
Citation: Abedini, M.; Ziaii, M.;

Timkin, T.; Pour, A.B. Machine

Learning (ML)-Based Copper

Mineralization Prospectivity

Mapping (MPM) Using Mining

Geochemistry Method and Remote

Sensing Satellite Data. Remote Sens.

2023, 15, 3708. https://doi.org/

10.3390/rs15153708

Academic Editor:

Paraskevas Tsangaratos

Received: 13 June 2023

Revised: 20 July 2023

Accepted: 23 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Machine Learning (ML)-Based Copper Mineralization
Prospectivity Mapping (MPM) Using Mining Geochemistry
Method and Remote Sensing Satellite Data
Mahnaz Abedini 1 , Mansour Ziaii 1, Timofey Timkin 2 and Amin Beiranvand Pour 3,*

1 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology,
Shahrood 3619995161, Iran; abedini.m@shahroodut.ac.ir (M.A.); mziaii@shahroodut.ac.ir (M.Z.)

2 School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia;
timkintv@mail.ru

3 Institute of Oceanography and Environment (INOS), Universiti Malaysia Terengganu (UMT),
Kuala Nerus 21030, Terengganu, Malaysia

* Correspondence: beiranvand.pour@umt.edu.my; Tel.: +60-9-6683824; Fax: +60-9-6692166

Abstract: The exploration of buried mineral deposits is required to generate innovative approaches
and the integration of multi-source geoscientific datasets. Mining geochemistry methods have
been generated based on the theory of multi-formational geochemical dispersion haloes. Satellite
remote sensing data is a form of surficial geoscience datasets and can be considered as big data
in terms of veracity and volume. The different alteration zones extracted using remote sensing
methods have not been yet categorized based on the mineralogical and geochemical types (MGT) of
anomalies and cannot discriminate blind mineralization (BM) from zone dispersed mineralization
(ZDM). In this research, an innovative approach was developed to optimize remote sensing-based
evidential variables using some constructed mining geochemistry models for a machine learning
(ML)-based copper prospectivity mapping. Accordingly, several main steps were implemented and
analyzed. Initially, the MGT model was executed by studying the distribution of indicator elements of
lithogeochemical data extracted from 50 copper deposits from Commonwealth of Independent States
(CIS) countries to identify the MGT of geochemical anomalies associated with copper mineralization.
Then, the geochemical zonality model was constructed using the database of the porphyry copper
deposits of Iran and Kazakhstan to evaluate the geochemical anomalies related to porphyry copper
mineralization (e.g., the Saghari deposit located around the Chah-Musa deposit, Toroud-Chah Shirin
belt, central north Iran). Subsequently, the results of mining geochemistry models were used to
produce the geochemical evidential variable by vertical geochemical zonality (Vz) (Pb × Zn/Cu × Mo)
and to optimize the remote sensing-based evidential variables. Finally, a random forest algorithm
was applied to integrate the evidential variables for generating a provincial-scale prospectivity
mapping of porphyry copper deposits in the Toroud-Chah Shirin belt. The results of this investigation
substantiated that the machine learning (ML)-based integration of multi-source geoscientific datasets,
such as mining geochemistry techniques and satellite remote sensing data, is an innovative and
applicable approach for copper mineralization prospectivity mapping in metallogenic provinces.

Keywords: machine learning; mining geochemistry; remote sensing; random forest; geochemical
zonality; copper mineralization; mineral prospectivity mapping

1. Introduction

Numerous well-known mineral deposits are undergoing long-term mining and ex-
ploitation along with shallow ore resources have been gradually exhausted around the
world; therefore, the exploration of covered and buried mineral deposits is required to
generate innovative approaches. Appreciating the comprehensive assessment of deep ore
resources effectively, economically, and rapidly has become the frontier field of mineral
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exploration research. Mining geochemistry is one of the most essential disciplines charac-
teristically fulfilled for exploration of deep and concealed mineralization [1–23]. The key
purpose of mining geochemistry is to propose an approach for differentiating blind miner-
alization (BM), outcropping, and zone dispersed mineralization (ZDM) [1,4,10,15,17,18,20].
Many mining geochemistry methods have not been practiced for mineral prospectivity
mapping (MPM) using geographic information systems (GIS) [22,24]. These techniques
could be divided into three classes, namely mineralogical and geochemical type (MGT),
geochemical zonality, and metallometry.

In the last decades, numerous approaches have been efficaciously executed to sort
geochemical data responsive for MPM, e.g., [22,24–30]. Recognition of anomalies associated
with ore mineralization and the integration of multi-source geoscientific data is necessary
for MPM. The main emphasis has been placed upon big data analytics designed to recognize
and incorporate anomalies linked to multi-mineralogical and geochemical types (MGTs) of
mineralization, e.g., [10,15,31–33]. Incidentally, innovative mathematical models for the
delimitation and interpretation of the multi-MGT anomalies have been recommended and
implemented, e.g., [34–40].

The main applications of remote sensing satellite data in MPM are to provide detailed
information for identifying hydrothermal alteration zones, detecting geological structures,
and distinguishing lithological units. During the previous decades, the extraction of hy-
drothermal alterations was considered one of the most essential implementations of remote
sensing data for provincial mineral exploration campaigns e.g., [41–48]. Discrimination of
different alteration zones is a qualitative method to evaluate shallow ore resources. These
different alteration zones have not been categorized (considered) based on the MGT of
anomalies for MPM and cannot differentiate blind mineralization (BM) from zone dispersed
mineralization (ZDM). The MGT and geochemical zonality models are able to recognize the
hydrothermal alteration areas related to ore mineralization and to evaluate deep and buried
ore resources. Metallometry provides a quantitative connection among point source soil
and stream sediment anomalies to improve anomaly detection. This relation is allied with
the concept of productivity (area × concentration) and is not governed by concentrations.
Monotonous computation of regional data has not been an easy task, but with the advent
of GIS, it has been easily premeditated. Thus, metallometric techniques are developed to
map geochemical anomalies associated with deposits [49,50]. There are various methods
for GIS-based MPM, and different relevant evidential layers are integrated. Ziaii et al. [24]
used two sets of evidential layers to relate the presentation of geochemical anomalies
of a pathfinder element (e.g., Cu) and Vz in MPM, and demonstrated that Vz in MPM
outperforms Cu in MPM. Thus, using the multiplicative supra-ore (Pb × Zn) and sub-ore
elements (Cu × Mo) (instead of the single elements), the limitations of using traditional
interpolation methods, such as Kriging, on the data [30] were fundamentally solved.

