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Abstract: The rise in global average surface temperature has promoted the advancement of spring
vegetation phenology. However, the response of spring vegetation phenology to different temperature
parameters varies. The Mongolian Plateau, one of the largest grasslands in the world, has green-up
dates (GUDs) with unclear sensitivity to different temperature parameters. To address this issue, we
investigated the responses of GUDs to different temperature parameters in the Mongolian Plateau
grasslands. The results show that GUDs responded significantly differently to changes in near-surface
temperature (TMP), near-surface temperature maximum (TMX), near-surface temperature minimum
(TMN), and diurnal temperature range (DTR). GUDs advanced as TMP, TMX, and TMN increased,
with TMN having a more significant effect, whereas increases in DTR inhibited the advancement
of GUDs. GUDs were more sensitive to TMX and TMN than to TMP. The sensitivity of GUDs to
DTR showed an increasing trend from 1982 to 2015 and showed this parameter’s great importance to
GUDs. Our results also show that the spatial and temporal distributions of temperature sensitivity
are only related to temperature conditions in climatic zones instead of whether they are arid.

Keywords: sensitivity; grassland phenology; temperature; Mongolian Plateau; remote sensing

1. Introduction

Vegetation phenology is a sensitive indicator of global climate change [1]. The varia-
tions in spring phenology significantly impact the terrestrial ecosystem carbon cycle and
surface energy [2,3]. Previous studies have shown that higher temperatures advance green-
up dates (GUDs), especially in mid- to high-latitude regions [4–6], where temperature
trends vary widely [7]. The Mongolian Plateau grasslands (MPG) are located in the range
of 35◦–55◦N and are sensitive to climate warming [8,9]. In recent decades, the frequency
of summer droughts and winter chilling in the plateau has increased [10]. However, the
rates of change in climate variables have not been uniformly distributed across the plateau,
resulting in uneven changes [11]. These changes may alter interactions between ecosystem
components, leading to structural and functional changes among ecosystems [11]. With
the current trend of global warming, significant changes in phenology have been widely
observed. In particular, spring green-up advancements in response to a warming climate
have been detected in many studies employing ground observations [5,12] and satellite
data [13,14]. Temperature is considered to be the main factor affecting GUDs [15]. However,
there are significant variances among GUD responses to different temperature parame-
ters [16,17]. Over the past few decades, near-surface temperature maxima (TMXs) have
increased more rapidly than near-surface temperature minima (TMNs), and many studies
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have been conducted on the different effects of TMX and TMN warming on GUDs [18–20].
Some studies have shown that GUDs are mainly controlled by TMXs [21,22]. For example,
Piao et al. [23] and Fu et al. [24] suggested that spring phenology is triggered by TMX
instead of TMN by comparing the relative correlation strength of GUDs with TMXs and
TMNs in the Northern Hemisphere. However, other studies show that GUDs are mainly
related to TMN [25,26]. A study on the Tibetan Plateau found that the negative partial
correlation was stronger for its GUDs with winter TMNs than with TMXs [27]. These
findings suggest that GUDs have complex relationships with TMNs and TMXs [28]. In
addition, asymmetric warming also results in a smaller diurnal temperature range (DTR),
whereas in other regions, future climate change may increase the DTR [29], which will
make the GUDs’ responses to temperature more complex. Therefore, it is necessary to
quantify the intensity of GUD responses to different temperature parameters.

The sensitivity of vegetation phenology to climate change can be measured using the
linear regression coefficients of phenological parameters, which quantify their relationships.
The synchronization of vegetation phenology sensitivity with climate change reflects the
diverse responses of regional vegetation to climate. This sensitivity can determine the
buffering capacity of species or communities and their ability to adapt to climate change [30].
The sensitivity of GUDs’ responses to temperature determines the magnitude of future
climate warming [31]. Although the average phenology date in Europe has decreased by
3.4 DOY (day of year) per degree Celsius over the last three decades, the sensitivity of GUDs
to climate change on different time scales remains controversial [32]. Current research on
grasslands has focused on the effects of changes in mean temperature and precipitation
patterns on GUDs, whereas differences in the influence of different temperature parameters
on GUDs are still underdiscussed. The main objectives of this research were to (1) reveal the
temporal and spatial variations in GUDs in the MPG; (2) investigate how GUDs respond to
temperature in the MPG; and (3) quantify the sensitivity of GUDs to temperature.

