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Abstract: The use of UAV-based remote sensing for soil moisture has developed rapidly in recent
decades, with advantages such as high spatial resolution, flexible work arrangement, and ease of op-
eration. In bare and low-vegetation-covered soils, the apparent thermal inertia (ATI) method, which
adopts thermal infrared data from UAV-based remote sensing, has been widely used for soil moisture
estimation at the field scale. However, the ATI method may not perform well under inconsistent
weather conditions due to inconsistency of the intensity of the soil surface energy input. In this
study, an improvement of the ATI method (ATI-R), considering the variation in soil surface energy
input, was developed by the incorporation of solar radiation measurements. The performances of
the two methods were compared using field experiment data during multiple heating processes
under various weather conditions. It showed that on consistently sunny days, both ATI-R and ATI
methods obtained good correlations with the volumetric water contents (VWC) (R2

ATI-R = 0.775,
RMSEATI-R = 0.023 cm3·cm−3 and R2

ATI = 0.778, RMSEATI = 0.018 cm3·cm−3) on cloudy or a combi-
nation of sunny and cloudy days as long as there were significant soil-heating processes despite the
different energy input intensities; the ATI-R method could perform better than the ATI method (cloudy:
R2

ATI-R = 0.565, RMSEATI-R = 0.024 cm3·cm−3 and R2
ATI = 0.156, RMSEATI = 0.033 cm3·cm−3; com-

bined: R2
ATI-R = 0.673, RMSEATI-R = 0.028 cm3·cm−3 and R2

ATI = 0.310, RMSEATI = 0.032 cm3·cm−3);
and on overcast days, both the ATI-R and ATI methods could not perform satisfactorily (R2

ATI-R = 0.027,
RMSEATI-R = 0.024 cm3·cm−3 and R2

ATI = 0.027, RMSEATI = 0.031 cm3·cm−3). The results indicate
that supplemental solar radiation data could effectively expand applications of the ATI method,
especially for inconsistent weather conditions.

Keywords: soil moisture; apparent thermal inertia (ATI); solar radiation; thermal infrared; UAV-based
remote sensing

1. Introduction

Soil moisture is critical for agriculture and crop management [1,2]. In recent decades,
the use of UAV-based remote sensing for soil moisture monitoring has developed rapidly
due to its inherent advantages of having high spatial resolution, flexible work arrangement,
and ease of operation [3–8]. Remote sensing for soil moisture monitoring mainly uses
visible-near-infrared, thermal infrared, and microwave-based imaging technologies [9–15].
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Visible-near-infrared methods have been widely applied; however, they may be easily
affected by vegetation and surface roughness, which could lead to unstable monitoring
results [6,16]. Microwave methods have better penetration capability than visible-near-
infrared methods; however, the equipment is usually large and is challenging to carry
by mini UAVs, being more suitable for manned aircraft and satellite-based remote sens-
ing [15,17–19]. In contrast, thermal infrared cameras are usually light and accurate, and
the relationships between soil thermal properties and soil moisture have been fully stud-
ied [20–24]; therefore, they seem more suitable for UAV-based soil moisture monitoring.
However, thermal infrared-based methods are sensitive to energy inputs and could be
easily affected by weather conditions [24,25]. A method to reduce the impact of inconsistent
energy input on thermal infrared remote sensing during various weather conditions is the
primary focus of this study.

In bare soil or sparse-vegetation-covered surface areas, the thermal inertia method
is the most commonly used method for soil moisture estimation [20,22]. The thermal
inertia method based on thermal infrared imagery was first proposed in the 1970s by
Waston et al. [26]. Pratt improved the thermal inertia model based on application tests by
considering more factors, such as thermal conductivity, solar radiance, average humidity of
the surface and atmosphere, average air temperature and surface roughness [27]. The main
difficulty in applying Pratt’s model is that it requires numerous parameters and complex
calculations; Price proposed a simplified apparent thermal inertia (ATI) index to simplify
the calculation [28], and the ATI index positively correlates with soil moisture.

ATI =
1− α

∆Td
(1)

where α is the surface albedo (dimensionless) and ∆Td is the diurnal (daytime and night-
time) temperature difference (◦C).