Machine learning (ML) algorithms, such random forest (RF) have great capability
for data integration and MPM. Rodriguez-Galiano et al. [51] compared the performances
of MLAs, such as artificial neural networks, regression trees, RF, and support vector
machines in MPM. The results indicated that the RF overtook the former MLA algorithms
and revealed advanced steadiness and vigor with erratic training parameters. Carranza
and Laborte [52] investigated the susceptivity of the RF to diverse sets of training data
and the performance of RF compared to data-driven methods of MPM. They concluded
that RF precisely considers the spatial correlations among the predictor variables and the
training deposit and non-deposit locations, and RF is more beneficial than other methods.
Carranza and Laborte [53,54] used RF for MPM with a small number of prospects and
data with missing values. They realized that RF overtook WofE where a small number of
prospects are known. Moreover, RF can control missing values in evidential data through
an RF-based attribution method. It is not a black-box technique, unlike artificial neural
networks. Zhang et al. [55] tested the capabilities of RF for MPM. They selected several
evidential maps allied with Au mineralization, including singularity indices, principal
component scores, and distance to intrusions and faults as inputs to the model. Then, they



Remote Sens. 2023, 15, 3708 3 of 29

used RF to rank the significance and to recognize the susceptivity of the evidential maps
generated based on their spatial correlations to the documented gold mineralization. The
results demonstrate that RF could be utilized successfully for MPM in areas with some
identified mineral occurrences. Wang et al. [56] used recursive feature elimination and
RF to select indicator elements and map geochemical anomalies associated with Cu and
W mineralization in a regional scale. Zhang et al. [57] interpreted RF modeling using the
variable importance and partial dependence plot and also examined the effectiveness of
outlier-based training samples in contrast to using known mineralized locations. They
concluded that the MPM resulting from an RF built on outlier-based training set was
substandard to those produced by an RF constructed on mineralized location-based training
sets, which discloses the prejudice concerning documented mineralized sites in training a
data-driven MPM algorithm.

The NE-trending Toroud-Chah Shirin (TCS) belt is placed in the Alborz magmatic
belt in the north of Iran [58–61] (Figure 1). A few studies were conducted in the TCS belt
and most of the acquired information is only related to depths of less than 100 m [59–64].
Exploration for new deep, concealed, and economic ore resources (mineral deposits) in the
TCS belt is challenging owing to the insufficiency of comprehensive geological datasets
and arid and mountainous geochemical landscapes [15,35,65–67]. In this research, a novel
approach was established to optimize remote sensing-based evidential variables using
constructed mining geochemistry models for a machine learning (ML)-based copper miner-
alization prospectivity mapping (MPM). The mining geochemistry methods and satellite
remote sensing data processing was examined to select the optimal evidential variables for
constructing MPM using the RF technique. Based on the lithogeochemical data extracted
from the copper deposits of Commonwealth of Independent States (CIS) countries, the
quantitative MGT model was constructed and used to identify the MGT of lithogeochemical
anomalies of the Saghari deposit around the Chah-Musa copper deposit in the TCS belt (Fig-
ure 1). Subsequently, the alteration zones and geochemical zonality coefficient related to the
identified MGT were selected. According to the database of copper deposits in Kazakhstan
and Iran, the quantitative zonality model was constructed to assess the lithogeochemical
anomalies of the Saghari deposit. Finally, the set of evidential variables, including lithology,
structure, alteration and geochemical zonality, and deposit/non-deposit locations were
integrated using RF for MPM in the TCS belt.

2. Geological Setting

The TCS magmatic arc (Figure 1) comprises an elevated block confined by the Toroud
fault to the south, and the Anjilow fault to the north that have the same trends. In this
block, NE–SW-trending volcano-intrusive rocks are composed of middle- to upper Eocene
andesites and dacites, and Oligocene diorites. Middle- to late Eocene igneous activity
include: (i) local andesitic lava flows associated with marls, tuffaceous marlstones, sand-
stones, and explosively deposited rhyolitic to rhyodacitic tuffs; (ii) basaltic andesite and
lava flows, and pyroclastic rocks of andesite, trachy-andesite; (iii) hypabyssal intrusive
rocks and subordinate dacitic–rhyodacitic rocks [63,68]. The faults and fractures controlled
ore mineralization in the TCS belt, e.g., [60,61].
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Toroud-Chah Shirin range [70]. 

Figure 2 shows geological map of the Saghari deposit, which is situated in the north-
eastern part of the geological map of Toroud (1:250,000 scale). The Saghari deposit is 
placed around the Chah-Musa deposit. The Chah-Musa deposit is an active mine. The 
Chah-Musa porphyritic hornblende diorite subvolcanic intrusion is positioned in the east-
ern part of the TSC belt [63,64]. It is emplaced into the Eocene volcanic sequence. The egg-
shaped Chah-Musa body hosts a copper deposit and interlopes an Eocene sequence of 
volcanic breccia, agglomerate, and red tuffaceous sediment. Hand specimens exhibit a 
porphyritic structure [64]. Disseminated-veinlet copper mineralization in the Chah-Musa 
deposit occurred in Calc-alkaline subvolcanic porphyry-biotite-hornblende andesite bod-
ies which are associated with phyllic and propylitic alterations. Supergene processes pro-
duced extensive alterations in hypogene sulfide minerals, such as pyrite, chalcopyrite, and 
bornite to secondary chalcocite, covellite, digenite, and malachite supergene minerals. The 
mineralization system is connected to the evolution of hydrothermal fluid mineralization 
and mixing with cold and low salinity meteoric water resulting in disseminated-veinlet 
copper mineralization at deep zones, and vein-type copper, zinc, and lead at shallow 
zones. This has led to the development of elemental and mineralogical zonation [63]. De-
spite its importance, geologic information about the Chah-Musa deposit is scarce [64]. 

The study area has an arid climate with deprived vegetation. The occurrence of spe-
cific geographical conditions in an arid environment has resulted in the unfeasible execu-
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Figure 1. The geographical position of the TCS belt in Iran and regional geological map of the TCS
range, showing mineralization zones, geological structures, and the lithological units. (based on
1:250,000 geologic map of Toroud). AMB: Alborz magmatic belt, UD: Urumieh-Dokhtar zone, TCS:
Toroud-Chah Shirin range [69].

Figure 2 shows geological map of the Saghari deposit, which is situated in the north-
eastern part of the geological map of Toroud (1:250,000 scale). The Saghari deposit is
placed around the Chah-Musa deposit. The Chah-Musa deposit is an active mine. The
Chah-Musa porphyritic hornblende diorite subvolcanic intrusion is positioned in the east-
ern part of the TSC belt [62,63]. It is emplaced into the Eocene volcanic sequence. The
egg-shaped Chah-Musa body hosts a copper deposit and interlopes an Eocene sequence
of volcanic breccia, agglomerate, and red tuffaceous sediment. Hand specimens exhibit a
porphyritic structure [63]. Disseminated-veinlet copper mineralization in the Chah-Musa
deposit occurred in Calc-alkaline subvolcanic porphyry-biotite-hornblende andesite bodies
which are associated with phyllic and propylitic alterations. Supergene processes produced
extensive alterations in hypogene sulfide minerals, such as pyrite, chalcopyrite, and bor-
nite to secondary chalcocite, covellite, digenite, and malachite supergene minerals. The
mineralization system is connected to the evolution of hydrothermal fluid mineralization
and mixing with cold and low salinity meteoric water resulting in disseminated-veinlet
copper mineralization at deep zones, and vein-type copper, zinc, and lead at shallow zones.
This has led to the development of elemental and mineralogical zonation [62]. Despite its
importance, geologic information about the Chah-Musa deposit is scarce [63].
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Figure 2. Geological map of the Saghari deposit showing A-Central and A-South profiles
(80 × 100 m2) and the location of exploratory drilled boreholes.

