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Abstract: Nitrogen is crucial for plant physiology due to the fact that plants consume a significant
amount of nitrogen during the development period. Nitrogen supports the root, leaf, stem, branch,
shoot and fruit development of plants. At the same time, it also increases flowering. To monitor
the vegetation nitrogen concentration, one of the best indicators developed in the literature is the
Normalized Difference Nitrogen Index (NDNI), which is based on the usage of the spectral bands
of 1510 and 1680 nm from the Short-Wave Infrared (SWIR) region of the electromagnetic spectrum.
However, the majority of remote sensing sensors, like cameras and/or satellites, do not have an
SWIR sensor due to high costs. Many vegetation indexes, like NDVI, EVI and MNLI, have also been
developed in the VNIR region to monitor the greenness and health of the crops. However, these
indexes are not very well correlated to the nitrogen content. Therefore, in this study, a novel method
is developed which transforms the estimated VNIR band indexes to NDNI by using a regression
method between a group of VNIR indexes and NDNI. Training is employed by using VNIR band
indexes as the input and NDNI as the output, both of which are calculated from the same location.
After training, an overall correlation of 0.93 was achieved. Therefore, by using only VNIR band
sensors, it is possible to estimate the nitrogen content of the plant with high accuracy.

Keywords: agriculture; land cover; remote sensing; fertilizer; yield

1. Introduction

Numerous physiological activities in leaves, including photosynthesis, respiration, and
transpiration, are primarily regulated by nitrogen [1–3]. Nitrogen is also closely related to
chlorophyll concentration, light utilization efficiency, and net crop production [4–6]. In ad-
dition to frequently being a limiting factor for plant growth [7–9], nitrogen is a crucial input
in the cycle of ecological processes [10,11]. Leaf nitrogen content has also been suggested as
one of the crucial biodiversity variables for the monitoring of the progress towards the Aichi
Biodiversity Targets by the remote sensing and ecology communities, who acknowledge
the significant role of leaf nitrogen in biodiversity and ecosystem functioning [12,13].

Despite being a relatively minor element of leaves (up to 6.5–7%), nitrogen has been
reliably recovered using leaf- and canopy-level hyperspectral data [14,15]. By offering
contiguous, narrow spectral band data, hyperspectral data can be used to identify the
nitrogen’s small absorption properties. Compared to the conventional destructive sample
procedures, this provides an effective and economical way to assess leaf nitrogen. The
spectra from leaf powder, dry leaves, and fresh leaves were employed in previous re-
search on the determination of nitrogen concentration in vegetation, as well as estimates
at the canopy level [16–18]. The mask of the significant water absorption [17,19], the
confounding effects coming from the canopy structure, illumination/viewing geometry,
and background [20,21], and other obstacles make it difficult to retrieve nitrogen at the
canopy level.

Based on the previous studies conducted in the literature to estimate the nitrogen
content of the plant, the contributions of this study are as follows:
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- Using the radiance values provided by Hyperion data directly without applying any
atmospheric correction.

- Developing a proper deep model which transforms VNIR-only vegetation indexes to
NDNI with a high correlation.

- Removing the necessity to have high-cost special cameras like SWIR to measure the
nitrogen content of the crop.

- Enabling the farmers to follow the nitrogen content of the crop progressively and
decide when to/not to fertilize.

2. Related Work

To improve the nitrogen content estimation performance, numerous methods have
been employed. One method is spectral transformation, which includes employing
first/second derivatives and reflectance log transformation [22,23]. There are also other
studies, which include continuum removal [17,24], water removal [25,26], and wavelet
analysis [27]. Numerous studies have been proposed to estimate the nitrogen content
over forests [18,23,28–30], grasslands [31–33], and crop ecosystems [34–36]. A variety of
artificial intelligence techniques, including support vector regression, neural networks,
and Bayesian model averaging [32,36,37], as well as traditional regression techniques like
stepwise multiple linear regression and partial least square regression, are used to retrieve
nitrogen concentration.

