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Abstract: Change detection plays a crucial role in remote sensing by identifying surface modifica-
tions between two sets of temporal remote sensing images. Recent advancements in deep learning
techniques have yielded significant achievements in this field. However, there are still some chal-
lenges: (1) Existing change feature fusion methods often introduce redundant information. (2) The
complexity of network structures leads to a large number of parameters and difficulties in model
training. To overcome these challenges, this paper proposes a Multi-Scale Feature Subtraction Fusion
Network (MFSF-Net). It comprises two primary modules: the Multi-scale Feature Subtraction Fusion
(MFSF) module and the Feature Deep Supervision (FDS) module. MFSF enhances change features
and reduces redundant pseudo-change features. FDS provides additional supervision on different
scales of change features in the decoder, improving the training efficiency performance of the network.
Additionally, to address the problem of imbalanced samples, the Dice loss strategy is introduced as a
means to mitigate this issue. Through comprehensive experiments, MFSF-Net achieves an F1 score
of 91.15% and 95.64% on LEVIR-CD and CDD benchmark datasets, respectively, outperforming six
state-of-the-art algorithms. Moreover, it attains an improved balance between model complexity and
performance, showcasing the efficacy of the proposed approach.

Keywords: subtraction fusion; change detection; remote sensing images; multi-scale features

1. Introduction

The process of change detection in remote sensing images involves the detection of
modifications that occur on the Earth’s surface between two separate sets of temporal
remote sensing images. This task holds significant importance in remote sensing [1]. By
enabling effective monitoring of surface changes, the application of remote sensing image
change detection spans various fields and domains. such as urban built-up area expansion
monitoring [2], natural disaster assessment [3], and environmental monitoring [4].

Based on the analysis unit, conventional approaches to remote sensing image change
detection can be classified into two categories: pixel-based and object-based methods. Pixel-
based methods operate on a pixel-by-pixel basis, extracting spectral and texture features
from the input images pixel by pixel. They subsequently utilize predefined thresholds
to identify change areas for each pixel. Pixel-based methods include arithmetic image
differencing [5], change vector analysis based on transformations [6,7], principal com-
ponent analysis [8,9], and independent component analysis [10]. Object-based change
detection methods first segment the images into super-pixel objects using image segmen-
tation techniques based on spectral and texture features (segmentation methods such as
quadtree-based segmentation [11], multi-resolution segmentation [12], etc.). Then, in order
to derive the outcomes of change detection, the segmented results from different time
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periods are compared in object-based methods. In contrast to the pixel-based approach,
object-based methods consider contextual information but are more affected by the results
of image segmentation. Additionally, both pixel-based and object-based approaches need
significant manual intervention and are prone to pseudo-changes caused by sensor and
illumination conditions.

Over the past few years, deep learning methods have received considerable recognition
within the remote sensing domain, prompting researchers to integrate these techniques
into various tasks related to remote sensing, including scene classification [13,14], semantic
segmentation [15-17], object detection [18,19], and change detection [20-24], achieving
remarkable performance. Deep learning-based approaches for change detection tasks
have the ability to incorporate spatial contextual information during pixel-level change
identification in the images. CNN (Convolutional neural network) models, with their
excellent feature representation capability and end-to-end simplicity, not only reduce
manual intervention but also enhance the accuracy and generalization. CNN-based change
detection methods transform the two temporal remote sensing images into high-level
features, extract semantic context of change regions by fusing the features of the two
time-phased images, and mitigate artificial errors stemming from preprocessing. There
are two types of CNN-based change detection methods, categorized based on the fusion
strategy utilized: image-level fusion [25-29] and feature-level fusion [30-37]. In image-level
fusion networks, the two remote sensing images from different temporal input as a whole
into CNN to obtain a representation of image differences. However, the absence of deep
feature extraction from individual temporal images can result in boundary disturbances
within the predicted outcomes, thereby constraining the accuracy of change detection.
In contrast to image-level fusion networks, feature-level fusion networks employ two
networks with shared parameters. These networks independently learn features from
individual temporal images and then combine these features as inputs to the classifier,
overcoming the limitations mentioned above.

With the development of satellites and airborne sensors, more detailed and objective
representations of the surface can be observed, thus offering finer-grained data for detecting
surface changes. However, the diversity of surface features, especially the variability in
object shapes, the complexity of background objects, as well as differences in weather
conditions, imaging angles, and sensors, can easily lead to false detections or missed
detections of actual change areas. Additionally, objects in remote sensing images exhibit
different sizes, and a robust and generalizable model should be capable of handling various
object scales. Moreover, change detection tasks often encounter a substantial class imbalance
problem, where the count of unchanged pixels significantly outweighs the count of changed
pixels. This presents a significant challenge in deep learning-based change detection
methods for high-resolution remote sensing, as it becomes crucial to effectively extract
and utilize the abundant feature information from high-resolution imagery to mitigate the
influence of pseudo-changes and enhance the accuracy of detection.