The study area has an arid climate with deprived vegetation. The occurrence of specific
geographical conditions in an arid environment has resulted in the unfeasible execution
of geochemical reconnaissance investigations. Many of the identified copper deposits
in the study area are considered through advanced zonal patterns of mineralization and
hydrothermal alteration zones. The zonal patterns show remarkable differences in element
content, reflecting variations in the mineralogical and geochemical compositions of the
mineralized and hydrothermally altered zones [24].

3. Methodology

Figure 3 illustrates an outline of the methodological flowchart applied in this analysis
to identify and evaluate the geochemical anomalies of the Saghari deposit around the
Chah-Musa deposit and to generate mineral prospectivity mapping in the TCS belt.
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3.1. Big Data Analytics

The term “Big Data” refers to large datasets and their characteristics, such as differ-
ent kinds of data sources. The features of big data are essential to the geosciences. The
enormous assortment of earth observation data provides a great opening to execute big
data analytics to solve geosciences issues [32]. The implications of implementing big data
analytics to mineral exploration are to create the geochemical models utilizing diverse
types of big data, to categorize the features of the distribution of trace element contents,
and to assess the geochemical anomalies. The fundamental function of big data analytics is
prediction, making it an ultimate methodology for evaluating multi-formational geochemi-
cal anomalies. The databank used to identify the MGTs of geochemical anomalies of the
Saghari deposit comprises the lithogeochemical data extracted from the 50 copper deposits
in CIS countries. According to the obtained MGT from the previous model, the database
used to assess the anomalies associated with mineralization comprises the porphyry copper
deposits in Kazakhstan and Iran.

3.2. Mineralogical and Geochemical Type (MGT)

For the geochemical characteristics of deposits, ore occurrence, and associated litho-
geochemical anomalies of a particular metal, it is possible to select indicator elements that
determine if an area belongs to a specific mineralogical and geochemical type (MGT). The
elements that determine the MGT of deposits make it possible to separate similar geochem-
ical anomalies by depicting their composition on a triple diagram. The relative contents
of three groups of elements selected for the characteristics of the corresponding MGT are
applied on the sides of an equilateral triangle. The percentage of each three components is
calculated from the total amount, and the position of the MGT on the plane of the triangle is
marked with a point. The displacement of the point from one of the vertices of the triangle
determines whether the ore occurrence belongs to the corresponding MGT. Therefore, the
separation of copper ore occurrence is possible by constructing a triple diagram using big
data analytics.
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3.3. Vertical Geochemical Zonality Method

Kitaev [70] suggested a multidimensional geochemical field study built on the concept
that geological space is comprised of geochemical fields signifying the zonality of element
associations. This study considers the dispersion of elements to separate multielement
anomalies according to Vz values. Grigorian [4] demonstrated that patterns of Vz around
exposed deposits are different from patterns of Vz associated with blind deposits. Recogni-
tion of the zonality of geochemical haloes associated with blind deposits can be attained by
four corresponding analyses [10]: (i) analysis of element associations representing supra-
ore and sub-ore haloes of deposits; (ii) analysis of a single component, implying a false
anomaly; (iii) analysis of mean values of indicator elements outside significant geochemical
anomalies to eliminate background noise; (iv) mapping of multiplicative geochemical
anomalies (i.e., Vz coefficients). The geochemical zonality coefficients for the assessment
of the anomalies are derived through investigation of the primary geochemical haloes of
typical standard deposits. In most cases, residual secondary soil haloes are correlated in
composition and structure with the ore bodies and primary haloes which have produced
them. The fruitful application is linked to the landscape–geochemical situations in the
ore zones. The universal model for discovering blind mineralization and determining the
erosional level is according to three criteria: (i) contour zoning [3,4], (ii) natural field of
geochemical associations [71], and (iii) metallometry [42,54].

Based on the average contents of ore elements from big data analytics, the Vz val-
ues are calculated and converted into the zoning sequence of geochemical haloes. They
are interpolated along the averaging line. Therefore, the geochemical zonality model is
constructed. This model is used to assess geochemical anomalies. This model adopts a
correlation among vertical zonality coefficient and depth of mineralization response. While
the Vz was established initially for the study of lithogeochemical data [70], Grigorian [4]
has confirmed that it could be executed using stream sediment geochemical data to study
the erosional surfaces of multiplicative anomalies signifying different erosional levels of
mineral deposits [4]. Therefore, efficacious identification of anomalous erosional surfaces is
allied to the landscape situations of mineralized zones.

3.4. Remote Sensing Data

The system of hydrothermal ore formation was fundamentally expressed by the analy-
sis of the composition and physicochemical properties of ore-bearing solutions, sources of
ore components and ore-forming fluids, and the conditions and mechanisms of ore depo-
sition [72]. The origin of hydrothermal solutions that take part in the formation of most
commercial base metal deposits is one of the most important and complicated problems of
the model of ore formation. Remote sensing methods are based on the theory of hydrother-
mal alterations. Remote sensing data are successfully used for mapping hydrothermally
altered rocks by virtue of their spectral signatures [73–75]. Porphyry copper deposits are
characteristically associated with hydrothermal alteration mineral zones, such as gossan,
argillic, phyllic, and propylitic [73,76]. Iron oxide minerals (e.g., limonite, jarosite, and a
hematite called gossan) show spectral absorption features in the visible to near infrared (0.4
to 1.1 µm) region [77]. Hydroxyl-bearing minerals, such as clay groups, sulfate minerals,
and carbonates, represent spectral absorption features in the shortwave infrared (2.0 to
2.5 µm) region [77,78]. Previous studies have confirmed the proficiency of multispectral
remote sensing sensors (e.g., ETM+ and ASTER) to map the hydrothermal alterations in
minerals and zones associated with copper mineralization [79–82].

3.4.1. Landsat ETM+ Data Characteristics, Preprocessing and Processing Techniques

Since July 1999, the Landsat ETM+ multispectral sensor onboard the Landsat 7 satellite
has obtained images of the Earth’s surface in eight bands. It identifies spectrally-filtered
radiation in visible and near infrared (VNIR), short wave infrared (SWIR), longwave
infrared (LWIR), and panchromatic bands. It has a 183 km swath width and orbits at an
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altitude of 705 km. Landsat 7 collects data in accordance with world-wide reference system
(WRS), which has cataloged the world’s land mass into 57,784 scenes, each 183 km wide
(E–W) by 170 km long (N–S). An ETM+ scene has spatial resolution of 30 m in bands 1–5
and 7 while band 6, thermal infrared (TIR), has a 60 m spatial resolution, and band 8 has
spatial resolution of 15 m. In this research, ETM+ image level L1T (Pass 162 and Raw 35) of
one scene covering the TCS belt and (date of acquisition 20 July 2000) was used. These data
were corrected radiometrically and geometrically.