Vegetation indices are one of the simplest and most popular empirical methodologies
for estimating the biochemical content of leaves, including the nitrogen level. The main
sources of nitrogen in leaf cells are proteins and chlorophylls [38]. Since there is a strong
correlation between nitrogen and chlorophyll in a variety of species [1,2,39], nitrogen has
been estimated using vegetation indices which are proposed and used for chlorophyll
estimation [40]. For measuring chlorophyll, spectral wavelengths around 550 nm and
700 nm, as well as the red-edge area (680–780 nm), have been used [35,41], leading to a
significant variety of indices [42–44]. In contrast to chlorophyll, there are fewer studies that
offer particular indices for nitrogen estimate; the majority of these indices were established
for crops [45–48], while just a small number were developed for forests [49].

Given that canopy structure is the primary cause of changes in canopy reflectance,
the calculation of foliar nitrogen using canopy spectral data is complicated. According to
the study in [7], the NIR reflectance (800–850 nm) and canopy foliar mass-based nitrogen
concentration (%N) have a significant association that can be utilized to predict nitrogen,
and in [50] the researchers pointed out the association between NIR reflectance and canopy
structure. The study in [51] suggested that the biological associations between nitrogen and
structural characteristics that affect NIR scattering and reflectance served as the foundation
for their ideas. Additionally, in [14,52], scientists indicated that the canopy structure and
leaf characteristics may co-vary among plant functional types, contradicting the study
in [53], which claimed that the %N-NIR correlation is inherently false.

The purpose of the study in [54] was to assess how well 32 vegetation indicators
collected from airborne hyperspectral imaging performed when used to calculate canopy
foliar nitrogen in a mixed temperate forest. For comparison, the widely used partial least
squares regression was carried out. These vegetation indicators can be divided into three
groups, most of which are connected to the biochemical and structural characteristics of
vegetation (e.g., nitrogen, chlorophyll, and leaf area index (LAI)). The nitrogen indicators
are selected based on how nitrogen absorption characteristics’ physical underpinnings
affect canopy reflectance. The biological connections between nitrogen, chlorophyll, and
canopy structure were used to justify the inclusion of the structural and chlorophyll indices
in this study. Nitrogen (N) losses and the ensuing environmental issues are what define
the production of vegetable crops [55–57]. The most frequent environmental issues include
nitrous oxide (N2O) emissions, ground and surface water contamination, and the eutrophi-
cation of surface waters [58,59]. These issues are frequently a result of the extensive use of
N fertilizer [60], which typically exceeds the requirement of the crops [57,61,62], which is
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performed to ensure optimal growth and production. In order to decrease N contamination
of water bodies by intensive vegetable production, it is necessary to understand crop
nitrogen requirements and match crop demand with nitrogen supply [57,63,64].

There are numerous techniques available for tracking crop nitrogen status [57,65]. Leaf
nutritional analysis is a common method, but it is time-consuming and labor-intensive
in the lab, and it typically cannot quantify the temporal and geographical variability of
nitrogen status [66,67]. These are significant drawbacks, since it is much easier to match
the supply of nitrogen to crop requirements when one is aware of the temporal and spatial
variability of crop nitrogen status [68].

Optical sensors are tools that quickly, accurately, and nondestructively monitor the
crop’s nitrogen status in the field [57,69]. They make it possible to regularly evaluate a
crop and evaluate spatial variability. Canopy reflectance sensors, which are among the
proximal optical sensors, have two highly advantageous characteristics in that they can
monitor huge portions of a crop while they are in motion [70]. Field crops’ nitrogen status
can be evaluated via measures of crop reflectance [65]. These measures are based on
the differential reflection of light wavelengths [57], which, depending on crop nitrogen
status [69], are absorbed and reflected by the crop in varying amounts. Typically, red, green,
and near-infrared light wavelengths are employed for nitrogen estimation [65]. Recently,
the red edge has been suggested as a solution for nitrogen estimation of the red band’s
apparent saturation [71,72].

The nitrogen nutrition index (NNI) [67,73] is another commonly utilized strategy.
The critical crop nitrogen content [74,75] is the lowest crop nitrogen content required
for non-limiting growth, and it is used to calculate the NNI by dividing the actual crop
nitrogen content by it. Any variation from 1 indicates either excess nitrogen (i.e., NNI > 1)
or insufficient nitrogen (i.e., NNI1) crop status, with values of NNI equal to 1 indicating
adequate nitrogen feeding [76].