However, there may exist ATI index application problems, which uses the soil diurnal
temperature difference and the surface albedo to characterize the proportion of energy
inputted into soil [28], when the surface energy inputs vary among the sampling days [29]
due to the method’s simplification of the energy input. Even on clear and cloudless days,
which are recommended conditions for the application of the ATI method [30], the actual
solar radiation intensities still vary significantly, which then introduces inaccuracy into the
soil moisture measurements. For multi-process soil moisture measurements, the ∆Td values
may be the same in different processes, but the inability to quantify solar radiation makes it
impossible to determine whether the corresponding water contents are the same. Therefore,
the correlation between soil moisture and the ATI index is difficult to accurately find under
multiple heating processes, so the ATI method is unstable in measuring multi-process soil
moisture. Palombo et al. used the ATI method to measure soil moisture by recalculating
the ATI index for each sampling process and fitting the results to the current day water
contents, with a resulting R2 of approximately 0.62 [31]. This result was acceptable since it
considered the diurnal variations in solar radiation, but the requirement to recalculate the
ATI index each time would increase computational effort, and it would be difficult to apply
the model for the current day to the next day’s soil moisture measurements. In contrast,
when fitting ATI indices and moisture content from different processes without considering
radiation variations, the correlations between ATI indices and moisture content weakened;
in some relevant studies, the R2 fell below 0.6 [32–34].

From the perspective of soil physics, adding solar radiation measurement may be
a feasible improvement to the ATI method for VWC monitoring under different solar
radiation processes. Soil volumetric heat capacity is the quantity of heat that needs to be
absorbed or released by the soil for every 1 ◦C change [35]. Similarly to soil thermal inertia,
soil volumetric heat capacity is also affected by moisture, resulting in different rates of soil
temperature variations for the same energy input. However, the volumetric heat capacity
of the soil is an explicit relationship between the amount of energy and the amount of
temperature change. In contrast, the ATI replaces the actual energy with 1−α. The surface
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energy inputs are different for multiple natural heating processes. Therefore, adding solar
radiation measurements to quantify the surface energy input for each process makes it
clear that ∆T occurs under each energy input. Such a method can measure soil moisture for
multiple processes only if the relationship between the energy input and the ∆T is clarified
in the method.

The objectives of this study are to (1) propose an improved ATI method (ATI-R)
incorporating the measurement of total solar radiation, (2) examine the feasibility and
performance of the ATI-R method under a single heating process and multiple heating
processes, and (3) compare the performance of the ATI-R and ATI methods under different
weather types.

2. Materials and Methods

In this study, we proposed the ATI-R method based on the soil thermal properties,
which combines the ATI index with the solar radiation measurements. The ATI-R method
was evaluated and compared to the ATI method in a field moisture-controlled experiment
using UAV-obtained thermal and ground-obtained total solar radiation information.

2.1. The ATI-R and ATI Methods

As a three-phase mixture of solid, liquid, and gaseous matter, soil has a volumetric heat
capacity composed of the heat capacity of each phase and its corresponding proportion [36].

Cs = XaCa + XwCw + ∑N
j=1 XsjCsj (2)

where Xa, Xw, and Xsj are the volume fractions of soil air, water, and solid-phase compo-
nents, respectively, and Ca, Cw, and Csj are the volumetric heat capacities of air, water, and
soil solid-phase components, respectively. The relationship between soil volumetric heat
capacity (Cs) and soil moisture is similar to that which exists between ATI and soil moisture
and is as follows [35]:

Cs =
Q

V·∆TS
(3)

where Cs is the soil volumetric heat capacity (J·cm−3·◦C−1), Q is the absorbed energy (J),
∆TS is the soil temperature difference (◦C), and V is the soil natural volume (cm3).

Ca can usually be ignored when calculating Cs, since the volumetric heat capacity of
air (1.26 × 10−3 J·cm−3·◦C−1) is much lower than that of water (4.18 J·cm−3·◦C−1) and
solid-phase components (approximately 1.92 J·cm−3·◦C−1) [37]. The soil bulk density can
be used instead of the volume fraction of the solid phase for calculating the soil volumetric
heat capacity.

Cs = θ·Cw + ρb·Cb (4)

where θ is the soil volumetric water content (cm3·cm−3), ρb is the soil bulk density (g·cm−3),
Cw is the water volumetric heat capacity (4.18 J·cm−3·◦C−1), and Cb is the soil solid-phase
heat capacity (approximately 0.71–0.91 J·g−1·◦C−1).

Substituting Equation (4) into Equation (3), the equation becomes:

θ =
Q

V·∆T·Cw
− ρb·Cb

Cw
(5)

Cw is a constant, and Cb can also be considered a constant for a specific type of soil.
ρb varies slowly under undisturbed conditions for the same area. Therefore, ignoring the
change in bulk density, the soil volumetric water content is proportional to the ratio of Q
to ∆T:

θ ∝
Q

∆T
(6)
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Substituting albedo and measurement of solar radiation intensity for Q, Equation (6)
can be written as:

θ ∝
Rt(1− α)

∆T
(7)

where Rt is the cumulative intensity of the total solar radiation (kJ).
Based on the relationship between Cs and VWC and Equation (7), an ATI-R index is

proposed and defined as:

ATI− R =
Rt(1− α)

∆T
(8)

where Rt is the cumulative total solar radiation intensity (kJ), and ∆T is the soil temperature
increment (◦C).