Principal Component Analysis (PCA)

PCA is a multivariate statistical method which is extensively utilized to diminish the
dimension of input data; furthermore, the possibility of useful data loss is minimized. PCA
finds a set of linearly uncorrelated components called principal components (PCs) [83,84].
PCs are the projection of input data onto the principal axes or eigenvectors. The output
components are arranged based on the variance, in descending order. The PCA builds
up a new set of axes orthogonal to each other, and each component is orthogonal to the
preceding component [85].

Implementing PCA to map alterations in minerals using multispectral remote sensing
data was suggested by Prado and Crosta [86]. The PCA converts the original dataset into
a considerably smaller and easier-to-interpret set of uncorrelated variables. The main
objective is to eliminate redundancy in multispectral data and extract useful information.
PCA is extensively used for mapping hydrothermal alteration minerals associated with
ore mineralization in the metallogenic provinces [82,87–89]. This method is worthwhile for
multivariate datasets, such as multispectral satellite images, with the tenacity of emphasiz-
ing spectral responses associated with specific hydrothermal alteration minerals [90]. The
number of output PCs is equal to the input spectral bands. However, a small number of
PCs deliver significant information about the dataset. Certain spectral bands are designated
which comprise absorption and reflection features of alteration minerals. Thus, a new
image (PC) is produced on the axes with the new coordinate system [90,91]. The resulting
PC (final image) is usually more intelligible compared to the original images.

A PC image comprises the distinctive involvement of eigenvector loadings (magnitude
and sign) for the absorption and reflection bands of alteration minerals. The image tone will
be bright if the loading is positive in the reflective band of the mineral, and the image tone
will be dark for the enhanced target mineral if it is negative [91]. The PCA technique has
been successfully implemented with ETM+ and ASTER multispectral data for highlighting
spectral responses allied to particular hydrothermal alteration minerals accompanying
porphyry copper deposits [75,79,80,82,86–88,92,93]. In this analysis, for the ascertainment
of an image that comprises information correlated to the spectral signatures of particular
target minerals, normal data distribution was assumed, and the covariance matrix was
used to calculate the PCs. The eigenvector loadings in each PC image were examined. A PC
with significant loadings, which shows an analogous trend to the spectral features of the
target alteration minerals, is deliberated as a proper component for identifying the target
zones. In this study, PCA was implemented to six ETM+ spectral bands for mapping iron
oxides/hydroxides and clay minerals.

3.5. Machine Learning Algorithms

Machine learning algorithms have recently received remarkable attention for geochem-
ical anomaly recognition, especially for multi-formational geochemical anomalies and data
integration [94]. Machine learning is a field of artificial intelligence that trains an algorithm
to wisely find features and patterns hidden in large amounts of data in order to make
decisions or predictions based on new data. Machine learning is able to calculate nonlinear
and complex patterns even when deprived of a prior hypothesis that the data follow a
known multivariate probability distribution [95,96]. Both positive and negative samples are
required to train supervised machine learning algorithms for geochemical anomaly identi-
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fication. The sites of the documented deposits are considered positive training samples;
however, not all selected negative samples are true non-deposit sites [96,97].

Random Forest (RF)

Random forest (RF) is a supervised machine learning method that has been used in
geochemical exploration and data integration. This method is an ensemble algorithm that
demonstrates an extension of classification and regression trees. It could be utilized to cate-
gorize or expect the rate of a target variable built on a quantity of evidential variables [55].
Using the tree structure, the RF algorithm partitions diverse samples with corresponding
labels at leaf nodes of ensemble trees [57]. It is consecutively executed from a root node to
a terminal node (leaf) to make recurrent predictions [55,98].

The basic classifiers in the RF method are classification and regression trees, which
utilize a bagging system to determine that training subsets are casually selected, with each
subset forming a decision tree [99]. The bagging system means that nearly one-third of the
accessible training samples are not utilized in the building of RF trees; instead, they are
utilized to certify the expectation accuracy (also called “out-of-bag” (OOB) samples). The
OOB error is a balanced evaluation of the simplification error during RF analysis [96]. The
evidential variables utilized for each node in the decision tree are also unsystematically
selected. The result of RF modeling is related to the mediocre expectation of all trees
convoluted in the model [55]. The RF algorithm starts by dividing parent nodes (i.e.,
evidential features) into binary portions, where child nodes are purer than the parent node.
Examining all of the splits produces optimal splits that amplify the “purity” of the resulting
trees. The RF algorithm utilizes the Gini impurity index to compute the information purity
of child nodes equated with their parent nodes, with dividing thresholds calculated from
the extreme decline in purity rates [98]. This dividing process is reiterated until a halt
circumstance is obtained [55].

The RF algorithm as a nonlinear and nonparametric method is suitable for an extensive
array of expectation delinquents and delivers adaptable prominence indices [100]. The
key RF adaptable prominence indices include the “Gini importance” and the “Accuracy
importance”. The first designates the change in “Gini gain” dividing criterion presented by
each variable through classification. The second equates the expectation accuracy before
and after a variable is arbitrarily permuted without changing the rest of the variables,
and the difference in prediction accuracy is considered an index of the permuted variable.
This measure deliberates the effect of each variable independently and the multivariate
interactions with other variables. The elucidation capability of RF modeling is conducted
using indices of variable importance. Variable importance indices have been popular for
variable selection, but still there is irregularity when diverse sorts of predictor variables
are utilized [100]. The variable importance ranking in RF based on diverse training sets
delivers insights into evidence maps for MPM [57].

The benefits of the RF algorithm take in the bagging technique, which implicates
unsystematic resampling and replacement, and produces diverse training subsets, which
could successively be utilized to create decision trees. Therefore, the multiplicity inside the
model is increased, and relationships among trees are avoided through the RF process. It
permits excellent stability and prediction accuracy because some inputs are not utilized,
escaping definite variations. Superlative evidential characteristics are utilized as dividing
points to facilitate tree growth throughout the RF process. The unsystematic assortment
of evidential characteristics is utilized as fragment of the whole set of input evidential
characteristics. As such, it decreases relationships among trees and the simplification error
inside RF models [55].

3.6. Properties of Geochemical Data

Secondary and primary geochemical dispersion zones are sampled and analyzed to
identify geochemical patterns reflecting the primary geological structures in the Saghari
deposit around the Chah-Musa deposit. A total of 233 samples were taken from 2 areas
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of the Saghari deposit (A-Central and A-South) at a local scale (see Figure 2). The soil
samples were assayed using inductively coupled plasma–mass spectrometry (ICP-MS) and
the concentrations of 34 elements were determined. Additionally, 12 exploratory drilled
boreholes were excavated in the A-Central and A-South areas, and 146 samples were taken
from these boreholes (sampling intervals of 5 m) using a chip-channel sampling technique.
The rock samples were submitted to the laboratory for chemical analysis using ICP-MS
and the concentrations of 32 elements were measured (see Figure 2). While all soil and
rock samples were analyzed for 34 and 32 elements, respectively, only specific elements
including Co, Cu, Mo, Pb, and Zn are discussed here.