To address this challenge and achieve better representation capabilities of deep fea-
tures, designing deeper and more complex feature extraction networks has gotten signif-
icant attention as a primary research focus. Many researchers have put forward several
enhanced models to achieve more discriminative feature representations, such as com-
bining Generative Adversarial Networks (GAN) [38-40] or Recurrent Neural Networks
(RNN) [41,42], or using feature extraction models based on the Transformer architec-
ture [43-45] to expand the receptive field. Some studies focus on the effective utilization
of features, such as using spatial or channel attention mechanisms [30-32,36,46] or em-
ploying multi-scale feature fusion for feature enhancement [25,29,47-49]. However, along
with the increased complexity of the models, there is a proliferation of parameters and
redundant feature information. This not only imposes a heavy burden on model training
but also increases the risk of pseudo-changes detections due to the presence of excessive
redundant information.
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Inlight of the aforementioned challenges, we present a novel approach called the Multi-
Scale Feature Subtraction Fusion Network (MFSFENet). Our network is constructed based
on the following four requirements. Firstly, the model should maximize the utilization
of feature information derived from the dual-temporal imagery, emphasizing real change
areas while reducing the generation of redundant information to minimize false detections
caused by complex backgrounds or imaging differences. Secondly, the network must be able
to effectively represent features of diverse structures and different sizes of objects. Thirdly,
the model should be easy to train, avoiding the issue of gradient vanishing. Lastly, it is
essential for the model to effectively tackle the issue of sample imbalance and enhance the
accuracy of detection. To address the first two requirements, we extract the dual-temporal
imagery multi-scale features and design the Multi-scale Feature Subtraction Fusion (MFSF)
module to fuse these features. Unlike existing fusion strategies, our subtraction fusion
strategy enhances change features while reducing the interference of redundant features.
To meet the third requirement, we use ConvnNext v2-Atto, as the lightweight multi-scale
feature encoder with less parameters. We also introduce the Feature Deep Supervision (FDS)
module in the decoder to provide additional supervision for deep change features, which
improves the model’s feature extraction capability while accelerating convergence. To
address the fourth requirement, we incorporate Dice loss into the loss function to mitigate
the imbalance between change and non-change pixels. With these efforts, our network can
effectively capture change features in high-resolution imagery.

The primary contributions of this work can be summarized as follows:

1.  We propose the MFSFENet for high-resolution remote sensing image change detec-
tion. This network enhances change features and reduces redundant pseudo-change
features through a multi-scale subtraction fusion strategy.

2. We utilize a lightweight feature extraction network and introduce a novel deep super-
vision strategy in the change decoder, which enhances the training performance of
the network.

The paper is structured as follows: Section 1 provides an introduction to the back-
ground and problem addressed in this study. Section 2 discusses relevant literature and
related works. Section 3 presents the comprehensive details of MFSFNet. Section 4 describes
the experimental design, parameter settings, and analysis of the obtained results. Section 5
offers a discussion of our method. Finally, Section 6 concludes the paper, summarizing the
key findings and contributions.

2. Related Works
2.1. Encoder in Change Detection Task

To enhance the learning and representing change features, recent studies have con-
centrated on improving the architecture and capabilities of change detection encoders.
One approach is to increase the depth of the encoder by incorporating more convolutional
layers. Regarding network structures, Peng et al. introduced the Unet++_MSOF [25],
which builds upon the Unet++ architecture [50,51]. Unet++_MSOF employs a technique of
combining two individual temporal images, each having C channels, to create a 2C data
representation. This combined data representation is then inputted into the network for
the purpose of identifying the changed regions. This method allows for the incorporation
of temporal information and enhances ability to capture changes between the two images.
Zhan et al. [52] introduced the use of Siamese convolutional networks for change detection
tasks, which are composed of twin networks that share weights and are trained to identify
similarities or differences between two input samples. The concept of end-to-end training
for change detection was introduced by Tao et al. [37]. In their work, FC-EF employed a
fully connected layer to establish a connection between the two temporal images, serving
as input to the network. On the other hand, FC-Siam-conc and FC-Siam-diff employed
a Siamese structure, enabling direct processing of the temporal images. This approach
facilitated the integration of temporal information and resulted in improved change de-
tection performance. Chen and Shi [53], as well as Chen et al. [31], introduced STANet
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and DASNet, respectively, using ResNet [54] as the backbone. These architectures took
advantage of ResNets powerful feature extraction capabilities to boost the effectiveness of
change detection models. To address the inherent localness of convolutional operations,
Zhang et al. [55] adopted dilated convolutions instead of traditional convolutions and
achieved promising results. Furthermore, dense connections between features have been
demonstrated to improve the performance of networks. Thus, Fang et al. [29] and Peng
et al. [46] employed dense connections between features at layers, enhancing the network’s
capabilities. Additionally, for the task of change detection in multispectral time-series
images, 3D CNN models are developed to handle spatial-spectral-temporal features [56].
However, it is important to acknowledge that these methods introduce additional complex-
ity and computational costs to change detection algorithms. Therefore, it becomes crucial
to carefully consider and strike a balance between achieving high detection accuracy and
managing the computational complexity involved.

2.2. Multi-Scale Feature Fusion in Change Detection Task

The incorporation of multi-scale feature fusion modules has gained significant at-
tention to effectively represent the multi-scale characteristics of geo-objects. One notable
approach is PSPNet-CONC [49], which introduced the PSP module [17] for multi-scale
feature extraction. The PSP module allows the network to capture contextual information
at multiple scales, enabling a more comprehensive representation of the objects in the
image. Another approach is utilized by Unet++_MSOF [25] and NestNet [48]. This module
allows for the integration of features from various levels of the network, combining both
detailed and high-level information to enhance the precision of change detection. To further
enhance the detection accuracy, these methods also employ a multi-output fusion strategy.
For instance, ADS-Net [47] integrates features from different branches in the decoder and
calculates the F1 score for each scale output. Subsequently, the change maps are weighted
according to the F1 score to emphasize more reliable detections. It is important to mention
that the fusion strategies mentioned above are based on addition, although commonly
used, may introduce noise in the fused results and increase the complexity of the model.
This can make convergence challenging and potentially lead to false change detections.
Therefore, researchers need to carefully balance the complexity and fusion strategies to
ensure accurate and reliable results.

Table 1 demonstrates our summary and comparison analysis of encoder and feature
fusion strategies for above change detection methods.

Table 1. The literature review summary and comparison analysis.