Due to the high cost of SWIR band sensors, a regression-based method should be
developed which maps the VNIR band indexes to SWIR band indexes. The majority of
studies have been performed on cereal crops [77,78] like wheat [12,79] and rice [80–82];
very few have been carried out on vegetable crops like sweet pepper.

In [83], the crop nitrogen status of sweet pepper was estimated using eight vegeta-
tion indices that were computed from canopy reflectance data taken with two separate
proximate sensors. First, crop NNI calibration regression models were fitted for each vege-
tation index. Second, a different dataset was used to validate these regression equations.
Thirdly, sufficient values for each vegetative index for optimal nitrogen nutrition, for the
main phenological stages of sweet pepper crops, were obtained utilizing the validated
equations between vegetation indices and crop NNI.

The findings of the study [84] supported the use of the normalized difference vegeta-
tion index (NDVI) as a useful tool for determining the nitrogen status of cotton leaves at
various growth stages. Using vegetation indices, the study in [85] calculated the nitrogen
nutrition index (NNI), canopy nitrogen density (CND), and leaf nitrogen content of winter
wheat over the course of the entire growth period. This study demonstrated that the correla-
tions between each nitrogen index and the Vogelmann red-edge index (VOG), simple ratio
pigment index (SRPI), modified red-edge simple ratio index, and red-edge position based
on the linear interpolation method (REPliner) were not significantly influenced by growth
period, and the estimation model R2 for CND was higher than 81%. The estimation model’s
accuracy was higher than NNI; however, it would become saturated if CND was calcu-
lated using just one vegetation index. The red-edge chlorophyll index, CIred-edge, was
demonstrated by [86] to be responsive to the canopy structure. The correlation between the
nitrogen content of cotton leaves and several spectral ratio measures was examined in [87],
who also conducted a cluster analysis based on prediction accuracy and overall accuracy.

The ratio of the red-edge position to the near-infrared band was shown to have a
pretty high prediction accuracy and overall accuracy. The estimation of the winter wheat
spectral index was investigated by [88] in a variety of environments, seasons, varieties, and
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growth stages. According to their findings, the growth stage had a significant impact on
the performance of various vegetation indices and the choice of a sensitive wavelength for
plant nitrogen concentration (PNC) estimation. The simple ratio of reflectivity at 370 nm
and 400 nm (R370/R400) displayed the most consistent estimation accuracy in an indoor
experiment (R2 = 0.58) and field experiment (R2 = 0.51). According to the studies, there
are obvious changes in the relevant spectral index for different crops, or for various kinds
and ecological zones of the same crop, when employing the spectral index to estimate crop
nitrogen [89,90].

Additionally, compared to employing sensitive spectral features alone or vegetation
indexes, modeling techniques like deep machine learning can produce greater prediction
effects [91]. These techniques can also be used to monitor agricultural nutrients and growth
indicators [92–94]. Support vector machine regression (SVR) was shown to be the most ef-
fective method for assessing crop nutrient contents in [95], which evaluated artificial neural
network and SVR methods. The authors proposed that the creation of models with large
sample sizes is appropriate for an artificial neural network. The hyperspectral reflectance
of leaves was used in [90] to study the generalized partial least-squares regression (PLSR)
model, and this approach was successful in retrieving leaf nitrogen concentration (r = 0.85).

The study in [96] is based on data for two types of drip-irrigated cotton at various
growth stages from April 2019 to September 2020. The data include canopy nitrogen
density (CND) and leaf nitrogen concentration (LNC) values. Pearson’s correlation anal-
ysis was used to determine which of the thirty hyperspectral vegetation indexes and the
two nitrogen indexes (LNC and CND) that were used in the three modeling techniques of
simple multiple linear regression (MLR), PLSR, and support vector regression (SVR) were
relatively stable. The models were employed to investigate the possibility of measuring the
nitrogen nutrient status of cotton in each growth period based on a multi-vegetation index
in order to give a theoretical background for the application of remote sensing technology
in cotton nutrition monitoring and diagnostics.

