:

(1) The simulation results of the three models have high similarity in spatial dis-
tribution, with a Kappa coefficient of 0.89, FoM coefficient of 0.15, and OA of 0.94 for
the LCM, and the simulation accuracy is higher than that of the PLUS model and CA-
Markov model. However, for different land types, the PA and UA of the three models have
significant variability.

(2) Using the LCM to simulate the change in LUCC and landscape pattern from 2020 to
2070 showed that, except for GL and WL, the area of other land types is increasing, and the
area of GL is reduced by 6699.25 km2, but is still the largest. The proportion of WL remained
unchanged, and the area decreased by only 0.39 km2. In terms of land transfer, there is a
tendency to shift to different land types in different regions. Except for C, WL, and BA, the
fragmentation of other land types is decreasing. F and GL are becoming less dominant but
still dominate the landscape. The degree of aggregation of the overall landscape increased,
the degree of complexity decreased, and the diversity, uniformity, and richness of each
landscape type increased, showing an orderly and reasonable development.

(3) We can assess the future evolution of land through the predicted LUCC in 2070,
which can provide decision-making advice regarding land use for the government. With the
over-exploitation and utilization of natural resources, problems such as GL degradation and
weakening of the ecological automatic adjustment function may arise. Various ecological
protection and restoration measures have been implemented on the Western Sichuan
Plateau. We should strictly observe the policies of ecological protection areas and basic
protection farmland when planning land in the future, and protect ecological resources such
as forest, grassland and cropland. We also need to consider high-quality developments that
combine economic benefits and ecological security.
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Appendix A

Table A1. Results of logistic regression analysis of land use drivers.

IF Index F GL SL WL WB IS BA PIS

DEM
β - - 0.00037 - - - 0.00016 −0.00023

exp(β) - - 1.00037 - - - 1.00016 0.99977

Slope β 0.01703 −0.01698 - 0.04955 - - 0.00681 0.01875
exp(β) 1.01718 0.98316 - 1.05080 - - 1.00683 1.01893

Aspect β - - −0.00171 - - - - -
exp(β) - - 0.99829 - - - - -

Dis1
β −0.00002 0.00001 0.00025 0.00032 −0.00032 −0.00291 0.00028 0.00060

exp(β) 0.99998 1.00001 1.00025 1.00032 0.99968 0.99709 1.00028 1.00060

Dis2
β −0.00005 0.00005 - 0.00006 −0.00003 −0.00082 - 0.00003

exp(β) 0.99995 1.00005 - 1.00006 0.99998 0.99919 - 1.00003

Dis3
β 0.00000 0.00000 0.00000 −0.00001 0.00000 −0.00001 0.00001 0.00000

exp(β) 1.00000 1.00000 1.00000 0.99999 1.00000 1.00000 1.00001 1.00000

Dis4
β −0.00006 0.00006 0.00005 - 0.00006 −0.00040 0.00015 0.00019

exp(β) 0.99994 1.00006 1.00005 - 1.00006 0.99960 1.00015 1.00019

PD
β 0.03696 −0.05085 - 0.07230 0.04630 - 0.02854 0.07462

exp(β) 1.03765 0.95042 - 1.07498 1.04739 - 1.02895 1.07748

GDP
β −0.00003 0.00003 - - 0.00002 - −0.00020 −0.00013

exp(β) 0.99997 1.00003 - - 1.00002 - 0.99980 0.99987

Constant
β 0.55677 −0.51204 −2.62761 −1.49221 −0.51878 5.96395 −5.06016 −4.48808

exp(β) 1.74502 0.59927 0.07225 0.22488 0.59525 389.14307 0.00635 0.01124

Dis1: distance to river; Dis2: distance to road; Dis3: distance to railway; Dis4: distance to residential area;
PD: population density; GDP: GDP spatial distribution. IF: impact factor. “-”: no participating in the construction
of the equation. Full names of abbreviations are listed in Tables 2 and A1.

Table A2. The LUCC transition probability matrix from 2010 to 2020 based on the Markov model.

C F GL SL WL WB IS BA PIS

C 0.9875 0.0030 0.0056 0 0 0.0004 0.0034 0.0001 0
F 0.0001 0.9857 0.0139 0 0 0.0001 0.0001 0.0001 0

GL 0.0002 0.0090 0.9893 0.0001 0 0.0001 0.0002 0.0010 0.0001
SL 0 0.1667 0.1242 0.6863 0 0 0 0.0065 0.0163
WL 0 0 0 0 1 0 0 0 0
WB 0 0 0 0 0 1 0 0 0
IS 0 0 0 0 0 0 1 0 0

BA 0 0.0038 0.2560 0.0155 0 0.0345 0 0.6625 0.0276
PIS 0 0.0014 0.0416 0.0007 0 0.0068 0 0.0228 0.9267

Full names of abbreviations are listed in Table 2.
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