Method Encoder Architecture Feature Fusion Strategy Proposed Year
Stamese convolutional Twin networks with shared weights. N/A 2017
networks [52]
FC-EF, FC-Siam-conc, Fully connected layer skip connecting. Concatenation 2018

FC-Siam-diff [37]

Unet++_MSOF [25]

Multi-scale feature for combining low-level

and high-level information. Addition 2019

Dilated convolutions [55]

Twin networks with shared weights and
dilated convolutions used instead of Concatenation 2019
traditional convolutions.

STANet [53]

Twin networks with shared weights and

ResNet used as the backbone. Addition 2020

PSPNet-CONC [49]

Introduces PSP module for multi-scale
feature extraction and contextual Addition 2020
information capture.
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Table 1. Cont.

Method Encoder Architecture Feature Fusion Strategy Proposed Year

Twin networks with shared weights and

DASNet [31] ResNet used as the backbone. Addition 2021

NestNet [48] Multi-scale fefiture for Fombmm.g low-level Addition 2021
and high-level information.

ADS-Net [47] Multi-scale fe.ature for Fombmm.g low-level Addition 2021
and high-level information.

SNUNet-CD [29] Employs dense connections between Addition 2022

features at layers.
3D CNN [56] A 3D CNN based on a pretrained 2D CNN Concatenation 2022

3. Methods

This section presents a comprehensive overview of the MFSFNet (Multi-Scale Feature
Subtraction Fusion Network) architecture, highlighting its key components and func-
tionality. Firstly, we present the MFSFNets flowchart and overall architecture (refer to
Figures 1 and 2). Then, we describe in detail the MSSF module and the Feature Deep
Supervision (FDS) module that we have designed. Lastly, we define the loss function.

Input two temporal remote
sensing images
t
1
A Siamese feature
encoder based on
ConvNext V2
Iy

1
Multi-scale subtraction
fusion module

-
-
-

Multi-scale feature Feature deep
decoder supervision module
3 3

Change detection result of Change detection result of
the model Feature deep supervision

Ground Truth

— Forward Propagation — — — = Backward Propagation

Figure 1. The Flowchart of MFSFNet.
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Figure 2. The overall architecture of MFSFNet. I; and I, are two input remote sensing images of
different time periods. H is the height of the input image, W is the width of the image, C is the number
of channels. MS; represents feature fusion result, where j = 1, 2, 3, 4 indices the scale level, and
i=0,1,...,4 — jindices the number of feature fusion operations at each scale level. Pre; denotes the
final change detection result. Pre; denotes the change detection result of the feature deep supervision.
GT denotes the ground truth of change detection result. Loss; and Loss, denote the loss between
the final change detection result and the true value of the model, and the loss between the change
detection result and the true value of the deep supervised change detection result, respectively.

3.1. Flowchart and Overall Architecture of MFSFNet

As the flowchart of MFSFNet shown in Figure 1, firstly, the inputs of MFSFNet are
two temporal remote sensing images. Secondly, the images are fed into a weight-shared
Siamese CNN to extract multi-scale features based on ConvNext V2. Thirdly, multi-scale
features are fused by multi-scale subtraction fusion module. Fourthly, the fused features
are decoded by a multi-scale feature decoder. The multiscale feature decoder has two
branches, one that outputs the change detection results of the model, and a feature deep
supervision branch that generates an additional change detection result through feature
deep supervision. Lastly, both results are used with ground truth to compute the loss
and perform loss back propagation. The module of feature deep supervision subjects the
model to additional supervision. The black solid arrows in the figure show the sinusoidal
propagation path of the data and the red dashed arrows show the backward propagation
path of the gradient.

Figure 2 illustrates the overall architecture of MFSFNet. MFSFNet is composed of
three components: the Siamese encoder, the Multi-scale Subtraction Feature Fusion (MSSF),
and the decoder. The decoder includes the Feature Deep Supervision (FDS) module
for multi-scale supervision. Firstly, we employ a ConvNext architecture [57,58] as the
feature encoder to obtain multi-level features while enhancing the generalization of feature
representations, enabling the model to tackle the challenges posed by diverse land cover
structures. Secondly, the MSSF module performs feature fusion on different scales. It
reduces feature redundancy while emphasizing different-sized objects and minimizing
interference from complex background information. This helps to generate more accurate
boundaries. Next, the MSSF module’s output features are bottom-up integrated by the
decoder as part of the feature decoding process to produce change features. Subsequently,
FDS is applied to predict change detection results on different scales of the change features.
Multiple predictions are compared with the label, and losses are computed accordingly.
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Additionally, we incorporate the Dice Loss to increase the model’s attention to object
boundaries and alleviate issues related to irregular or misaligned boundaries. Finally, the
model achieves convergence through loss backpropagation, resulting in improved change
detection results. Overall, the MFSFNet network leverages the Siamese feature encoder,
MSSF module, and decoder module to effectively fuse multi-scale features and obtain
accurate results. The incorporation of the FDS module enhances the training process by
providing multi-scale supervision. The addition of the Dice Loss promotes better handling
of object boundaries. Through loss propagation, the model achieves convergence and
produces superior change detection outcomes.