The nitrogen attitude of paddy rice was studied in [97], including plant nitrogen
content (PNC), leaf nitrogen content (LNC), plant nitrogen accumulation (PNA), and
leaf nitrogen accumulation (LNA). The data used in this study were collected by using a
hyperspectral camera integrated to an unmanned aerial vehicle (UAV). The results handled
in this study report that the correlation between the nitrogen traits and biochemical traits,
canopy chlorophyll content, leaf chlorophyll content and aboveground biomass, depend
on the growth stage of the crop.

The study in [98] fused the information from different sensors and developed new
spectral indices based on a coverage-adjustment and estimated the content of leaf nitrogen
of maize in different stages of the growth. According to the results, CASIs perform better
than the traditional vegetation indices.

According to the results of the study in [99], which developed an estimation method
of potato nitrogen, combining the visible light vegetation indexes and plant morphological
properties provides a better estimation of nitrogen, since by using multiple linear regression
methods it achieves a 0.79 R2 score.

Researchers developed a new method in [100] which extracts the leaf region from
the color images and computes the color similarity between the extracted leaf with some
predefined color information. In particular, a green color intensity was used for the reference
of nitrogen content. The proposed method was tested on a Spinacia oleracea dataset and
results showed that there exists a high correlation between the laboratory analysis and the
analysis of the color images.

3. Materials and Methods

Image data of the Hyperion sensor were used in this study. As a push-broom hy-
perspectral instrument, Hyperion is housed on the EO-1 satellite, which is depicted in
Figure 1.
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Figure 1. EO-1 Satellite View [101].

With a 10 nm bandwidth spanning from 357 nm to 2576 nm, it collects 220 different
spectral channels. All bands have a spatial resolution of (30 × 30) m2. The VNIR band,
SWIR band, and VNIR-SWIR band indices can all be estimated from the same image
data because Hyperion includes both the VNIR and SWIR bands. There is no need for a
geometric correction because the Hyperion images have already been rectified geometrically.
In addition, no atmospheric correction is applied to the data. This is due to the fact that
atmospheric correction tools are not free to use, so, bring high financial costs. In addition,
they cannot achieve a perfect correction, which produces incorrect reflectance values among
the pixels and affects the results negatively. The properties of the Hyperion sensor are
given in Table 1.

Table 1. Hyperion sensor parameters.

Parameters Hyperion Sensor Details

Spectral range 400–2500 nm

Spatial resolution 30 m

Radiometric resolution 12 bits

Swath width 7.5 km

Spectral resolution 10 nm

Spectral coverage Continuous

Number of rows, columns, bands 3271, 871, 220

Different test images were collected from Hyperion data on the Harran region based
in the south-west of Turkey. Google Earth and Earth explorer views of Harran and the
Hyperion image are shown in Figure 2.

The Harran Plain is a region that starts from the southeast of the city of Şanlıurfa and
extends to the Syrian border. It is a plain with very fertile soil. It is located between the
36◦43′–37◦08′N parallels and 38◦57′–39◦55′E meridians in the Upper Mesopotamian area
of Şanlıurfa province.

In the main, corn and cotton farming is carried out. In the Harran Plain, under the
influence of the Mediterranean climate, the continental climate is dominant. Winters are
cold and rainy, and summers are very hot and dry. Annual precipitation is 365 mm, annual
evaporation is 1848 mm, and annual average temperature is 17.2 ◦C.
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Figure 2. Google Earth view of Harran (top) and Earth Explorer view of Hyperion (color image) (bottom).