The ATI index was calculated based on Equation (1).
The following equation exists between ATI-R and VWC and ATI and VWC:

VWC = a1 × ATI-R + b1 & VWC = a2 × ATI + b2 (9)

2.2. Field Experiment Design

A field moisture-controlled experiment was arranged at the Fengqiu State Key Agro-Ecological
Experimental Station, Chinese Academy of Sciences (34◦53′–35◦14′N, 114◦14′–114◦46′E) in Fengqiu,
Henan Province, China, in May 2022. The study area is flat, with an average elevation of
67.5 m above sea level; the primary soil type is fluvo-aquic soil, and the main cropping
pattern is winter wheat–summer corn rotation. The area has a semi-arid, semi-humid
temperate monsoon climate with an average annual precipitation of 615.1 mm, but pre-
cipitation resources are unevenly distributed and mainly concentrated in summer (about
45–65% of the annual precipitation).

A bare field was selected as the study area, with a flat surface without noticeable
bumps and depressions. The experiment used a completely randomized design with 5 soil
moisture levels and 3 replications for each level, totaling 15 plots, each with an area of
6.25 m2 (2.5 m × 2.5 m), with a protective row of 0.75 m width between each plot to
avoid water disturbance between neighboring plots (Figure 1a). The field water-holding
capacity of the experimental area was measured to be about 0.320 cm3·cm−3. Accordingly,
we designed 5 water treatments (T0, T1, T2, T3, and T4), where T0 was the no-watering
treatment, as this experiment’s control check (CK). The remaining 4 treatments (T1, T2, T3,
and T4) increased by 10%, 20%, 30%, and 40% of field holding capacity based on the T0
soil moisture content. The 5 watering treatments with watering amounts were 0, 3.2, 6.4,
9.6, and 12.8 mm, respectively. The VWC used for method testing was based on actual
measurements of the oven-drying method.
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treatments in each plot. T0 was no-watering treatment, as the CK. The watering amounts with T1, 

Figure 1. (a) UAV-based Vis-NIR image of the experimental area and schematic of the location of
the SP-110 total radiation sensor and temperature logger, and (b) distribution image of watering
treatments in each plot. T0 was no-watering treatment, as the CK. The watering amounts with T1,
T2, T3, and T4 were 10% (3.2 mm), 20% (6.4 mm), 30% (9.6 mm), and 40% (12.8 mm) of the field
water-holding capacity, respectively, based on the T0 soil moisture.
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During May 2nd and 11th, 2022, UAV-based remote sensing images were obtained
daily in the experimental plots. In addition, ground-based experimental data, including
the total solar radiation intensity and the VWC measurement from the soil samples, were
collected synchronously. The corresponding methods of data acquisition were as follows.

The flight altitudes of UAV-based remote sensing were all conducted at 6 m and
the soil temperatures and Vis-NIR images were acquired by a thermal infrared camera
(Zenmuse H20T, Shenzhen, China, Figure 2b) and a multispectral camera (Rededge-MX,
Micasense, Seattle, WA, USA, Figure 2c) mounted on the UAV (M300 RTK, Shenzhen, China,
Figure 2a), respectively. The H20T camera operates in the 8–14 µm wavelength range, has
a temperature measurement range between −40 to 150 ◦C (high gain mode) and −40 to
550 ◦C (low gain mode), and has an image resolution of 640 × 512. The RedEdge-MX
has 5 wavelength bands, of blue, green, red, red edge, and near-infrared, respectively,
and has an image resolution of 1280 × 960. Two batches of thermal infrared images were
taken daily at approximately 5:30 and 14:00 local time. The times representing the lowest
and highest soil surface temperatures were determined in advance by soil temperature
loggers (IDEASTYLE, Suzhou, China, Figure 2d) buried 1–2 cm beneath the surface. The
soil temperature increment was calculated by:

∆T = T1400 − T0530 (10)

where T1400 and T0530 are the soil temperatures acquired by the UAV-based thermal infrared
camera at 14:00 and 5:30, respectively. Multispectral images were taken between 10:00 and
14:00 to calculate soil α [38]:

α = 0.606ρband,1 + 0.286ρband,2 + 0.244ρband,3 + 0.164ρband,4 (11)

where ρband,1, ρband,2, ρband,3, and ρband,4 are the reflectivity in the blue (459–491 nm), green
(546–573 nm), red (660–676 nm) and near-infrared (814–871 nm) bands, respectively.
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Figure 2. (a) DJI M300 RTK, (b) Zenmuse H20T thermal infrared camera, (c) RedEdge-MX five-
channel multispectral camera, (d) temperature logger, (e) SP-110 solar total radiation sensor.