3.2. The Siamese Feature Encoder

The Siamese feature encoder is responsible for extracting multi-scale change features
and semantic features that are essential for change detection. To achieve a generalized
representation of both semantic and change features, the improved version of the ConvNext
network, called ConvNext V2-Atto [58], is employed in MFSFNet. ConvNext V2-Atto is
a lightweight variant of ConvNextV2, with a small number of network parameters while
maintaining good feature generalization. Compared to ConvNextV1 [57], ConvNext V2
incorporates a fully convolutional masked autoencoder (FCMAE) framework similar to
MAE [59] for pre-training, which enhances the feature extraction capability. The feature
encoder based on ConvNext V2-Atto is illustrated in Figure 3a.

| 1
| 1
| ]
TR 8C : L/ ]
! hxw X ¢ i
|
1
_______ -' | Drop Path |
1
1
H o Wac i 1x1 Conv2d ]
16 16 : I
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' | 1
| ]
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: i i !
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| e
(a) ConvNext V2-Atto Encoder (b) ConvNext V2 Block

Figure 3. The Details of the Encoder.

The basic unit of the ConvNext V2-Atto encoder is the ConvNext V2 Block. As shown
in Figure 3b, within each ConvNext V2 Block, the input feature map Fy of size h x w x ¢
undergoes a 7 x 7 Depthwise convolution [60] and a Layer Norm layer [61], resulting in the
feature map F; of size h x w x c. Then, a1 x 1 convolution layer, GeLU activation layer [62],
and Global Response Normalization (GRN) layer [58] are applied to get the feature map F,
of size h X w X 4c. The channel count is then restored to c using a1 x 1 convolution layer
and Drop Path layers are employed to prevent overfitting to get F3. Finally, an element-wise
addition operation is performed between F3 and the input Fy, resulting in a feature map F of
size h X w x c. In the ConvNext V2-Atto encoder, four groups of ConvNext V2 Blocks with
aratio of {2:2:6:2} are combined with down-sampling layers to generate four feature maps at
different scales: size of % X % x C, % X % x 2C, % X % x 4C, 352 X % x 8C, respectively.

For MFSENet, two shared-weight ConvNext V2-Atto Encoders are used to get multi-
scale features for the two images. The images from two time periods, denoted as H x W x C
image I; and I, are inputted into the twin ConvNext V2-Atto Encoders. This allows for
obtaining semantic features for each image at four different scales. Specifically, for I;, the
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multi-scale semantic features are Fll of size % X % x C, F21 of size % X % x 2C, F% of size

# X ng x 4C, and F} of size % X 3—“2/ x 8C. Similarly, I, yields the multi-scale semantic
features Flz, F2, F2, and Ff, which have the same size as the corresponding features of I;.
To obtain multi-scale change features for the objects, the semantic features from the
two images are concatenated along the channel dimension at each scale. This concatenation
ensures that the change features have the same width and height as the semantic features,
but with the channel count being twice that of the semantic features of a single image. Fi-

. Ch Ch Ch Ch
nally, we obtain change features F; mse F, mge Fy M3 and F i mge

of sizes £ x W % 2C,
171
% X % x 4C, % X % x 8C, and 3% X 371/\4 x 16C, respectively. These change features serve

as the input to the multi-scale subtraction feature fusion module.

3.3. Multi-Scale Feature Subtraction Fusion (MSSF) Module

To enhance the model’s generalization ability for objects at various scales and prioritize
features relevant to changes while suppressing irrelevant ones, we introduce the Multi-scale
Feature Subtraction Fusion (MFSF) module. This module combines the multi-scale features
from the encoder and employs a subtraction fusion method. By subtracting corresponding
features from different scales, redundant information during feature fusion is reduced. This
subtraction fusion approach enhances the representation of relevant features associated
with changes and helps mitigate the interference caused by complex backgrounds. The
MFSF module emphasizes discriminative information and improving the accuracy.

To facilitate the fusion of different-scale features, we first employ a 3 x 3 convolutional

layer to lessen the dimension of the multi-scale change features FlC hange, Fg hunge, th“”ge,

and P4C hange to 64, resulting in MS?, MSY, Msg, and MSQ. Then, we apply subtraction
units to fuse the features not only within the same scale but also between adjacent scales.
The subtraction units enhance the change features and emphasize the change regions at
different scales.

The subtraction unit (Figure 4) takes inputs F4 and Fp. F4 is derived from the features
MS;i*l at the same scale, while Fp is obtained by up-sampling the features MS;H from the
adjacent scale to match the size of F4. The feature fusion is achieved by Equation (1):

MS; = SU(Fx, Fg) = Conv (abs (MS;%1 © Upsample (MS;;%) ) ) 1)
where j = 1, 2, 3, 4 indices the scale level, and i = 0,1,...,4 — j indices the number
of feature fusion operations at each scale level. Conv(-) denotes a 3 x 3 convolution,
abs(-) represents the absolute value operation, © indicates element-wise subtraction, and
Upsample(-) denotes the up-sampling layer. MS; represents feature fusion result, which

has the same size as MS;:fl.

Fa ]|

—

Subtraction

Absolute value

Conv2d

MS

Figure 4. Subtraction Unit.

The absolute value operation in the subtraction unit serves a similar purpose as an
activation function. When performing fusion operations between features of different
scales, the features represented by operation results with the same absolute values indicate
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the same feature differences. Therefore, the absolute value operation is used for activation.
If the commonly used ReLU activation function is employed, the negative values would be
discarded directly, overlooking a portion of the feature differences, which would affect the
effectiveness of the subtraction fusion.

After the multi-scale feature fusion, at each scale j, the features MS;- are aggregated
using element-wise addition to further enhance the focus on the changed features. The
computation is performed according to Equation (2):

4—j )
SF; = ZO MS; ()
1=l

where j =1, 2, 3, 4 indices the scale level, MSt represents the feature fusion result after i
iterations of subtraction units at scale j. SF; denotes the result of adding features at scale j,

and its size is the same as MS; SF; will serve as the input to the decoder module.

3.4. Decoder and Feature Deep Supervision Module

Due to the varying expressive capabilities of different feature levels in change detection
tasks, we employ a FDS module in the multi-scale decoder. By introducing additional
supervisory signals at different levels of the network, the network is able to better utilize
multi-level feature representations during the learning process.