2. Materials and Methods
2.1. Study Area

The Mongolian Plateau grasslands (MPG) are located in the arid–semiarid climate
zone of central Eurasia, which is considered to be sensitive to climate warming [8]. In this
study, the Mongolian Plateau is defined as the region consisting of Mongolia and the Inner
Mongolia Autonomous Region of China, with a total area of approximately 2.7 million km2,
an average altitude of more than 1500 m asl, and a population of approximately 28 million.

Here, we used the International Geosphere Biosphere Programme (IGBP) project’s
MCD12C1 dataset product to extract the study area’s data. The spatial resolution of
the data is 500 m for each year since 2000. The dataset can be downloaded from https:
//ladsweb.modaps.eosdis.nasa.gov/. This version was algorithmically updated to reduce
the uncertainty of individual years compared to the previous version (Collection 5). Because
land cover types have changed over the years, our study used the MCD12C1 dataset to
extract unchanged grassland areas from 2000 to 2015 to improve the reliability of the results.
The spatial distribution is shown in Figure S1.

2.2. Climate Dataset

The CRUts 3.25 dataset available for 1982–2015 with a temporal resolution of one
month and a spatial resolution of 0.5◦ [33] was utilized to calculate the TMN, TMX, TMP,
and DTR values. The dataset can be downloaded from The CEDA (Centre for Environmen-
tal Data Analysis) Archive (https://catalogue.ceda.ac.uk/), accessed on 1 September 2021.

2.3. Köppen–Geiger Classification

The response of the GUD to the diurnal temperature range (DTR), near-surface tem-
perature (TMP), near-surface temperature maximum (TMX), and near-surface temperature
minimum (TMN) was explored based on the Köppen–Geiger Classification climate zones
(Present and Future Köppen–Geiger Climate Classification Maps at 1 km Resolution Scien-
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tific Data, n.d.), accessed on 1 September 2021. As shown in Figure 1, the MPG is mainly
covered by arid climate zones (including BWk and BSk), accounting for 60.03% of the total
pixels; the cold climate zone (including Dwa, Dwc, Dfb, and Dfc) accounts for 36.29%;
and the polar climate zone (ET) accounts for 3.68%. Table S1 displays the description and
criterion for each climatic zone.
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2.4. GUD Extraction

Normalized difference vegetation index (NDVI) data are commonly used to extract
the characteristics of vegetation growth. In this study, 15-day NDVI data from the third-
generation Global Inventory Modelling and Mapping Studies Modelling Study (GIMMS3g)
dataset were used [34] (Pinzon & Tucker, 2014), which spanned from July 1981 to December
2015 with a spatial resolution of 8 km (https://ecocast.arc.nasa.gov/data/pub/gimms/),
accessed on 1 January 2021. These datasets are preprocessed by geometric correction and
radiometric correction and then optimized by cloud and cloud shadow screening and bad
line removal for daily and per-track images. Maximum value composite (MVC) technology
is utilized to form the final NDVI dataset. Therefore, it can provide a long time series
and a high-quality dataset that is suitable for detecting vegetation dynamics in mid- to
high-latitude regions.

First, missing values in the GIMMS3g NDVI dataset were filled. Then, the NDVI time
series of the MPG was reconstructed by the Savitzky–Golay (SG) filtering method [13,35,36].
The SG filtering method does not have strict requirements for sensor type or NDVI scale,
but rather for the original NDVI. In the third step, the dynamic threshold method was
applied to determine the annual GUD. The dynamic threshold method defines the number
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of days corresponding to the preset NDVI amplitude of the fitted curve as the GUD. Before
determination, the fitted NDVI curve must be standardized as follows:

Ratioday =
NDVIday − NDVImin

NDVImax − NDVImin

where Ratioday represents the threshold, and NDVIday, NDVImax, and NDVImin represent the
NDVI fitting values, maximum values, and minimum values on a certain pixel, respectively.
In our study, a threshold of 0.2 was used to estimate the GUD. That is, the date correspond-
ing to the curve reaching 20% of the NDVI annual amplitude within the year was taken as
the GUD.