The Hyperion image downloaded from Earth Explorer covers roughly 900 km2, which
is both required and sufficient to investigate the reliability of the proposed method. The
QGIS Geographic Information Software Tool was used to determine the area of the Hyper-
ion images [102]. Figure 3 shows the image data taken from the Harran region, in which
a large amount of corn, cotton and wheat planting is undertaken by farmers. The image
acquisition time was 8 August 2016, when the crop was dense and mature. The image’s
latitude and longitude values and the scale of the map are given on the figure as well.
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Figure 4 shows a drone camera view and a ground image of a region from Harran
taken in July 2019.
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In the Harran region, to show the vegetation density and the spreading over the area,
an NDVI estimation was first applied. The Hyperion image and the resulting NDVI index
map are shown in Figure 5. The Hyperion image has a spatial resolution of 3241 × 1241,
totaling 4,022,081 pixels, where 2,859,262 pixels are the black regions surrounding the
target region. Therefore, the vegetation index analysis is implemented on 1,162,819 pixels.
Each pixel corresponds to 30 × 30 m2 ground area. By recalling that NDVI values can be
changed from −1 to 1, in Table 2 it can be seen that the number of pixels with a high NDVI
value, like >0.75, was lower, relatively speaking. An important reason for this is the ground
spatial resolution of the Hyperion sensor, in which one pixel covers 30 × 30 m2. This is,
relatively, a large area in which spectral mixing occurs, and therefore the spectra of soil,
water and vegetation is mixed, which may reduce the NDVI indices [104]. Nonetheless, the
data are powerful and exhibit a good distribution, which enables an accurate analysis of
vegetation indices.

Table 2. Number of pixels falling in specific intervals of NDVI values.

NDVI < 0 0 ≤ NDVI < 0.25 0.25 ≤ NDVI < 0.5 0.5 ≤ NDVI < 0.75 0.75 ≤ NDVI < 1

447,396 193,177 214,010 269,860 49
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Figure 5. Hyperion image and NDVI Map for Harran. (a) Hyperion color image (b) NDVI Map.

To increase the accuracy, the pixels with NDVI values higher than 0.2 were taken into
account. This is due to the typical vegetation pixel having an NDVI greater than 0.2.

The study in [105] states that NDNI can be used effectively for the estimation of
the nitrogen content of the vegetation. Since, in this study, we develop a deep model
which established a correlation between VNIR band vegetation indices and NDNI, the
most important vegetation indices which hold information about the nitrogen content
of the plants were estimated. These indices are NDVI [106], GNDVI [107], EVI [108],
GOSAVI [109], GSAVI [109], MCARI2 [110], and VREI2 [111]. To establish the correlation,
NDNI [112] was estimated as well. Table 3 shows the corresponding indices, the bands or
wavelengths, and the equations which were used to estimate them.

Table 3. Vegetation indices, bands or wavelengths and equations.

Index Bands and/or
Wavelengths Equation for Estimation

NDVI [106] NIR, RED NIR − Red
NIR + Red

GNDVI [107] NIR, Green NIR − Green
NIR + Green

EVI [108] NIR, Green, Blue 2.5 ∗ NIR − Red
NIR + 6 ∗ Red − 7.5 ∗ Blue + 1

GOSAVI [109] NIR, Green NIR − Green
NIR + Green + 0.16

GSAVI [109] NIR, Green 1.5 ∗ NIR − Green
NIR + Green + 0.5

MCARI2 [110] ρ800, ρ670, ρ550
1.5 ∗ [2.5(ρ800 − ρ670) − 1.3(ρ800 − ρ670)]√

(2 ∗ ρ800 + 1)2 − (6 ∗ ρ800 − 5 ∗ √ρ670) − 0.5

VREI2 [111] ρ734, ρ747, ρ726, ρ715
ρ734 − ρ747
ρ715 + ρ726

NDNI [112] ρ1510, ρ1680
log
(

1
ρ1510

)
− log

(
1

ρ1680

)
log
(

1
ρ1510

)
+ log

(
1

ρ1680

)

The black regions on the Hyperion data were excluded first. Then, each vegetation
index was estimated for the pixels left. N was the number of pixels in each index map, and
a vector of index values was created, as shown in Equation (1), where Mapvi was the index
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map of the corresponding vegetation index and indexi was the estimated index value at
pixel i.

Mapvi = [index1, index2 . . . indexN ] (1)

Then, new index data were created, as shown in Equation (2), where Iv.i.ab was the
estimated index for the (b). pixel of vegetation index (a). (i.e., 3rd pixel of NDVI map).

data =

 Iv.i.11 · · · Iv.i.1N
...

. . .
...

Iv.i.M1 · · · Iv.i.MN

 (2)

Since this study uses 7 vegetation indices from the VNIR region, a total of 7 Mapvi
were created at the beginning. Therefore, the size of the data matrix was (7 × 1,162,819).
After handling the data matrix, a further analysis was carried out.