The decoder of MFSFNet is composed of four stages and a FDS module (Figure 5).
Each stage includes a 3 x 3 convolutional, a batch normalization (BN), a ReLU activation,
and an up-sampling. Stages 1 to 3 progressively up-sample the channel dimensions of the
input feature maps by a factor of 2, while maintaining a consistent channel dimension of 64.
This is done to enable element-wise addition with the multi-scale features from MSSFE. In
Stage 4, the fused feature map of size % X % x 64 is converted to a change detection result
Pre, of size H x W x 1, which serves as one of the decoder’s outputs. It is then compared
with the ground truth (GT) labels to calculate Loss;.

SF, SF, SF,

n,w u,w H_w
—X — X64 —x —x64 —Xx —x64
16" 76 <64 8 8 4+ 4

Pre,

SF,

H w
—X — x64
327 32

pzAuO) £x ¢

Surjdwes-dn

c
3
&%
g
!
E
ac

Surjdwes-dn
pzAuO) €x ¢
Surdwes-dn
pPZAUO) €x¢€

w
X
w
Q
=}
3
<
IS
(=%

H_/ H_/ H_/ %K_J Loss,

Stagel Stage2 Stage3 Stage4

PTAUOD) €x¢€
Surpduwes-dn

Pre, GT

Multi-scale Feature Deep Supervision Module

Figure 5. Decoder and Feature Deep Supervision Module. SF; denotes the result of adding features
at scale j, where j = 1, 2, 3, 4 indices the scale level. H and W denote the length and width of the
feature map. Pre; denotes the final change detection result. Pre, denotes the change detection result
of the feature deep supervision. GT denotes the ground truth of change detection result. Loss; and
Loss; denote the loss between the final change detection result and the true value of the model,
and the loss between the change detection result and the true value of the deep supervised change

detection result, respectively.
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Additionally, when implementing deep supervision, we took into consideration that
the feature map sizes of Stage 3 and Stage 4 are closer to the size of the original image
compared to Stage 1 and Stage 2. The larger feature maps indicate the presence of more
feature information. Therefore, in addition to supervising the output of Stage 4, supervising
Stage 3 may yield better results than supervising Stage 1 and Stage 2. This idea is supported
by the results of the ablation experiments in Section 5.1. As a result, we apply deep
supervision to the input feature map of Stage 3. In FDS module, Stage 2’s output is fused
with SF, and passed through a series of a 3 x 3 convolutional, a BN, a ReLU activation, and
an up-sampling. This generates a change detection result Pre, of size H x W x 1, which is
compared with the labels to calculate Loss,. This process represents the multi-scale feature
deep supervision. Finally, after training, the decoder of MFSFNet uses the Pre; result as
the model’s change detection output.

3.5. Loss Function of MFSFNet

The loss function of MFSFNet consists of two parts: the difference between the de-
coder’s final output Pre; and the GT, denoted as Loss;, and the difference between the
output Pre, of the multi-scale deep supervision module and GT, denoted as Loss,. The
calculation of both losses follows the same approach.

In MFSENet, the proposed approach incorporates the Dice loss [63] along with the
binary cross-entropy (BCE) loss to mitigate the issue of class imbalance and alleviate
the boundary fuzziness in the results. Therefore, the calculation of Loss; and Loss, is
described by Equation (3).

Loss;(a, B) = aLpce(Pre;, GT) + BLgice(Pre;, GT), ®)

where Pre; (i =1, 2), represents the binary maps of the two change detection predictions.
Loss; (i =1, 2), represents the losses of the two predictions. Lpcp denotes the binary
cross-entropy loss. L., refers to the Dice loss, calculated as described in Equation (5). The
coefficients & and B are used, with the common setting in this paper being a = 0.6 and
B=04.

Lpcg can be calculated as follows:

1 N
Lpce = — 5 Y (yijlog xij+ (1 —yij)log(1 = xi5)), 4)
=0

where y; ; denotes the ground truth label and x;; denotes the predicted probability of
change at a specific point (i,j).

The Dice loss [63] is a metric that can calculated the similarity between two sets from
a global viewpoint. It is particularly useful in scenarios where there are only a few positive
samples in the image, as it remains effective in such cases. By utilizing the Dice loss, the
issue of blurred boundaries caused by the class imbalance in change detection results can
be addressed. The calculation of the Dice loss is as follows:

2TP

Laice =1 = 37p T FP T EN’

®)
where TP represents the count of correctly predicted positive pixels (true positives), FP rep-
resents the count of incorrectly predicted positive pixels (false positives), and FN represents
the count of incorrectly predicted negative pixels (false negatives). By considering these
values, the Dice loss can effectively evaluate the model in capturing the boundaries and
overall similarity of the predicted and true regions in the context of binary classification
tasks such as change detection.
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The overall loss of MFSENet is determined by combining Loss; and Loss, through
summation, and it can be expressed as follows:

Liotar = L0ss1(0.6,0.4) + Loss»(0.6,0.4) ©)
= 0.6(LBCE(P1’61, GT) + LBCE(PreZI GT)) +0‘4(Ldice(Pr61’ GT) + Ldicg(P1’€2, GT)),

where, Pre; and Pre; represent the change detection prediction results.

4. Experiments
4.1. Datasets

To thoroughly evaluate the effectiveness of our method, we conducted experiments
on LEVIR-CD and CDD benchmark datasets.