3.7. Spatial Dataset

Various spatial databases have been obtained from of the Geological Survey of Iran
(GSI). Spatial databases include (i) locations of copper deposits/occurrences, (ii) lithologic
units from the 1:250,000 scale geological/structural map of Toroud, (iii) fault/fracture
lineaments digitized from the 1:250,000 scale geological/structural map of Toroud, (iv)
map of hydrothermally altered rocks extracted from ETM+ multispectral satellite data, and
(v) stream sediment geochemical data (samples analyzed by the ICP method) related to the
TCS belt. The geochemical data represent a total drainage basin area (i.e., sampling density
of one sample per 2–3 km2). Software packages, including ArcGIS (version 10.8), and ENVI
(version 5.6) were used for processing the spatial datasets in this research. Subsequently, the
datasets were integrated using the RF algorithm in the R Statistical Environment (version
R-4.2.2) for regional-scale prospectivity mapping of copper deposits in the TCS belt.

4. Analysis and Results
4.1. The Mineralogical and Geochemical Model

Big data consisting of the results of the analysis of lithogeochemical samples collected
from copper deposits, ore occurrences, and associated lithogeochemical anomalies in Russia,
Kazakhstan, and Armenia were used to construct the triple diagram with the following
coordinates: Mo-Co-(Pb + Zn). On the diagram (see Figure 4), Cu-polymetallic deposits
and ore occurrences are clearly distinguished (the vertex of the Pb + Zn triangle) as Cu-Mo
and Cu-porphyry (Mo) and Cu-massive Sulfide and Cu-Ni (Co). Since the Clarks of the
elements taken for classification are incommensurable, the components are introduced:
100 for Mo, and 10 for Pb and Co. Among Cu-Mo and Cu-porphyry forms (IV), Mo is the
determining element, and molybdenite is one of the main minerals. Ores of Cu-polymetallic
deposits (III), in addition to pyrite and chalcopyrite, contain galena and sphalerite, which
makes it possible to attribute Pb and Zn to the elements whose increased contents determine
this MGT. In the ore composition of Cu-massive sulfide (I) and Cu-Ni deposits (V), the
role is played by Zn and Co, and by Co, respectively. The displacement of points 7 and
16 (see Figure 4), corresponding, respectively, to the Avangard and Kusmurun deposits
(Kazakhstan) towards the vertex “Mo”, is due to its increased content in oxidized ores and
association with iron hydroxides and the formation of ferrimolybdite [34,35].
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Figure 4. The 3D diagram to classify the mineralogical and geochemical types of Cu deposits, ore
occurrence, and associated lithogeochemical anomalies in Russia, Kazakhstan, and Armenia. I: Cu-
massive sulfide, II: oxidized Cu-massive sulfide, III: Cu-polymetallic, IV: Cu-Mo-porphyry, V: Cu-Ni
deposits [34,35] (see Appendix A).

The 3D MGT model was employed to clarify the relationship between the trace
element contenst of lithogeochemical samples and the MGT of geochemical anomaly.
Thus, the probability of MGT mineralization of lithogeochemical samples collected from
the Saghari deposit was identified. The trace element contents of samples based on the
coordinates (Mo-Co-(Pb + Zn)) of the model were plotted to identify their MGT. As shown
in Figure 5, the placement of the soil samples collected from the A-Central and A-South
areas towards the vertex “Pb + Zn” of the triangle determines the Cu-polymetallic MGT.
Also, the placement of the rock samples collected from A-Central and A-South boreholes
towards the vertex “Mo” of the triangle determines the Cu-porphyry MGT. The results show
a multi-MGT anomaly superposition that is a combination of two MGTs: Cu-polymetallic
and Cu-porphyry.
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4.2. Vertical Geochemical Zonality Model

Based on big data containing the average contents of ore elements for Aktogay (Kaza-
khstan), Aidarly (Kazakhstan), Kyzylkia (Kazakhstan), and Sungun (Iran) deposits, the
values of the vertical geochemical zonality coefficient (Vz) were calculated and converted
into the zoning sequence of geochemical haloes. They are interpolated along the averaging
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straight line. Thus, the graph of the monotonous Vz was constructed in a linear scale along
the ordinate axis (depth, m) and a logarithmic scale along the abscissa axis (geochemi-
cal zonality coefficient, Vz). The vertical variations in Vz (Pb × Zn/Cu × Mo) in ores
and primary haloes associated with four porphyry copper deposits in areas of the same
landscape–geochemical conditions in different countries (Kazakhstan, Iran) were shown in
Figure 6. Despite the considerable differences in the local geological settings of individual
porphyry copper deposits, falling the points on a straight line and decreasing downward
the values of Vz indicate the existence of a quantitatively uniform vertical zonality in the
primary haloes of the deposits [4,10]. Accordingly, vertical variations in values of Vz permit
the discrepancy of mineralization levels and their primary halos (supra-ore, upper-ore, ore,
lower-ore, and sub-ore) [4,35,49]. Furthermore, it can be realized from Figure 6 that similar
values of Vz imply similar depths of mineralization and primary haloes. Therefore, primary
halos of deposits at diverse depths are indicated by particular values of Vz. The importance
of Vz is for the identification of erosional surfaces signifying vertical levels of geochemical
anomalies. In other words, element data utilized as numerators of Vz signify supra-ore to
ore element associations whereas those used as denominators demonstrate ore to sub-ore
element associations. Concerning the present level of erosion, high values of Vz imply the
presence of subcropping to blind deposits whereas low values of Vz indicate outcropping
or already eroded deposits. The geochemical zonality model was used to emphasize that a
recognized function (linear or nonlinear) is adequate to model the connections among the
parameters of geochemical haloes and responses of the depth of mineralization [4].

The geochemical zonality model makes the erosional level assessment of any geo-
chemical anomaly in a given MGT possible. This model was used to interpret the lithogeo-
chemical samples in the Saghari deposit. Before the analysis of the anomalous patterns,
their component anomalies should be reconstructed. These components must consider the
following: (a) coexistence of two local maxima for supra-ore and sup-ore (this coexistence
implies blind mineralization); (b) existence of a single component implies ZDM; (c) using
mean value geochemical indicator elements, outside geochemical anomalies, for eliminat-
ing background noise in data interpretation; (d) the multiplicative geochemical anomalies
and their spatial associations with particular geological features are essential aspects of
mineral distribution for exploration and understanding ore geometry.

To evaluate the potential for the occurrence of blind mineralization associated with the
anomalies, the values of Vz were calculated for lithogeochemical data. Based on calculations
on the soil samples collected from the A-Central area and the model, blind mineralization
(BM) was recognized. This anomaly has been tested by drilling five boreholes. As shown
in Table 1 and Figure 7, the A-Central anomaly is promising for blind mineralization.
According to the results of Vz for soil samples collected from the A-South area and the
model, outcropping mineralization was identified. This anomaly has been tested by drilling
seven boreholes. The obtained results of these boreholes and the model also demonstrated
outcropping mineralization (Figure 7 and Table 1). Therefore, the geochemical zonality
method within the A-Central and A-South areas revealed two geochemical anomalies
including BM and outcropping. Furthermore, the field observations of the Saghari deposit
(placed around the Chah-Musa deposit) have confirmed the results of the model.
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standard porphyry copper deposits in Kazakhstan and Iran [101].

Table 1. Results of lithogeochemical data of the Saghari deposit and Vz model.