- Due to the division by 0, some index values were calculated as infinite and/or
NaN. Therefore, those kinds of pixels were found and the corresponding column
was deleted.

- Another analysis was also carried out for the pixels with an abnormally large vegeta-
tion index. Therefore, the index values which had an absolute value above 5 were also
deleted from the data.

- Finally, 1,113,529 pixel values were used, and to normalize the effect of the environ-
ment at the time of the capturing, each index row in the data was normalized between
−1 and 1. To normalize the data, the normalize function of Matlab was used with a
‘range’ parameter.

Similarly, the above operations were also applied on the NDNI Map. Finally, the input
data had the shape of (7 × 1113529) and the output data had (1 × 1113529).

To train a model which matches the input data to the output data, Matlab deep learning
toolbox [113] was used. By using this tool, a deep neural network was designed with
4 dense (hidden) layers, each with 25 neurons. Figure 6 shows the designed neural network.
The number of input neurons was 7 due to the shape of the input data and 1 for output,
hence that was the NDNI index value.
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Figure 6. Feed forward deep neural network (proposed).

Data were split into train, validation, and test datasets with the default ratio of
0.7:0.15:0.15. The number of epochs was set as 1000. Training function and adaption
learning functions were set as TRAINLM (Levenberg–Marquardt) and LEARNGDM.
LEARNGDM is a gradient descent algorithm with momentum. The cost can be pushed
farther to go around a saddle point by adding a momentum element to the gradient descent,
even if the current gradient is insignificant. The performance function is MSE. Training was
carried out on CPU on a Windows PC with 8 GB Ram and an 11th Gen Intel(R) Core(TM) i7-
1165G7 @ 2.80 GHz processor. The reason not to use GPU was that in Matlab, the TRAINLM
function is not supported.

The Levenberg–Marquardt [114] technique, which was developed for minimizing
functions that are sums of squares of nonlinear functions, is derived from Newton’s
method [115]. The Levenberg–Marquardt algorithm is designed to minimize sum-of-
square error functions of the form (3). In (3), errk is the error in the kth instance and err is
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a vector with element at k. A Taylor series can be used to expand the error vector to first
order if the difference between the old and new weight vectors is modest.

E =
1
2∑ k(errk)

2 =
1
2
‖err‖2 (3)

err(j + i) = errj +
∂errk
∂wi

(w(j + 1)− w(j)) (4)

As a result, the error function can be expressed as

E =
1
2

∥∥∥∥err(j) +
∂errk
∂wi

(w(j + 1)− w(j))
∥∥∥∥2

(5)

After minimizing the error function with respect to the updated weight vector, (6) can
be written.

w(j + 1) = w(j)− (Z TZ
)−1

ZTerr(j) (6)

where
Zki ≡

∂errk
∂wi

(7)

Since the Hessian for the sum-of-square error function is as shown in (8),

Hij =
∂2E

∂wi ∂wj

+ ∑ {(
∂errk
∂wi

)

(
∂errk
∂wi

)
+ errk(

∂2errk
∂wi∂wi

)} (8)

By ignoring the second term, Hessian can be written as:

H = ZTZ (9)

For nonlinear networks, updating the weights therefore entails the inverse Hessian.
Since the Hessian is based on first order derivatives with respect to the network weights,
which can be easily handled by back propagation, it can be calculated rather quickly.
Although iterative application of the updating formula to reduce the error function is an
option, this may provide a step size that is too big, invalidating the linear approximation
that the method is based on.

The Levenberg–Marquardt approach minimizes the error function while maintaining
a small step size to guarantee the accuracy of the linear approximation. Utilizing a form’s
customized error function allows for this.

E =
1
2

∥∥∥∥err(j) +
∂errk
∂wi

(w(j + 1)− w(j))
∥∥∥∥2

+ α‖(w(j + 1)− w(j))‖2 (10)

where α is a parameter adjusting the step size. When the modified error is minimized with
respect to w(j + 1), (11) is handled.

w(j + 1) = w(j)− (Z TZ + αI
)−1

ZTe(j) (11)

With very large values of α, Levenberg–Marquardt approaches standard gradient
descent, whereas for very small values of α it approaches the Newton method.