2.5. Analysis

We used partial correlation coefficients to calculate the correlations between GUD and
other temperature variables for each preseason month in the MPG, with a confidence level
of 0.95. Since the GUD mainly occurred before 160 DOY, which is in the middle of June, we
selected the period of January to June as the preseason range. We calculated the correlation
coefficients between the GUD and each temperature variable from January to June to
determine the preseason length of each temperature variable that has the greatest influence
on the GUD. The preseason range usually extends from January of the current year to the
multiyear average GUD. A positive correlation here between the GUD and temperature
would mean that GUD is delayed as temperature increases (the GUD value becomes higher,
meaning later). The sensitivity of the GUD to temperature (ST) is often quantified by the
slope coefficient of a linear regression model, with GUD as the dependent variable and the
mean temperature in a defined period before the mean GUD as the independent variable.

3. Results
3.1. Distribution Pattern of the GUD

Generally, the GUD occurred between 130 and 160 DOY, accounting for 89.20% of
the MPG (Figure 2a). The GUD was later on the eastern and northwestern borders and
in the middle part of the study area. The GUD in the eastern barren area was generally
early. Furthermore, the GUD in the middle and western parts of the study area differed
from those in the nearby areas (Figure S2). In the past 34 years, 76.9% of pixels showed
significant advancement trends (Figure 2b). The Bwk climate zones showed a significant
delay trend. A similar delay trend was also found in the eastern area. Trends between
−0.5 days/year and 0.5 days/year account for more than 98% of the study area’s trends
(Figure S2).
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Regarding differences among the climatic zones, BSk, Dtc, Dwb, Dwc, and ET exhibited
significant advancement trends, with rates of 0.619, 0.576, 1.01, 0.911, and 0.377 days/decade,
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respectively (Figure 3). BWk displayed a clear delay trend, with a rate of 0.932 days/decade.
Dwa did not exhibit a discernible trend.
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Grassland. (The dots, blue line, and gray shadow represent the annual GUD values, linear trend, and
confidence interval, respectively, for each climatic region.)

3.2. Correlation between Temperature and GUD

The correlations between the GUD and preseason TMP, TMX, and TMN exhibited
comparable latitudinal divergence, with positive correlations observed in the middle MPG
and negative correlations observed in the north and south (Figure 4a–c). In contrast, for
69.33% of the pixels, DTR had a positive correlation with GUD (69.33%, Table 1).
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Table 1. The percentages of correlation relationships between the GUD and temperature parameters
in the Mongolian Plateau grasslands in each climate zone (%).

Climate Zone
TMP TMX TMN DTR

Postive Negative Postive Negative Postive Negative Postive Negative

BWk 61.84 38.16 65.59 34.41 58.76 41.24 42.41 57.59
BSk 37.51 65.49 43.56 56.44 33.54 66.46 66.7 33.3
Dwa 73.88 26.12 82.75 17.25 58.57 41.43 37.67 62.33
Dwb 19.57 80.43 28.69 71.31 15.47 64.53 84.35 15.65
Dwc 17.82 82.18 21.50 78.5 15.44 84.56 85.58 14.42
ET 35.83 64.17 36.83 63.17 34.71 65.29 64.92 35.08

In the BWk and Dwa climate zones, an increase in TMP, TMX, and TMN resulted
in a delay in GUD (Table S1). Conversely, an increase in DTR was more likely to cause
advancement of the GUD. In other climate zones, GUD generally advanced with an increase
in TMP, TMX, and TMN.

The GUD increased as the DTR decreased and as the TMP, TMX, and TMN increased
in all climate zones. In May and June, the GUD was mainly influenced by the DTR, while
in March, it was influenced by the TMP, and in January, it was influenced by both TMX and
TMN (Figure 5 and Table S2).
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3.3. Sensitivity of the GUD to Temperature