(1) LEVIR-CD

The LEVIR-CD dataset was introduced by Beihang University. It comprises a large-scale
collection of 637 pairs of high-resolution images. The images are of size 1024 x 1024 pixels
(0.5 m/pixel) and cover diverse urban and rural areas. This diversity in building types
and land cover makes the LEVIR-CD dataset suitable for evaluating the performance of
change detection models in complex scenarios. To accommodate memory constraints
and sample size, the dataset was divided into non-overlapping patches of size 256 x 256,
following the settings in [53]. According to the default dataset partition, the paper used
7120/1024/2048 pairs for training, validation, and testing.

() CDD

The CDD dataset [40] is a popular dataset widely employed for change detection tasks,
specifically focusing on seasonal variations in urban landscapes. The dataset comprises real
remote sensing images (256 x 256 pixels). One notable characteristic of the CDD dataset is
the diverse range of spatial resolutions it offers, spanning from 0.03 to 1 m. Ten thousand
pairs were designated for training the model, while 3000 pairs each were allocated for
model validation and testing, ensuring an adequate evaluation of the model’s performance
on unseen data.

4.2. Evaluation Metrics

Four commonly used accuracy metrics were employed to assess the experimental
results. These metrics are precision, recall, F1 score, and IoU (Intersection over Union). For
the binary classification problem of change detection, each pixel can belong to one of two
classes. The formulas for calculating the four accuracy metrics are as follows.

Precision = 7TPTPP' @)
Recall = 7TP7:¢-PFN' ®)
Pl Recall’ ©
IoU = Mfﬁ (10)

where TP represents the count of correctly predicted positive pixels (true positives), FP
represents the count of incorrectly predicted positive pixels (false positives), and FN
represents the count of incorrectly predicted negative pixels (false negatives).

4.3. Implementation Details

The PyTorch framework was utilized for implementing the proposed model, and all
experiments were performed on a GPU, specifically an RTX 3090. The Adam optimizer was
utilized with a weight decay of 1 x 10~*. To update the learning rate, a cosine annealing
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strategy was employed, with a maximum learning rate of 1 x 10~% and a minimum
learning rate of 1 x 10~°. The learning rate was updated every 20 epochs. During the
model training process, several data augmentation techniques were applied to enhance the
model’s robustness across different scenes. These techniques included random flipping,
color augmentation, and multi-scale training. For the experiments conducted on the LEVIR-
CD dataset, the model was trained for a total of 60 epochs. Due to the larger sample
size of the CDD dataset, the model was trained for a total of 100 epochs. To initialize
the feature extraction backbone of the model, pre-trained parameters from ConvNeXt V2-
Atto were used, which were obtained through self-supervised training. This initialization
helped in leveraging the learned representations from a large-scale dataset and boosted the
model’s performance.

4.4. Comparative Methods

We performed comprehensive experiments comparing it with several SOTA change de-
tection methods. These methods include FC-EF [37], FC-Siam-Diff [37], FC-Siam-Conc [37],
STANet [53], BiT [35], and ChangeFormer [64].

e FC-EF [37], FC-Siam-conc [37], and FC-Siam-diff [37] were the first methods to intro-
duce Siamese networks into change detection. EF refers to a fusion technique in which
the dual-temporal images are combined or merged at the input stage. Siam-conc rep-
resents the concatenation fusion model based on Siamese networks, which combines
the dual-temporal features. Siam-diff represents the difference fusion model based on
Siamese networks.

e  STANet [53] incorporates a self-attention feature fusion module, enabling the model to
capture the spatiotemporal dependencies present in various sub-regions of the input
images. The self-attention mechanism allows the network to concentrate on important
regions and relationships within the images, enhancing its ability to detect changes
effectively.

e  BiT [35] leverages the Transformer architecture as a change feature fusion network,
integrating it with a convolutional neural network (CNN) backbone. This combination
enables BiT to capture and model the global semantic information from dual-temporal
features. By incorporating Transformers, which excel at capturing long-range depen-
dencies and contextual information, BiT enhances the representation learning process
and performance. The CNN backbone complements the Transformer by extracting
spatial features from the input images. Together, they form a powerful framework for
effectively detecting changes in remote-sensing data.

o ChangeFormer [64] is a change detection method that utilizes a pure Transformer ar-
chitecture. Unlike traditional methods that combine CNNs and Transformers, Change-
Former solely relies on Transformers for the entire change detection process. By
leveraging the self-attention mechanism, ChangeFormer efficiently captures multi-
scale long-range details. The Transformer architecture allows for the modeling of
global dependencies and contextual information across the input images, enhancing
the overall performance of change detection tasks.

The implemented CD networks above were developed using their publicly available
codes.

4.5. Results Evaluation
4.5.1. Experimental Results on LEVIR-CD

Table 2 presents the performance of different methods on the LEVIR-CD test set based
on the four accuracy metrics. It is worth mentioning that for BiT and ChangeFormer,
we directly used the pre-trained model weights provided in their respective papers. In
Table 1, the first three fully convolutional neural network methods, FC-EF, FC-Siam-Di, and
FC-Siam-Conc, perform poorly. This is mainly because their feature extractors struggle to
effectively capture features from complex remote-sensing images. The latter three compara-
tive methods, STANet, BiT, and ChangeFormer, all employ different attention mechanisms
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(a)

(b)

© {

(d)

and achieve good performance on the LEVIR-CD dataset. Overall, MFSFNet demonstrated
superior performance compared to all six comparative methods across various evaluation
metrics. Specifically, it achieved impressive scores of 92.16% for precision, 90.17% for
recall, 91.15% for F1 score, and 83.75% for IoU. Notably, our method showcased the most
significant improvement in recall. These results highlight the effectiveness and robustness
of our approach in accurately detecting changes, particularly in terms of identifying true
positive instances.

Table 2. The performance of different methods on the LEVIR-CD.