The total solar radiation intensity in the ATI-R index was obtained by a total radiation
sensor (SP-110, Apogee Instruments, Inc., Logan, UT, USA, Figure 2e) placed on a fixed
platform located 2 m above the ground surface. The spectral of SP-110 ranges from 360 to
1120 nm with 0.2 mV per W·m−2 of sensitivity. The sensor records the half-hourly average
solar irradiance value, and the cumulative total solar radiation intensity is the integration
of irradiance over time.

Rt = (I0600 + I0630 + · · ·+ I1400)·t·S (12)

where I0600, I0630, . . ., I1400 are the mean values of irradiance (W·m−2) from 5:30 to 6:00, 6:00
to 6:30, . . ., and 13:30 to 14:00, respectively. t is the measurement time of the sensor, which
is 30 min in this study, and S is the area of soil that receives solar radiation, taken as 1 m2 in
this study.

Three sampling points were randomly marked within the square area (1.5 m × 1.5 m)
in the center of each plot, soils at 0–5 cm were sampled and the oven-drying method
was then performed to determine the VWC. Meanwhile, ∆T and α were obtained from
thermal infrared images (Equation (10)) and multispectral images (Equation (11)) at posi-
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tions corresponding to the marked sampling points to calculate the ATI-R index and ATI
index, respectively.

Watering occurred on May 1st and May 6th during the experiment, and rainfall
occurred on May 5th and 9th, so we did not conduct the sampling described above on
those days.

2.3. Methods Evaluation

The R2 was calculated to analyze the correlation between the ATI-R/ATI index and
the VWC. The RMSE and mean absolute error (MAE) were calculated to evaluate the
performance of the ATI-R/ATI method for VWC measurement.

R2 =
∑(VWCcal −VWCmean)

2

∑(VWCoven −VWCmean)
2 (13)

RMSE =

√
∑(VWCcal −VWCoven)

2

n
(14)

MAE =
1
n ∑|VWCoven −VWCcal | (15)

where VWCcal, VWCoven, and VWCmean are the VWC calculated by the ATI-R/ATI method,
the VWC measured by the oven-drying method, and the mean value of VWCoven, respectively.

3. Results and Discussion
3.1. Statistics of the Experimental Data
3.1.1. Weather

Figure 3 shows air temperature and total solar irradiance results. The air temperature
and total solar irradiance generally increased during each warming process (5:30–14:00).
On May 2nd, May 3rd, and May 4th, the air temperature increased to a maximum value of
approximately 33 ◦C (Figure 3a), the solar irradiance increased to approximately 900 W·m−2

(Figure 3b), and the cumulative solar radiation intensity was higher than 17.4 MJ (Figure 3c).
The temperature and solar radiation variations were similar during the warming processes
on May 2nd, 3rd, and 4th. On May 7th and May 11th, the air temperature increased
gradually to a maximum of approximately 20 ◦C, while the variations in the solar radiation
differed, fluctuating approximately 750 W·m−2 on May 7th and approximately 350 W·m−2

on May 11th. On May 8th, the air temperature remained at approximately 13 ◦C without
significant changes, and the solar irradiance only fluctuated at approximately 200 W·m−2.

The six heating processes were divided into three weather types: sunny (May 2nd,
May 3rd, May 4th), cloudy (May 7th and May 11th), and overcast (May 8th), based on
temperature, solar irradiance, and cumulative solar radiation intensity variations. Sunny
days were when the temperature and solar irradiance increased significantly with time,
and the cumulative solar radiation intensity was higher than 15 MJ. Cloudy days were
when the temperature and solar irradiance increased gradually, and the cumulative solar
radiation intensity was 6–15 MJ. An overcast day was when the temperature and irradiance
increased non-significantly, and the cumulative radiation intensity was lower than 6 MJ.

3.1.2. Soil VWC and Temperature

Figure 4a shows the soil VWCs under different moisture treatments. On the day after
watering (May 2nd and 7th), the VWC difference among treatments was approximately
0.03 cm3·cm−3, consistent with the experimental design. On May 4th, the VWC under
the T0 treatment was 0.11 ± 0.01 cm3·cm−3, whereas the VWC under the T0 treatment
was 0.14 ± 0.02 cm3·cm−3 on May 7th due to rainfall that occurred on May 5th. A similar
impact on the VWC from a rain event also occurred on May 9th.
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Figure 4. (a) Soil VWCs in 0, 3.2, 6.4, 9.6, and 12.8 mm water treatments, and (b) the soil temperature
increments under the heating processes during sunny days (May 2nd, 3rd, and 4th), cloudy days
(May 7th and 11th), and the overcast day (May 8th).