The GUD exhibited a stronger sensitivity to TMX and a weaker sensitivity to TMP in
the MPG. Figure 6 shows that an increase in TMP and DTR resulted in a delay in the GUD.
The GUD in the northern MPG was highly responsive to TMX and TMN, while that in
the western MPG was more sensitive to TMP. The sensitivities of the GUD to temperature
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(ST) varied across the different climate zones. The polar climate zone (ET) had the highest
sensitivity of the GUD to TMP (0.51 d/◦C). In the cold climate zone, the GUD became more
sensitive to TMX and TMN, in particular, TMN in Dwa (0.3 d/◦C) and TMX in Dwb and
Dwc (0.3 d/◦C, 0.31 d/◦C).
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The ST for each pixel from 1982 to 2015 was calculated using a 15-year moving window
(Figure 7) and the differences among climatic zones (Figure 8). The sensitivity to DTR and
TMP increased, while the sensitivity to TMP fluctuated (Figure 8). The GUD was most
sensitive to TMN, and this sensitivity increased after 2000. However, it was less sensitive to
TMP. The sensitivity of the GUD to DTR was much greater than that to TMX, TMN, and
TMP only during the periods of 1996–2010 and 2000–2014.
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The sensitivity changes in TMX and TMN were similar, changing from a decrease to
an increase in 1997. Different ST trends were observed among the climatic zones (Figure 9).
In cold zones, the GUD was more sensitive to temperature fluctuations than in warm zones.
As the temperature increased, the maximum ST decreased among the different climate
zones.
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According to the annual TMP, TMX, TMN, and DTR (Figure S3) and the ST changes
calculated using a moving window (Figure 8) from 1982 to 2015 in the Mongolian Plateau
grassland, we divided the data into two periods (1982–1996 and 2000–2015) to compare the



Remote Sens. 2023, 15, 3830 9 of 13

temporal differences among the climatic zones. The changes in sensitivity in ET to TMP
(0.63 d/◦C) and TMX (−0.71 d/◦C) were the greatest, followed by the change in sensitivity
to TMP (0.79 d/◦C) in Dwc. The changes in sensitivity to DTR in Dwb (0.53 d/◦C) and
Dwa (0.2 d/◦C) were smaller (Figure 9). However, the ST changes in each temperature
parameter were small in the arid climate zones (BSk and BWk). Our results suggest that
the GUD response to climate warming is still increasing in the MPG.

4. Discussion
4.1. Correlation between Temperature and the GUD

Both site observations and satellite observations suggested that TMX is the primary
determinant of the GUD in the Northern Hemisphere, although the pattern of GUD re-
sponse to different temperature parameters is more complex [21,23]. However, our study in
the MPG revealed that TMN in January had a more significant impact on the GUD than did
TMX, which was also observed in other plateaus, such as the Qinghai–Tibet Plateau [27].
Furthermore, the GUD in the MPG, which experiences perennial drought and scarce rainfall
(e.g., BWk), is limited by water deficits compared to that in areas with hot summers and
dry winters (e.g., Dwa) [37,38]. The increase in DTR, TMP, TMX, and TMN resulted in a
delay in the GUD in BWk. In other climate zones, a decrease could result in an advance in
the GUD.

TMX and TMN showed different relative importance to the GUD. Therefore, using
TMP to analyze the response of the GUD to temperature changes could not reflect the actual
influence of temperature on the GUD [23,39]. TMX contributed more to the advancement
of the GUD than did TMN. Heat accumulation is necessary for plant growth in temperate
regions [23,39]. Prior to the GUD, reaching the temperature threshold at night was more
difficult, resulting in the TMN contributing less to the requirement [23]. In addition to TMX
and TMN, DTR also affects the GUD in the MPG (Figure 10).
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Previous studies have shown that TMX has the most significant effect on the GUD in
the mid to high latitudes [40]. However, in our study, DTR was the main factor affecting the
GUD (Figure 10). This difference may be because other studies only compared TMX and
TMN. The GUD in BWk, Dwb, and Dwc was primarily controlled by DTR, while TMX and
TMN were more variable in these climate zones. TMX influences photosynthesis, whereas
TMN influences plant respiration. An increase in TMX allows vegetation to photosynthesize
and accumulate more nutrients, while organic matter decomposition slows down as TMN
decreases. Therefore, an increase in DTR promotes plant growth [23].

Vegetation in cold climate zones, such as ET and Dwa, is highly responsive to changes
in TMX. This may be because in spring, high TMX enables plants to sequester carbon and
capture heat [39]. TMN has a positive correlation with environmental humidity conditions
and has been observed to reduce water stress on plants [41]. For example, BSk, which has a
large DTR and low precipitation, is more susceptible to the effects of TMN.
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4.2. Sensitivity of the GUD to Temperature

The GUD is sensitive to TMP across the whole MPG. However, it is sensitive to
different temperature parameters when climate zones vary. This result suggests that large-
scale research may narrow the response of vegetation to climate change on small regional
scales.