Soil Samples Vz Index Assessment Rock Samples Vz Index Assessment

A-Central Profiles 12.32 Blind mineralization A-Central Boreholes 7.54 BM
35T-51T 13.60 Blind mineralization A2 7.64 BM
52T-67T 8.84 Blind mineralization A3 30.23 BM
68T-82T 10.86 Blind mineralization B7 4.50 BM

Three Profiles 10.73 Blind mineralization B2 3.17 BM
C3 10.03 BM

A-South Profiles 2.11 Outcropping mineralization A-South Boreholes 0.42 Outcropping
33L-41L 2.13 Outcropping mineralization B2 1.80 Outcropping

34M-41M 1.34 Outcropping mineralization B3 0.79 Outcropping
34N-44N 2.08 Outcropping mineralization B4 0.04 Outcropping
35O-46O 2.51 Outcropping mineralization B5 0.11 Outcropping
34P-47P 1.85 Outcropping mineralization B6 0.76 Outcropping

Five Profiles 1.90 Outcropping mineralization C1 1.85 Outcropping
C4 0.17 Outcropping
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4.3. Mineral Prospectivity Mapping Model for Porphyry Copper Deposits

There is a main porphyry copper mine namely Chah-Musa deposit located close to
the Saghari deposit (see Figure 1). The analyses characterized here intention to realize
a provincial-scale answer to the question “Which fragments of the TCS belt have high
potential for undiscovered porphyry copper deposits?”. The answer will be provided
according to the spatial associations of the documented porphyry copper deposits with
evidential layers.

4.3.1. Spatial Evidence of Prospectivity for Porphyry Copper Deposit

The set of evidential layers includes the lithological map, the map of fault/fracture
lineaments, the alteration map, and the geochemical map. The mining geochemistry-based
models were used to optimize the evidential layers used in MPM. The mineralogical and
geochemical types (MGTs), and geochemical zonality coefficient (Vz) of multi-elements
around deposits and their spatial associations with specific geological, structural, and
geochemical features are significant aspects that are valuable to consider in MPM. Based
on the MGT model, the Saghari deposit was classified as a porphyry copper type; then,
the alteration evidence layer was optimized. Additionally, Vz (Pb × Zn/Cu × Mo) was
selected. Based on the geochemical zonality model, the Vz was used to optimize the
geochemical evidence layer. Therefore, the spatial datasets utilized for predictive modeling
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of prospectivity for porphyry copper deposits in TCS included a lithological map, a map of
faults/fractures, the locations of porphyry copper prospects and deposits (see Figure 1), an
alteration map, and a map of multi-element geochemical anomalies (Vz).

Lithological and Structural Evidence

Six lithologic units were extracted from the 1:250,000 scale geological map of the TCS
range (see Figure 1). This lithological map was used as input to the RF modeling. Analysis
of the mineral system associated with the porphyry copper mineralization in TCS indicates
that it is worth assessing the spatial association of the target variables (deposit and non-
deposit locations) in terms of distances to faults. As such, fault/fracture lineaments were
extracted from the 1:250,000 scale geological map of Toroud (see Figure 1); then, distance to
fault/fracture was considered to create the fault/fracture evidential map. This evidential
map was used as the input for the RF modeling (Figure 8).

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 29 
 

 

modeling of prospectivity for porphyry copper deposits in TCS included a lithological 
map, a map of faults/fractures, the locations of porphyry copper prospects and deposits 
(see Figure 1), an alteration map, and a map of multi-element geochemical anomalies (Vz). 

Lithological and Structural Evidence 
Six lithologic units were extracted from the 1:250,000 scale geological map of the TCS 

range (see Figure 1). This lithological map was used as input to the RF modeling. Analysis 
of the mineral system associated with the porphyry copper mineralization in TCS indi-
cates that it is worth assessing the spatial association of the target variables (deposit and 
non-deposit locations) in terms of distances to faults. As such, fault/fracture lineaments 
were extracted from the 1:250,000 scale geological map of Toroud (see Figure 1); then, 
distance to fault/fracture was considered to create the fault/fracture evidential map. This 
evidential map was used as the input for the RF modeling (Figure 8). 

 
Figure 8. Structural evidential map of the TCS used for RF modeling. 

Alteration Evidence 
The PCA was applied to ETM+ spectral bands for extracting spectral signatures that 

reflect the existence of hydrothermally altered rocks associated with porphyry copper de-
posits in the TCS belt. The eigenvectors and eigenvalues for bands 1, 2, 3, 4, 5, and 7 of 
ETM+ were calculated. The eigenvector matrix of the selected ETM+ spectral bands is 
shown in Table 2. Several PC images were produced by running PCA. The specific PC 
images related to geological features were selected based on eigenvector loadings. For in-
stance, iron oxide minerals, such as limonite, jarosite and hematite, have high reflectance 

Figure 8. Structural evidential map of the TCS used for RF modeling.

Alteration Evidence

The PCA was applied to ETM+ spectral bands for extracting spectral signatures that
reflect the existence of hydrothermally altered rocks associated with porphyry copper
deposits in the TCS belt. The eigenvectors and eigenvalues for bands 1, 2, 3, 4, 5, and 7
of ETM+ were calculated. The eigenvector matrix of the selected ETM+ spectral bands
is shown in Table 2. Several PC images were produced by running PCA. The specific PC
images related to geological features were selected based on eigenvector loadings. For
instance, iron oxide minerals, such as limonite, jarosite and hematite, have high reflectance
within 0.63 to 0.69 µm (the equivalent to ETM+ band 3) and high absorption within 0.45



Remote Sens. 2023, 15, 3708 18 of 29

to 0.52 µm (the equivalent to ETM+ band 1). Clay minerals and carbonates show high
reflectance in the range of 1.55 to 1.75 µm and high absorption in 2.08 to 2.35 µm that
correspond with ETM+ bands 5 and 7, respectively [74,75,77,78]. Looking for alteration
minerals, including iron oxide/hydroxides and clay minerals and carbonates, indicates
that PC4 enhances the presence of iron oxide/hydroxides because it has high eigenvector
loadings of different signs in bands 1 (0.401) and 3 (−0.593). Thus, the PC4 image shows
iron oxide/hydroxides as dark pixels. PC5 enhances the presence of clay minerals and
carbonates because it has strong eigenvector loadings of different signs in bands 5 (−0.50)
and 7 (0.64). Therefore, clay minerals and carbonates are mapped as dark pixels in the
PC5 image.

Table 2. Eigenvector matrix of six ETM+ spectral bands.