Figure 4b shows the soil temperature increments under each treatment during six heat-
ing processes. On sunny days, the soil temperature increment is approximately 20–40 ◦C,
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and the lower the VWC is, the higher the temperature increment. On cloudy days, the
soil temperature increment decreased to 9–29 ◦C. On the overcast day, the temperature
increment was only 3 °C, or was even a negative value.

The above results indicate that the solar radiation intensity also affects the soil temper-
ature difference besides the VWC. The effect of the VWC on the soil temperature increments
is significant when the solar radiation intensity is higher and is less significant when the
energy input is lower [39]. For example, on May 3rd (sunny, Rt was 17.86 MJ), the maximum
difference in VWC was 0.08 cm3·cm−3, and the maximum difference in the soil temperature
increment was 15 ◦C. On May 11 (cloudy, Rt was 6.83 MJ), the maximum difference in the
VWC was 0.07 cm3·cm−3, and the maximum difference in the temperature increment was
only 3 ◦C. Therefore, it is necessary to clarify the solar radiation intensity that causes the
soil temperature increment.

3.2. Comparison of the ATI-R and ATI Methods

The correlations between the ATI-R method and VWC and the ATI method and VWC
are shown and discussed separately in three ways: (a) with data from a single heating
process; (b) with data from multiple heating processes under the same weather type; and
(c) with data from multiple heating processes of inconsistent weather types.

3.2.1. Single Heating Process

The correlations between ATI-R and VWC, and ATI and VWC during each heating
process were calculated, and the results are shown in Table 1.

Table 1. Linear regression results between ATI/ATI-R and VWC under a single heating process.

Date Weather
Condition

ATI-R ATI

Linear
Regression Equation R2 Linear

Regression Equation R2

May 2nd Sunny y = 0.0002x + 0.1183 0.724 y = 3.0367x + 0.1183 0.724
May 3rd Sunny y = 0.0003x + 0.0503 0.723 y = 5.8457x + 0.0503 0.723
May 4th Sunny y = 0.0005x − 0.0066 0.722 y = 9.9669x − 0.0066 0.722
May 7th Cloudy y = 0.0003x + 0.1018 0.797 y = 3.1495x + 0.1018 0.797
May 8th Overcast y = −2 × 10−7x + 0.1579 0.027 y = −0.0015x + 0.1579 0.027
May 11th Cloudy y = 0.0002x + 0.0859 0.756 y = 1.527x + 0.0859 0.756

The R2 from the linear regression showed that ATI-R and ATI correlated well with
VWC under single sunny and cloudy days, with R2 above 0.700. However, both the ATI-R
and ATI methods failed on an overcast day. The reason is that the solar radiation intensity
was weak on May 8th (Rt = 5.11 MJ, Figure 3c) and caused the soil temperature increment
to be low or negative (∆T ranged from −1.5 to 3 ◦C, Figure 4b). The ∆T is a denominator in
the ATI-R and ATI indices (Equations (1) and (8)). Low or negative values of ∆T make the
indices extremely large or small, thus weakening the correlation.

Observation of the linear regression equations of the two methods with VWC revealed
that the slopes of the equations for the ATI-R method were similar for the different heating
processes (except for May 8, which was cloudy). In contrast, the slopes for the ATI method
varied considerably. This could lead to the ATI-VWC equations obtained using a single
heating process as the dataset, applied to other heating processes, to produce significant
errors. The ATI-VWC and ATI-R-VWC linear regression equations for each day were used
as predictive models to confirm this assumption. The models were validated with the
remaining five heating processes as validation datasets. The results are shown in Figure 5.
The dates in the horizontal coordinate indicate that the data of the day was used as the
modeling set, and the dates in the vertical coordinate indicate that the data of the day was
used as the validation set.
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Figure 5. (a) R2 of ATI method validation results with ATI-VWC for a single heating process as the
modeling set, (b) R2 of ATI-R method validation results with ATI-VWC for a single heating process
as the modeling set, (c) RMSE of ATI method validation results with ATI for a single heating process
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process as the modeling set, (e) MAE of ATI method validation results with ATI for a single heating
process as the modeling set, and (f) MAE of ATI-R method validation results with ATI-R for a single
heating process as the modeling set.