Precision (%) Recall (%) F1 (%) IoU (%)
FC-EF 80.24 70.31 74.95 59.93
FC-Siam-Di 85.32 74.82 79.72 66.28
FC-Siam-conc 83.82 81.98 82.89 70.77
STANet 91.90 85.00 88.10 79.12
BIT 89.24 89.37 89.31 80.68
ChangeFormer 92.05 88.80 90.40 82.84
Ours 92.16 90.17 91.15 83.75

Figure 6 visualizes the prediction results of our method and other comparative models
on the test set images. As indicated by the accuracy results in Table 2, FC-EF, FC-Siam-Diff,
and FC-Siam-Conc performed poorly due to their insufficient feature extraction capa-
bilities. For relatively simple scenes (Figure 6a,e), the three methods STANet, BiT, and
ChangeFormer, accurately located the changed buildings, achieving comparable overall
performance to our method. However, for relatively complex scenes (Figure 6b—d), our
method significantly outperformed all the comparative methods. Specifically, MFSFNet
achieved the best results in localizing the changed regions and extracting the boundaries
of multi-scale changed regions in complex scenes. The former is attributed to the pow-
erful feature extraction capability of our feature extractor, while the latter relies on the
effectiveness of the multi-scale subtraction fusion method.

FC-Siam-Di  FC-Siam-Conc STANet T ChangeFormer Ours

Figure 6. The visualizations of the prediction results on the LEVIR-CD dataset. The red pixels in
the figure represent false positives, the blue pixels represent false negatives, and the white pixels
represent true positives. (a—e) denote different samples and results in the test set of LEVIR dataset.

4.5.2. Experimental Results on CDD

Table 3 shows that MFSFNet surpasses all the comparative models in terms of recall,
F1 score, and IoU, with only a slightly lower precision compared to BiT. Particularly note-
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worthy is the high recall achieved by our method, reaching 95.7%, which demonstrates
a substantial superiority over other methods and surpasses the ChangeFormer by 2.18%.
From an application perspective, recall is more important than precision in change detec-
tion tasks, and our effective feature fusion manner helps to lessen the count of missed
change regions.

Table 3. The performance of different methods on the CDD.

Precision (%) Recall (%) F1 (%) IoU (%)
FC-EF 66.73 54.08 59.74 42.59
FC-Siam-Di 81.51 51.68 63.25 46.25
FC-Siam-conc 72.60 46.58 56.75 39.62
STANet 92.28 85.44 88.61 80.12
BIT 96.02 93.26 94.61 89.78
ChangeFormer 94.50 93.52 94.23 89.09
Ours 95.59 95.70 95.64 91.65

Additionally, the F1 score of the FC-EF, FC-Siam-Di, and FC-Siam-Conc models is only
around 60%, much lower than the other four methods, and this performance gap is even
more pronounced on the LEVIR-CD dataset. Analyzing the feature extractors of these three
methods, we found that their feature extraction capability is weak, making it challenging to
accurately locate change regions. We believe that the limited feature extraction capability is
the main reason for the poor performance. Furthermore, the images in the CDD dataset
exhibit more diverse scenes, such as seasonal variations, which pose additional challenges
for feature extraction.

The prediction results of various methods in Figure 7 show our proposed method pro-
duced predictions that are closest to the true change regions in the test images. Examining
the predicted result images, it is evident that the first three methods struggle to identify
change regions in seasonal variations, while the latter four models are able to adapt to some
extent to the effects of seasonal changes. In the case of scenes in Figure 7b,c, our model
demonstrates more accurate localization of change regions compared to the other models,
and the detected change regions are more complete. In the case of the widened road in
scene Figure 7e, our proposed method exhibits the best connectivity of change regions,
with smoother edges and the closest resemblance to the ground truth.
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FC-EF FC-Siam-Di  FC-Siam-Conc STANet BIT ChangeFormer Ours GT

Figure 7. The visualizations of the prediction results on the CDD dataset. The red pixels in the figure
represent false positives, the blue pixels represent false negatives, and the white pixels represent true
positives. (a—e) denote different samples and results in the test set of CDD dataset.
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5. Discussion
5.1. Ablation Experiments
5.1.1. The Ablation of MFSF and FDS

To conduct a detailed analysis of MFSFNet, ablation experiments were performed on
the LEVIR-CD dataset, as summarized in Table 4.

Table 4. Ablation experiments on the LEVIR-CD dataset for the MFSF module and FDS module. (,/
denotes the module is employed).

Encoder MESF The Stage of Deep Supervision for FDS Module F1 (%)
Atto Tiny Module 1 2 3 4
v v 88.52
Vv Vv Vv 89.25
Vv Vv Vv Vv 89.51
Vv Vv Vv Vv Vv 89.20
v v v v v v 89.31
Vv Vv Vv Vv 91.15

Firstly, we used the lightweight ConvNeXt V2-Atto to get image features. Without
using the multi-scale feature subtraction fusion and deep supervision strategy, the F1 score
achieved 88.52% for MFSFNet. Next, we successively added the subtraction fusion module
and deep supervision at different stages, which resulted in varying degrees of performance
improvement. We also conducted a comparative experiment on deep supervision at
different stages of the outputs, and the results showed that the model achieved the highest
performance of 89.51% when the supervision constraints were applied only in the last two
stages. The possible reason for this result is that the feature map sizes of Stage 3 and Stage
4 are closer to the size of the original image compared to Stage 1 and Stage 2. The larger
feature maps indicate the presence of more feature information. On the other hand, the
feature maps of Stage 1 and Stage 2 contain limited effective information, and directly
up-sampling them to the size of the original image leads to poorer performance in change
detection results. This, in turn, results in erroneous supervision for the model when all four
stages are deep supervised. As a result, the F1 score is lower when all four stages are deep
supervised compared to deep supervising only Stage 3 and Stage 4. Finally, we replaced the
backbone network with the ConvNeXt V2-Tiny [58], which has a similar scale to ResNet50,
and the F1 score further improved to 91.15%, reaching the state-of-the-art performance.