This study aims to investigate the relation between VNIR-only vegetation indexes and
NDNI. For that purpose, linear regression was employed by using a deep neural network.
Linear regression can be explained as follows:

Y = a + bX + ε (12)
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where

a =
(∑ y)

(
∑ x2)− (∑ x)(∑ xy)

n(∑ x2)− (∑ x)2 (13)

b =
n(∑ xy)− (∑ x)(∑ y)

n(∑ x2)− (∑ x)2 (14)

In Equation (12), Y is the dependent (outcome) variable, a is y-intercept, b is the slope
of the regression line, X is the independent variable, and ε is the error term. The calculation
of linear regression includes 3 steps:

1. First, the values of formula components a and b are found by using ∑ x, ∑ y, ∑ xy,
and ∑ x2;

2. Then, the values derived in the first step are substituted into a and b;
3. Finally, a and b values are used with the formula Y = a + bX + ε to establish the linear

relationship between X and Y variables.

Since a deep neural network is used in this study, the calculation is performed by the
neural network tool defined in Matlab and linear regression is employed.

4. Results

Regression and loss plots are given in Figures 7 and 8, respectively, for training,
validation, test, and overall data. The R2 values for test and validation data are above 0.91
and 0.93, respectively, which is very promising. Similarly, the MSE loss values are all below
10−4. The best validation loss score is 7.01 × 10−5, which means 70 over 1 million. As can
be observed from Figure 7, although the number is low, there are some outlier values which
do not fit the regression line. They are the points which are far from the regression line and
whose correlation error is generally high. Therefore, the outliers affect the regression score
negatively. Those points are generally the anomaly points/regions in the flat areas. The
best validation score was achieved at epoch 124, and therefore the training was stopped at
epoch 130.
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Figure 8. Loss (MSE) for training, validation, test and all data.

The regression equations between input and output handled for training, validation,
test and all data are given in Table 4.

Table 4. Regression equations between output and target.

Data Equation for Estimation

Training Output = 0.87 ∗ Target + 0.0066
Validation Output = 0.89 ∗ Target + 0.0059

Test Output = 0.83 ∗ Target + 0.0089
All Output = 0.87 ∗ Target + 0.0069

Various machine learning methods based on regression were also trained and tested.
In Table 5, the best regression scores handled are given for comparison with the proposed
method. It can be obviously seen from the table that the proposed method achieves the
best and superior results compared to all other methods.

Table 5. Benchmark of the proposed method with various regression models.

Method Regression Score (R2)

Linear Regression −0.29
SVM Regression 0.15

Gradient-boosted decision trees (GBDT) 0.37
Random Forest Regressor 0.46

Stochastic Gradient Descent (SGD) 0.35
PLSRegression 0.36

Proposed 0.91

Ablation Study

In this study, a deep neural network was employed to investigate the correlation
between VNIR-Only vegetation indexes and the NDNI index. For this purpose, various
combinations of different networks on normalized and/or unnormalized data were tried.
Figure 9 shows the regression results when the depth of the network was reduced to
two deep layers and data were normalized. Even if test score was improved a bit, validation
and all data scores were not good as the proposed network.
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Figure 10 shows the regression result for two deep layers on unnormalized data, which
were worse and unbalanced among training, validation and test data. Therefore, when the
network is not deep enough, normalization of the data is crucial.
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When the depth of the network is kept and data are not normalized, similar regression
results to the proposed network can be seen (Figure 11). However, the results are still a bit
better when the data are normalized. In addition, when the data are normalized, the depth
of the network can be reduced to two with very little and tolerable reduction in accuracy.
In this way, the response time of the network to new data can be reduced, which is crucial
for near real-time and/or real-time applications.
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Various neural networks with different numbers of deep layers and neurons were
trained with the normalized data, and the obtained regression scores for training, validation,
test, and all data are given in Table 6. The best scores are colored in red and the second-best
scores are colored in blue. As (#L, #N) shows the number of deep layers and neurons
at each deep layer, (4,15) includes the three best scores; however, the validation score is
low. Similarly, (5,15) includes the three best scores; however, the test score is low. (3,25)
and (4,25) have the three best scores, and the total score of (4,25) was above (3,25). Other
different combinations had two best/second-best scores, one best/second-best score or no
best/second-best scores. Therefore, in this study, the combination of (4,25) is proposed.