Figure 5a,b show the R2 between the VWC estimated by the ATI and ATI-R methods
and the measured VWC, respectively. It was found that the R2 of both methods was above
0.70 except for the overcast day, indicating good correlations between the two methods and
the VWC on both sunny and cloudy days. At the corresponding positions in Figure 5a,b,
the R2 were the same for both methods. Because ATI-R is ATI multiplied by Rt, and Rt
is equivalent to a constant during a single heating process. This can also be seen in the
equations in Table 1, where the two equations for the same day differ only in slope.
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To further compare the performance of the two methods, the RMSE and MAE of
the two methods are presented in Figure 5c–f, respectively. The ATI method was sim-
ilar to the ATI-R method in its effectiveness in estimating VWC on sunny days using
sunny day data as a predictive model (called the sunny-day model). When predict-
ing VWC on cloudy days with the sunny-day model, the ATI method exhibited more
significant bias, with RMSEATI > 0.100 cm3·cm−3 and RMSEATI-R ≤ 0.050 cm3·cm−3,
and with MAEATI > 0.090 cm3·cm−3 and MAEATI-R < 0.050 cm3·cm−3. Both methods
showed some bias when predicting VWC on sunny days with the cloudy-day model,
with RMSEATI-R ≤ 0.050 cm3·cm−3 and MAEATI-R < 0.050 cm3·cm−3, while RMSEATI and
MAEATI were above 0.050 cm3·cm−3 in some validation sets. The ATI model for May 7th
predicted better than ATI-R with VWC on sunny days, probably because of the higher radia-
tion and lower temperature variation on May 7th, which made the soil temperature change
a lower amount during the prescribed warming; thus the ATI-R index overestimated VWC
on this day.

In addition, the ATI showed a good correlation with the VWC on cloudy days, which
differed from the clear and cloudless conditions suggested by existing studies [30]. This
phenomenon is because in this study, the soil temperature still increased on cloudy days
(May 7th: 13–29 ◦C; and May 11th: 8–12 ◦C). Additionally, the multispectral images used
to calculate albedo were acquired when the weather conditions were stable, ensuring
consistency among images during the same sampling processes [40]. The effect of clouds
can be approximated to be the same on soil spectral information because the UAV flies
under clouds.

The results above indicate that ATI and ATI-R methods correlated with VWC for a sin-
gle heating process on sunny and cloudy days. However, both methods failed on overcast
days when soil heating was insignificant or negative. Moreover, when weather conditions
for relationship exploration were different (radiation differences), the ATI method produced
a more significant bias in estimating the VWC for different weather conditions than the
ATI-R method.

3.2.2. Multiple Heating Processes under the Same Weather Type

We compared the performance of the ATI-R and ATI methods for the VWC measure-
ment under the same weather type: sunny (May 2nd, May 3rd, and May 4th), cloudy
(May 7th and May 11th). Since the ATI-R and ATI methods failed on the overcast day, the
overcast data (May 8th) were not repeated in this subsection. The results are shown in
Figure 6.

Figure 6a,b show the correlation between ATI-R and VWC and the correlation
between ATI and VWC under sunny conditions, respectively. The ATI-R and ATI cor-
related well with the VWC, with R2

ATI-R = 0.775, RMSEATI-R = 0.023 cm3·cm−3, and
MAEATI-R = 0.018 cm3·cm−3 (Figure 6a), and R2

ATI = 0.778, RMSEATI = 0.018 cm3·cm−3,
and MAEATI = 0.013 cm3·cm−3 (Figure 6b), respectively. Under cloudy conditions,
R2

ATI-R = 0.565, RMSEATI-R = 0.024 cm3·cm−3 and MAEATI-R = 0.020 cm3·cm−3 (Figure 6c),
and R2

ATI = 0.156, RMSEATI = 0.033 cm3·cm−3 and MAEATI = 0.027 cm3·cm−3 (Figure 6d),
indicating that the ATI-R method correlated better with the VWC than the ATI method
correlated with the VWC (Figure 6c,d).

The results under the same weather type show that the ATI-R and ATI methods had
acceptable and similar performances on sunny days; the ATI-R method outperformed the
ATI method on the cloudy days. On sunny days, the ATI-R and ATI methods similarly
performed well because the cumulative radiation intensities during the three warming
processes were similar (Rt-May2 = 17.48 MJ, Rt-May3 = 17.86 MJ, Rt-May4 = 18.41 MJ), and
the daily differences in the solar radiation were slight (∆Rt ranged from 0.38–0.93 MJ).
Such weather was also consistent with clear and cloudless conditions suitable for the ATI
method [30]. On cloudy days, the daily variations in solar radiation were significant and
unignorable (∆Rt was 4.58 MJ), resulting in the different performances of the ATI-R and
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ATI methods. However, since the ATI-R method adds the solar radiation measurement to
identify the variations in Rt, the ATI-R method outperforms the ATI method on cloudy days.
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Similar to Section 3.2.1, the sunny-day dataset was used to model and predict VWC
for cloudy days, and the cloudy-day dataset was used to model and predict VWC for sunny
days. The results are displayed in Table 2.