On the one hand, the GUD is dominated by different temperature parameters in dif-
ferent climatic zones [42–44]. The diverse response of the GUD to temperature parameters
in various climate zones may lead to insignificant sensitivity results in large-scale research.
Higher ST was found in warmer areas in the 30◦–80◦N region, where the GUD showed an
advancing trend [45]. In addition, a higher ST was also found in subarctic, subarctic alpine,
and Arctic tundra belt regions than in warm, low-latitude regions. Similar results have
been found in the Northern Hemisphere [46]. Compared to that in warm/dry climates, the
proportional reduction in ST was greater in cold/wet climates [47]. Therefore, our study
can improve our understanding of the response of vegetation phenology to temperature
changes by using multiple indicators and climate zones.

On the other hand, some researchers have found that satellite monitoring may overlook
the response of different species to climate change [47], resulting in inconsistent ST at the
community and species levels [6,48]. In China, for every 1 ◦C increase in winter TMX, the
GUD advanced 0.46 days, while it advanced 0.24 days in temperate desert grasslands [49].
In addition, changes in community composition due to temperature changes can also lead
to changes in phenological sensitivity [50]. It is necessary to take the functional types of
substratum vegetation into account in long-term series studies.

The determination of the GUD is a trade-off between the growth strategies of reducing
growing risks and increasing resource utilization during the growing season [51,52]. Plants
growing under unstable spring temperature conditions will adopt a conservative pheno-
logical strategy to reduce their risk from climate change or natural disasters [53,54]. Higher
daytime temperatures could also exacerbate drought effects [55]. The arid climate zones
(BWk and BSk) are less affected by warming because the GUD is affected by water stress,
resulting in a lower sensitivity to temperature changes, but the potential mechanisms are
not yet clear. Therefore, the effects of water stress on vegetation growth in the MPG require
further investigation.

4.3. Limitations

Our study discusses the GUD in the context of a warming climate and explores the
effects of four different temperature variables on the GUD. However, BWk, which is the
most arid of all the climatic zones (described as desert by the Köppen–Geiger classification)
and close to barren landcover (Figure 3), is highly susceptible to desertification and other
influences, which could lead to significant differences in vegetation phenology to the other
climatic zones. The sensitivities of the GUD to each temperature variable are also similar
and may be influenced by other factors (e.g., water stress, landcover type, human activity,
or disturbances) (Figure 3). Therefore, pests, diseases, and human activities could also have
a large impact on the GUD. For example, grazing and fires can destroy vegetation and cause
a sharp decline in the vegetation index, increasing the uncertainty in the GUD [10]. It is
difficult to eliminate all disturbances over such a large area, which could lead to uncertainty.
Therefore, more factors need to be considered to reduce uncertainty in the results in future
research.

5. Conclusions

We found many associations between temperature parameters and the GUD in the
Mongolian Plateau grasslands. The spatial patterns of correlations between the GUD and
TMP, TMX, and TMN were similar, showing mainly positive correlations in the central part
of the MPG, where their increase led to advancing GUD in more than 60% of the MPG.
Conversely, the spatial pattern of GUD responses to preseason DTR was reversed.
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The GUD in the MPG showed mainly positive correlations with the DTR from January
to June, and its spatial pattern was opposite to those of TMP, TMX, and TMN. In other
climate zones, the GUD generally advanced with decreasing DTR and increasing TMP,
TMX, and TMN, except for in BWk and Dwa. The GUD was more likely to be affected by
TMP in March, TMX in January, TMN in January, and DTR in May and June.

The GUD in the MPG was more sensitive to TMX and TMN than to TMP, and the
sensitivity of the GUD to DTR showed a steady increasing trend over the past three decades.
Both the spatial and temporal patterns of ST differed across the climate zones, with greater
variation in ST in colder regions than in warmer regions. However, in the arid climate
zones, due to water stress, the sensitivity of each temperature parameter was small, without
significant change. Therefore, how water stress affects plant growth should be investigated
in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15153830/s1, Table S1: Köppen–Geiger climate classes; Table S2:
The percentages of correlation relationships between the GUD and temperature parameters in the
Mongolian Plateau grasslands in each month (%); Figure S1: Landcover types based on MCD12C1 of
the Mongolian Plateau; Figure S2: The mean value (upper) and trend (below) of the GUD and its
changes with latitude in the Mongolian Plateau in 1982–2015; Figure S3: Annual TMP, TMX, TMN,
and DTR (b) from 1982 to 2015 in the Mongolian Plateau grasslands.
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