PC1 PC2 PC3 PC4 PC5 PC6

Band 1 0.31 0.46 0.52 0.40 0.25 0.44
Band 2 0.35 0.37 0.21 0.02 −0.09 −0.83
Band 3 0.49 0.31 −0.19 −0.59 −0.41 0.32
Band 4 0.38 0.11 −0.77 0.39 0.32 −0.01
Band 5 0.47 −0.58 0.15 0.40 −0.50 0.03
Band 7 0.42 −0.45 0.20 −0.42 0.64 −0.04

Because of the arid and mountainous landscapes in the TCS belt, it is unlikely
that ore mineralized areas are strongly indicated by the existence of secondary iron ox-
ide/hydroxides [45]. In contrast, outcropping porphyry copper deposits are mostly asso-
ciated with argillic and phyllic alteration zones [43,45]. Thus, the image of PC5, possibly
reflecting the presence of hydrothermal alteration zones associated with ore minerals, can
be considered as an evidential layer of porphyry copper mineralization. On the other hand,
according to the spectral characteristics of clay minerals and carbonates (i.e., reflection in
band 5, absorption in band 7), the image of PC5 must be negated (i.e., multiplied by −1)
to manifest hydrothermally altered rocks as bright pixels (Figure 9). This image reflects
the spatial distribution of argillic and phyllic alteration zones in the TCS belt. Spectral
anomalies of the altered rocks appear as bright pixels in Figure 9.
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Geochemical Evidence

Multiplicative geochemical data of Pb × Zn and Cu × Mo were initially generated.
The interpolated map of Vz was used as spatial evidence of porphyry copper prospectivity
(Figure 10). The values in the interpolated Vz map were individually rescaled linearly to
the range [0, 1]. High Vz values would suggest supra-ore to ore multielement anomalies
accompanying blind to subcropping porphyry copper mineralization (Figure 10). With
this hypothesis, the TCS can be segmented into three zones where possible porphyry
copper deposits exist at diverse levels. Zone I can be considered as a potential zone for the
exploration of subcropping to blind porphyry copper deposits, while the other zone could
be a potential zone for the exploration of outcropping porphyry copper deposits.
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Figure 10. Geochemical evidential map of the TCS used for RF modeling. Vz (Pb × Zn/Cu × Mo)
values derived from stream sediment geochemical data. Zone I: potential for the exploration of
subcropping to blind porphyry copper deposits, Zone II and III: potential zone for the exploration of
outcropping porphyry copper deposits.

4.3.2. Integration of Evidential Layers Using RF Algorithm

The lithology, structure, alteration, and geochemical evidential layers were integrated
using the RF algorithm for regional-scale prospectivity mineral mapping of porphyry cop-
per deposits in the TCS belt. The RF package within the R statistical environment was used
for the (MGT + Vz)-in-RF modeling to calculate the spatial associations of known porphyry
copper deposits in the TCS belt with individual layers of spatial evidence [102,103]. The
parameters of the RF model were the number of trees (k) and the number of evidential
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layers (m) that were arbitrarily sampled at each split. The m value can be experimentally
determined by calculating the square root of the total number of evidential maps. Even
though Breiman [98] and Liaw and Wiener [102] designated that an m value as low as 1 can
yield accurate results, Gromping [104] described that the m value needs to include at least
two evidential variables. Multiple experiments pointed out that the m parameter is constant
with the empirical value mentioned above, and the minimum k value of 1000 produces
both the lowest prediction errors and the most stable predictions. The appropriate rates of
the parameters show that the RF algorithm will realize a fit among the targets (deposits
and non-deposits) and evidential layers. The evidential layers input into the model can
then be implemented to the model to calculate probabilities for all locations.

According to the results of RF analysis of spatial associations among the documented
porphyry copper deposits and the individual layers of spatial evidence, the RF modeling
generated a relationship between high-probability areas and areas showing documented
porphyry copper deposits. The integration experiment was performed using lithological,
structural, alteration, and Vz geochemical maps. The result of the experiment is referred to
as the (MGT + Vz)-in-RF model.

Based on (MGT + Vz)-in-RF model, there seem to be four subareas of high potential
zones that warrant further exploration (Figure 11). Subareas II, III, and IV could be favorable
principally for exploration of outcropping porphyry copper deposits, while Subarea I could
be favorable for the exploration of blind to subcropping porphyry copper deposits. Actually,
prior to the organization of this this manuscript, blind porphyry copper mineralization was
intersected by borehole exploration in Subarea I.
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The RF algorithm similarly rates the significance of evidential variables using mean
decrease accuracy and mean decrease Gini indices (Figure 12). The first index reflects the
decline in accuracy in the whole model using out-of-bag (OOB) data, whereas the second
index computes the average gain of purity by using splits of a given variable. The results
of both indices indicated that the most important evidential map was Vz. The geochemical
evidential layer (i.e., the Vz map), compared to the three geological evidential layers
(lithology, Fault/fracture lineaments, and alteration), had stronger spatial associations with
the known porphyry copper deposits in the TCS belt (Figure 12).
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Although the geochemical evidential layer represents stream sediments, which are
materials transported away from their sources, whereas the geological evidential layers
represent in situ materials like the mineral deposits under examination, the Vz map,
compared to the other geological evidential maps, provided better spatial evidence of
porphyry copper prospectivity. The Vz indices are able to reflect geochemical variations in
vertical directions; in fact, it might be unrelated to mineral deposits. It is mainly essential
if the geochemical zonality method is executed using stream sediment geochemical data,
which characterize earth materials upstream from a sampling site. Faults typically show
vital roles in porphyry copper mineralization [4]. In the TCS belt, faults and fractures
structurally controlled porphyry copper mineralization [61]. Based on the mean decrease
accuracy index, it was the second most important evidential variable.

4.3.3. Validation

Subarea I was investigated in this research. In Subarea I, the Saghari, Fallah, and
Tirgah deposits are located around the Chah-Musa deposit. The Fallah and Tirgah deposits
were used to validate the presented strategy (Figure 13). The Vz values of the Tirgah
and Fallah deposits are 0.11 and 24.6, respectively. The Fallah deposit is promising for
blind mineralization.
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5. Discussion

It has been long recognized that the level of erosion, not just the ore-forming environ-
ment, influences the observed time and space distribution of metallogenic patterns [105–108].
The recent works on the TCS belt are related to depths of less than 100 m. Exploration
of new concealed, deep, and economic resources is challenging because of the lack of
in-depth geological information and the arid and mountainous geochemical landscapes.
The Saghari deposit is located around the Chah-Musa deposit in the eastern part of the TSC
belt. Geologic information about the Chah-Musa deposit is scarce despite its importance.
As such, the recognition of geochemical patterns, including the spatial association of geo-
chemical patterns, geochemical element associations, and geochemical anomalies related to
mineralization is essential. This research demonstrated that the MGT and Vz models can
be applied around the Chah-Musa deposit to recognize the mineralogical and geochemical
types of the anomalies associated with copper mineralization, and evaluate anomalies (BM,
ZDM, and outcropping) and their erosional surfaces.

The MGT model was established to discriminate five types of copper deposits based
on trace elements of lithogeochemical samples using Big Data analytics extracted from 50
copper deposits in CIS countries. Supported by the testing set collected from the Saghari
deposit (zone A), the performance of the MGT model shows that trace elements in litho-
geochemical samples can be used to discriminate copper deposit types which cannot be
distinguished from polymetal and porphyry deposits. Furthermore, these results further
indicated that lithogeochemical samples of copper deposits carry unique geochemical
features inherited from the ore-forming fluids. Hence, big data analytics can find some
patterns to construct a well-behaved MGT model. The MGT model showed that the dis-
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crimination of copper deposit types is impacted by multi-elements in lithogeochemical
samples, while each element has different effects on the discrimination. According to
the big data extracted, several elements contributed to the research of lithogeochemical
samples, including Mo, Pb, Zn, and Co. Mo is the determining element and molybdenite
is one of the main minerals among Cu-Mo and Cu porphyry deposits. In addition to
pyrite and chalcopyrite, Cu-polymetallic deposits contain galena and sphalerite, which
makes it possible to attribute Pb and Zn to the elements whose increased contents de-
termine this type. Zn and Co, and Co play an important role in Cu-massive sulfide and
Cu-Ni deposits, respectively. The information extracted by big data analytics not only
provided interpretations for classification results but also contributed to the understanding
of their geochemistry.