Table 2. Estimated results of VWC under different weather conditions by ATI-R and ATI methods.

Modeling Set
ATI-R ATI

R2 RMSE
(cm3·cm−3)

MAE
(cm3·cm−3) R2 RMSE

(cm3·cm−3)
MAE

(cm3·cm−3)

Sunny-day dataset 0.565 0.027 0.022 0.156 0.127 0.096
Cloudy-day dataset 0.775 0.025 0.020 0.778 0.035 0.029

The first row of the data indicates that the ATI-R-VWC model was established with the sunny-day dataset, and
the ATI-R of the cloudy-day dataset was brought into the model to calculate a set of VWC estimates. R2, RMSE,
and MAE between VWC estimates and measured VWC are calculated and used for method evaluation.

Table 2 shows that although the correlations between the ATI-R and ATI methods with
VWC under sunny conditions are similar, the two methods appear significantly different
when used to estimate VWC under cloudy conditions. Similar results are seen in the
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estimation of sunny-day VWC with the cloudy-day models. The above results show that
the ATI-R method can be used to estimate the VWC under different weather conditions
with higher accuracy than the ATI method.

3.2.3. Multiple Heating Processes under Different Weather Types

The ATI-R and ATI methods were compared under inconsistent weather types. Incon-
sistent weather included (a) a combination of sunny and cloudy days (May 2nd, 3rd, 4th,
7th, and 11th), (b) a combination of cloudy and overcast days (May 7th, May 11th, and May
8th), and (c) a combination of sunny and overcast days (May 2nd, 3rd, 4th, and 8th).

Figure 7 illustrates the correlation between ATI-R with VWC and the correlation between
ATI with VWC under the two-by-two combinations of the three types of weather. On com-
bined sunny and cloudy days, the ATI-R method correlated better with the VWC than the ATI
method did, where R2

ATI-R = 0.67, RMSEATI-R = 0.028 cm3·cm−3, MAEATI-R = 0.018 cm3·cm−3,
and R2

ATI = 0.31, RMSEATI = 0.032 cm3·cm−3, MAEATI = 0.025 cm3·cm−3 (Figure 7a,b). How-
ever, after considering data from the overcast day, neither the ATI-R method nor the ATI
index showed correlations with VWC (R2 lower than 0.01, Figure 7c–f). In addition, vertical
lines were found in Figure 7c–f due to the data for the overcast day deviating significantly
from those for sunny and cloudy days. The purple dots indicate data from the overcast
day, representing ATI-R ranging from −17,000 to 17,000 and ATI ranging from −2.5 to 2.5,
respectively. In contrast, the points in Figure 7a,b were from data from sunny and cloudy
days; ATI-R ranged from 150 to 700, and ATI ranged from 0.015 to 0.085.

The results under inconsistent weather types showed a good correlation between the
ATI-R method and VWC as long as there were significant increases in soil temperature,
even if different weather types were mixed in the dataset. The more complex solar radiation
intensity under inconsistent weather types (6.84–18.41 MJ), compared to the same weather
type (17.84–18.41 MJ), led to daily variations that could not be approximated equally in
solar radiation. The lack of radiation measurements made it difficult for the ATI method to
explain the conditions under which the soil temperature varied. Therefore, the correlation
between the ATI index and VWC was weak under inconsistent weather types. However,
both methods failed when introducing data from the overcast day, indicating that the
ATI-R/ATI index of the corresponding processes is hardly correlated with the VWC when
there is no significant increase in soil temperature (∆T < 3 ◦C, in this study, Figure 4b) and
that the overcast days should not be considered in the multiple soil-heating processes.

In this study, the ATI-R method expands the applicability of the ATI method by
adding the total solar radiation measurement and calculating the cumulative solar radiation
intensity of the soil-heating process. The ATI-R method was applied to multiple soil-heating
processes with significant increases in soil temperature (∆T ≥ 7 ◦C) even if these processes
had substantial differences in solar radiation intensity. The Rt of the ATI-R method that was
applicable to multiple processes ranged from 6.84 to 18.41 MJ, and the half-hourly mean
irradiance ranged from 223.2 to 601.7 W·m−2. In contrast, the ATI method is only applicable
to multiple soil-heating processes with similar radiation intensities. The difference in the Rt
of the ATI method applicable for multiple processes was small at 0.93 MJ (17.48–18.41 MJ),
while the correlation between the ATI method and the VWC was weak when the difference
in Rt was 4.58 MJ (6.83–11.41 MJ), with R2

ATI = 0.156 and RMSEATI = 0.033 cm3·cm−3. These
results indicate that adding a solar radiation measurement sensor allows for quantifying
the energy input during each soil-heating process. The energy input from the sun varies in
different processes, which leads to different ∆T values for different heating processes, even
for soils with the same VWC. Although α can represent the proportion of energy absorbed
by the soil [28,41], the actual energy input that causes the soil temperature variation,
especially for multiple processes, cannot be replaced by α. Therefore, quantifying the solar
radiation intensity during different warming processes is necessary, which makes data
from different processes comparable.
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on sunny and overcast days. The red-dashed line is the result of the linear fit.