After training the network with (4,25), the trained model was tested on the Hyperion
image. Figure 12 shows the difference image between NDNI and the estimated NDNI
with the proposed neural network. It can be observed from the figure that the difference
between the estimated and actual NDNI is very low, especially for the regions where the
vegetation density is high and farming is being carried out actively.



Remote Sens. 2023, 15, 3898 16 of 22

Table 6. Regression scores obtained by training various neural networks.

Number of Deep Layers Number of Neurons Regression Scores
(Train-Validation-Test-All)

2 10 0.93-0.90-0.85-0.91
3 10 0.93-0.92-0.91-0.92
4 10 0.93-0.91-0.92-0.93
5 10 0.93-0.93-0.90-0.93
2 15 0.92-0.92-0.88-0.91
3 15 0.93-0.91-0.90-0.92
4 15 0.95-0.89-0.93-0.94
5 15 0.94-0.94-0.87-0.93
2 20 0.93-0.92-0.91-0.92
3 20 0.93-0.88-0.91-0.92
4 20 0.95-0.92-0.89-0.94
5 20 0.91-0.92-0.90-0.91
2 25 0.91-0.91-0.92-0.91
3 25 0.94-0.90-0.92-0.93
4 25 0.94-0.93-0.91-0.93
5 25 0.92-0.88-0.89-0.91
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5. Discussion

In this study, the correlation between VNIR-only indexes and the NDNI index was
investigated and a deep neural network was trained to establish that correlation. The
results show that there exists a high correlation between them. The most important con-
tribution of this study is proving that the VNIR-Only band vegetation indexes have a
high correlation with NDNI, which is calculated by using the SWIR band region of the
electromagnetic spectrum. Results show that when VNIR-only indexes are chosen and
combined properly and used as the input for a deep neural network, it is possible to
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establish a high correlation. In this way, researchers and the farmers do not need to use an
SWIR band camera, which generally means a high cost for them. By using a VNIR-Only
band multispectral/hyperspectral camera and/or satellite, it is possible to estimate the
nitrogen content of the plant progressively with a high accuracy. This will enable farmers
to detect the regions with high and/or low amounts of nitrogen, so that they can reduce or
increase the fertilization specific to different regions in a field.

To this point, the vegetation index studies in the literature have been based on either
a single electromagnetic region (like VNIR) or multiple regions (VNIR-SWIR). The most
important improvement of this study is in investigating and establishing the correlation
between VNIR-only vegetation indexes and the NDNI index. So, without using any SWIR
band cameras and/or satellites, it can be possible to estimate the nitrogen content easily
and with high accuracy and very little loss. The bands used in this study from the VNIR
region were Red, Green, Blue, NIR, 550 nm, 670 nm, 715 nm, 726 nm, 747 nm, 734 nm, and
800 nm of Hyperion image data. As is given in detail in the results section, the correlation
(r2) values were handled above 91% for the training, validation, and test data by using the
proposed deep neural network.

6. Conclusions

In this study, an NDNI index which can be calculated by using SWIR bands from the
electromagnetic spectrum was estimated by using a proper combination of VNIR band
indexes. Seven different vegetation indexes were used as the input and NDNI was used
as the output (target) in the training. As a result, very high accuracy was achieved since
the correlation for target data was achieved above 91%. Therefore, by using the proposed
network, the researchers can estimate the nitrogen content of the plant with respect to
NDNI without the calculation of NDNI. SWIR band cameras are generally expensive
and not easy to access. Therefore, the most important contribution of this study is in
removing the necessity to have an SWIR band camera and atmospheric correction tool to
estimate the nitrogen content. In addition, by using the VNIR-only vegetation indexes
which are proposed in this study, a specific camera which has the capability of estimating
the nitrogen content directly can be produced in the future. It can be used either standalone
or by integrating on a satellite. When it is used standalone, the real-time tracking of the
nitrogen content of the vegetation can be achieved. This study employs a deep neural
network to achieve that purpose. In addition, the Hyperion data used in this study and the
trained network are shared at https://github.com/ycimtay/VNIR_to_NDNI (accessed on
3 July 2023).
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