For the first time, using the constructed MGT model, it has been proved that the
MGT type of the Saghari deposit is a multi-mineralogical and geochemical type, namely
involving polymetallic and porphyry copper mineralization. Metal associations in por-
phyry systems not only vary as a function of emplacement depth but also as a function of
porphyry intrusion composition. Through time, uplift and erosion events variably destroy
and subsidence and burial events variably cover these contrasting levels of the porphyry
ore-forming environment. Moreover, cover can protect a porphyry environment from
destruction by subsequent erosion. Therefore, the observed metal associations and distri-
bution of porphyry-related systems is a complex reflection of the ore-forming environment,
the level of erosion, and the extent of the cover of a porphyry system.

The zonality method resolves the problems of exploration for BM and identification
of ZDM. The zonality model was established using the database of copper deposits in
Kazakhstan and Iran and the Vz coefficient of porphyry copper (Pb × Zn/Cu × Mo) to
assess the possibilities for the occurrence of blind mineralization associated with the anoma-
lies around the Chah-Musa deposit. The results of mining geochemistry models using
lithogeochemical samples determined that the Saghari deposit belongs to the polymetallic
type (on the surface, oxide part) and porphyry copper type (at a depth, sulfide part).

The different alteration zones have not been categorized based on the MGT of anoma-
lies for MPM and cannot differentiate BM from ZDM. These mining geochemistry models
are able to identify the hydrothermal alteration zones associated with porphyry copper
mineralization and to evaluate deep and buried ore resources. Implementation of the
Vz model in mineral prospectivity permits further clarification about whether delimited
potential areas are acceptable for exploration of outcropping or blind mineral deposits
because the perception of the geochemical zonality method detects the discrepancy be-
tween sub- and supra-ore anomalies. This added-value information from Vz coefficients is
vital in planning exploration projects. Nevertheless, integration of maps of Vz coefficients
with other maps utilized as spatial evidence is imperative in filtering out false signals
of mineral prospectivity represented in every layer of evidence. Although methods for
GIS-based mineral prospectivity mapping are typically well established, it is essential to
analyze which techniques of geochemical data processing produce anomaly maps that lead
to optimum models of mineral prospectivity mapping. Random forest outperformed the
other machine learning algorithms for data integration and MPM. In this research, for the
first time, geochemical zonality anomalies instead of anomalies of pathfinder elements
(e.g., Cu) were used as one of several evidential maps to construct MPM based on RF for
porphyry copper mineralization in the TCS belt. Based on the results of mean decrease
accuracy and mean decrease Gini indices, the Vz was the most important evidential map
and had stronger spatial associations with the documented porphyry copper deposits in
the TCS. The result showed the applicability of the (MGT + Vz)-in-RF for regional-scale
prospectivity mapping of porphyry copper deposits. Our attempts can, thus, provide
some inspiration for future research to apply mining geochemistry models using big data
analytics and remote sensing data to optimize the evidential variables used in MPM.
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6. Conclusions

• A novel approach was accomplished in this study to optimize remote sensing-based
evidential variables using mining geochemistry models for an RF-based copper miner-
alization prospectivity mapping (MPM).

• The MGT and Vz models were applied around the Chah-Musa deposit to identify the
MGTs of the anomalies related to copper mineralization, and to evaluate anomalies
(BM, ZDM, and outcropping) and the erosional surfaces. The mining geochemistry
models determined that the Saghari deposit belongs to the polymetallic type (on
the surface, oxide part) and porphyry copper type (at a depth, sulfide part). The
possibilities for the occurrence of blind mineralization associated with the anomalies
around the Chah-Musa deposit were assessed. The hydrothermal alteration zones
associated with porphyry copper mineralization (argillic and phyllic alteration) were
identified using PCA on ETM+ spectral bands.

• The random forest algorithm was applied to merge the evidence variables to develop
a provincial-scale prospectivity map of porphyry copper deposits. Furthermore, a
geochemical zonality coefficient (Pb × Zn/Cu × Mo) was used as one of several
evidential maps to construct MPM based on RF for porphyry copper mineralization
in the TCS belt. The result showed high applicability of the (MGT + Vz)-in-RF for
mineral prospectivity mapping of porphyry copper deposits. This study explored
buried copper deposits in the TCS belt through innovative approaches by integrating
multi-source geoscientific datasets. The study contributes to the current efforts in
searching for innovative and cost-effective methods for mineral exploration in mining
sectors, and the approach can be used for MPM in metallogenic provinces around
the world.
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Appendix A

I: Cu-Massive Sulfide (1. “50 years of October”, Southern deposit; 2. “50 years of
October”, Central deposit; 3. “50 years of October”, Northern deposit; 4. Kizil Kibachi,
Profile XIV; 5. Limannoye, Profile 60, 6. Vanguard, Profile XVIII; 8. Vanguard, oxidized
ore; 9. Novo-Makanskoye, borehole 98; 10. Novo-Makanskoye, secondary scattering halo;
11. Tesiktas, ore zone I; 12. Tesiktas, ore zone III; 13. Tesiktas, ore zone IV; 14. Kusmurun,
Profile III; 15. Kusmurun, Profile IV; 17. Kusmurun, oxidized ores; 18. Vlasinchikhnskoye,
North, Caucasus; 19. kafan, depth 1040 m; 20. Kafan, depth 945 m);

II: Oxidized Cu-massive sulfide (7. Vanguard; 16. Kusmurun);
III: Cu-polymetallic deposits (21. Priorskoe, Profile VI; 22. Priorskoe, Profile X; 23. Sary-

oba, North Mugodzhary; 24. Ayaguzskoe, East Kazakhstan; 25. Mizek, East Kazakhstan;
26. Kenkazgan; 27. “Ukolodtsa”; 28. Efimovskoe; 29. Shaumyan, Northern Armenia);
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IV: Cu-Mo-porphyry deposits (30. Chatyrkul, Profile 41; 31. Chatyrkul, Profile 7; 32.
Kounrad; 33. Sokurkoy; 34. Kaskyrkazgan; 35. Kenkuduk; 36. Koksay; 37. Aureolny; 38.
Borly, 39. Kepcham; 40. Almaly, 41. Zhorga, 42. Stansiya, 43. Dalniy, 44. Kalmakyr, 45.
Kajaran, 46. Agarak);

V: Cu-Ni deposits (47. Goryunsky, well, 11; 48. Komkor, Profile III; 49. Komkor, Profile
IV; 50. Bakaiskoye, Mugodzhary) [34,35].
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