In this study, adding a total solar radiation sensor increases the monitoring cost, which
is acceptable because it extends the applicability of the traditional ATI method and improves
the accuracy of soil moisture monitoring in multiple processes. Meanwhile, this study was
carried out in an agricultural field of flat terrain, where the size of the experimental area
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matched the effective measurement scale represented by the solar radiation sensor and
where factors such as the terrain caused less variation among the plots [42]. Therefore, the
ATI-R method proposed in this study is suitable for long-term soil moisture monitoring at
the farm-scale in plains areas. With the increase in the monitoring area, a single radiation
sensor cannot accurately represent the solar radiation in the study area, and the number of
sensors needs to be increased, which undoubtedly will increase the monitoring cost and
introduce some errors.

Additionally, the use of the flexible and convenient UAV platform can better meet
the needs of the ATI-R method, which is also one of the factors in improving the accuracy
of soil moisture measurement. The ATI-R method must obtain the soil temperature at
the beginning and end of a specific soil-heating process to calculate the soil temperature
increment. The UAV-carried thermal infrared camera can capture the infrared soil image
at the corresponding time required to obtain the soil temperature [43]. As a result, the
soil temperature information obtained by the UAV and the solar radiation information
obtained by the radiation sensor are highly temporally matched, making the ATI-R index
calculation more accurate. Soil albedo is another critical parameter used to calculate the ATI-
R index. In this study, to ensure the accuracy of the α calculation, UAV-based multispectral
images were obtained under stable weather conditions such as cloud cover and wind
speed [44]. Relatively stable weather conditions can ensure comparability between α in the
same sampling process, and a flexible UAV platform can meet this sampling requirement.
Furthermore, resampling can occur even if weather conditions change significantly during
sampling, since the UAV-based visible-near-infrared (VNIR) images and thermal infrared
(TIR) images are all surface measurements. Therefore, we validate the method on bare soil,
which is more intuitive and accurate to reflect the correlation between soil temperature and
moisture. In the future, if vegetation needs to be considered, the ATI-R method can extract
soil pixels by supervised classification before modeling under low-vegetation cover [45].
In contrast, the ATI-R method may also be limited under medium and high-vegetation
cover due to the lack of a physically meaningful and clear vegetation canopy–land surface
temperature conversion relationship.

4. Conclusions

This study proposed an ATI-R method for soil moisture estimation under multiple
processes with different weather conditions based on thermal infrared UAV-based remote
sensing. The ATI-R method quantifies the surface energy input during different soil-heating
processes by adding solar radiation measurement during the heating processes. A moisture
control experiment was designed in flat topographic farmland in Henan Province, China.
The performance of the ATI-R method for VWC estimation was verified by comparing the
ATI method. The main findings are as follows:

(1) ATI-R and ATI methods both had acceptable correlations with VWC during single
heating process. However, using the single-day expression, the ATI-R was more accu-
rate in estimating VWC under conditions of significant differences in solar radiation.
Both methods failed on cloudy days with insignificant soil heating.

(2) Under multiple heating processes with similar weather, ATI-R and ATI correlated
well with VWC on sunny days with similar solar radiation. At the same time, ATI-R
correlated better with VWC on cloudy days with differences in solar radiation than
ATI. ATI-R obtained more accurate estimates when estimating VWC on cloudy days
with a model with sunny-day data.

(3) The correlation between ATI-R and VWC was significantly better than that between
ATI and VWC when the combination of sunny and cloudy days was considered. In
contrast, the correlation between the two methods and VWC was almost zero, as long
as cloudy days with insignificant surface heating (∆T ≤ 3 ◦C, in this study, Figure 4b)
were considered.
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Comparison results of the ATI-R method with the ATI method showed that the ATI-R
method incorporating solar radiation measurements broadened the weather applicability
conditions of the method and improved the accuracy of multi-process VWC measurements.
Moreover, the ATI-R method can be used to estimate VWC under different weather condi-
tions (except overcast), which provides a new idea for farm-scale soil moisture monitoring.
The ATI-R method is currently only aimed at VWC measurements on bare soil in plains.
Although the possibility of applying it to low-vegetation cover scenarios is suggested, more
consideration should be given to VWC monitoring in vegetated areas, including medium-
and high-vegetation cover.
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