5.1.2. The Effectiveness of MFSF

In this section, a comparison is made between the subtraction fusion strategy and
other feature fusion strategies, including product operation, concatenate operation, max-
imum operation, average operation, and addition operation on the LEVIR-CD dataset.
Additionally, we compared the experimental results of using absolute value activation in
the subtraction unit with those using ReLU activation to demonstrate the effectiveness of
the subtraction fusion strategy in feature fusion.

Table 5 presents the experimental results of change detection on the LEVIR-CD dataset
using different feature fusion strategies based on ConvNeXt V2-Atto. The results indicate
that our subtraction fusion strategy achieves the highest scores in Precision, F1, and IoU
metrics. In terms of the F1, the Product fusion strategy, concatenate fusion strategy, maxi-
mum fusion strategy, average fusion strategy, and addition fusion strategy yield similar
results, all lower than our subtraction fusion strategy. This is because the change detection
task emphasizes the differentiated features between different temporal images, and the
subtraction-based feature fusion strategy is more suitable for expressing these differentiated
features.
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Table 5. Comparison of Different Feature Fusion Strategies.

Fusion Strategy Precision (%) Recall (%) F1 (%) IoU (%)
Product 90.65 87.66 89.13 80.39
Concatenate 90.30 88.33 89.31 80.68
Maximum 90.59 87.49 89.02 80.21
Average 90.42 87.62 89.00 80.18
Addition 90.88 87.17 88.98 80.15
Ours 91.26 88.17 89.51 81.30

Table 6 presents the experimental results of change detection on the LEVIR-CD dataset
using ReLU and absolute value as activation functions in the Subtraction Unit based on
ConvNeXt V2-Atto. The results indicate that using absolute value achieves higher scores
than ReLU in Precision, Recall, F1, and IoU metrics. This suggests that using absolute value
as the activation function provides a better expression of feature differences, while ReLU
discards the negative values in the feature differences, thereby affecting the effectiveness of
the subtraction fusion.

Table 6. Comparison of Different Activation Function in Subtraction Unit.

Activation

. Precision (%) Recall (%) F1 (%) IoU (%)
Function
ReLU 90.80 88.12 89.40 81.16
Absolute Value 91.26 88.17 89.51 81.30

5.2. Parameter Analysis

To further analyze the complexity of MFSFNet, we calculated the parameter size
and computational complexity of different models in Figure 8. The F1 score of different
methods on the LEVIR-CD dataset was represented. Although FC-EF, FC-Siam-Di, and
FC-Siam-Conc models have the fewest parameters, their accuracy, and performance are
the poorest, making them less suitable for practical scenarios. Therefore, we exclude these
three models from the following analysis.

Model Performance
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90 qurs(Atto)
BIT
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86 4 Model Parameters
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@ 3261M
80 FC-Siam-Di @ +om
78 A
76
FC;EF
0 20 40 60 80 100

Flops (G)

Figure 8. Comparison of parameters and FLOPs of different models.

For the other models, our proposed model using ConvINeXt V2-Atto has the lowest
FLOPs (floating-point operations per second) while still achieving higher accuracy than
STANet and BiT. Regarding ChangeFormer, we assume the use of ChangeFormer V6 [64],
which has the maximum parameter size and FLOPs. When we employ ConvNeXt V2-Tiny
as the feature extractor in our model, the parameter size of MFSFNet is slightly smaller
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compared to ChangeFormer V6, and the number of floating-point operations (FLOPs) is
also lower. Despite this, our proposed method achieves the highest F1 score of 91.15%
on the LEVIR-CD dataset in this configuration. This demonstrates the efficiency and
effectiveness of our approach in achieving superior performance with smaller model size
and computational cost compared to the comparative method.

Overall, our proposed model not only achieves superior accuracy compared to other
comparative models but also demonstrates better performance in terms of complexity.
Our model achieves SOTA results while also having a smaller model size and lower
computational cost. This highlights the efficiency and effectiveness of our approach,
making it a promising solution for change detection tasks.

6. Conclusions

In this paper, we propose MFSFNet for change detection in remote sensing images.
The key contributions of our approach lie in its twin lightweight encoder-decoder structure
and the incorporation of the multi-scale feature subtraction fusion and feature deep supervi-
sion modules. The MFSFNet architecture is designed to accurately extract change features.
The multi-scale feature subtraction fusion module enhances the representation of change
features by emphasizing the differences at various scales while reducing the influence of
irrelevant pseudo-change features. This module plays a crucial role in capturing mean-
ingful change regions. To further improve the training performance and enable effective
feature learning, we introduce the feature deep supervision module. This module provides
additional supervision to the change features at different scales in the decoder, promoting
the learning of discriminative representations. By leveraging multi-scale deep supervision,
our network effectively captures hierarchical information inherent in the change detection
task. With the Dice loss along, our method mitigates the class imbalance problem and
reduces boundary fuzziness in the change detection results. The experimental results
demonstrate the superior performance of our MFESFNet compared to existing state-of-the-
art methods. Our approach achieves a better balance between complexity and performance,
indicating its robustness and effectiveness in change detection tasks. In future work, we
will focus on making network models and change detection solutions more lightweight,
applicable to small sample sizes, and adaptable to weak supervision. This will contribute
to the rapid and accurate extraction of surface change information, reducing excessive
reliance on change samples and thus improving the applicability of this method in regular
surface monitoring.
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