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Abstract: Unmanned aerial vehicle (UAV)-based aerial images have enabled a prediction of various
factors that affect crop growth. However, the single UAV system leaves much to be desired; the time
lag between images affects the accuracy of crop information, lowers the image registration quality
and a maximum flight time of 20–25 min, and limits the mission coverage. A multiple UAV system
developed from our previous study was used to resolve the problems centered on image registration,
battery duration and to improve the accuracy of crop phenotyping. The system can generate flight
routes, perform synchronous flying, and ensure capturing and safety protocol. Artificial paddy plants
were used to evaluate the multiple UAV system based on leaf area index (LAI) and crop height
measurements. The multiple UAV system exhibited lower error rates on average than the single
UAV system, with 13.535% (without wind effects) and 17.729–19.693% (with wind effects) for LAI
measurements and 5.714% (without wind effect) and 4.418% (with wind effects) for crop’s height
measurements. Moreover, the multiple UAV system reduced the flight time by 66%, demonstrating
its ability to overcome battery-related barriers. The developed multiple UAV collaborative system
has enormous potential to improve crop growth monitoring by addressing long flight time and
low-quality phenotyping issues.

Keywords: UAV; image registration; multiple UAV system; crop leaf area index; crop height

1. Introduction

Unmanned aerial vehicle (UAV)-based remote sensing technologies are evolving
rapidly [1]. Large farm management requires a significant amount of labor force and time.
Therefore, leveraging UAVs to conduct research on the effective application of fertilizers
and pesticides [2,3] and analyze crops through aerial image-based phenotyping [4] can
significantly reduce labor time and increase the speed at which crop data are collected in
conventional agriculture. In this context, many attempts are being made worldwide to
utilize UAV-based aerial photography for accurate phenotypic measurement. In Korea,
a UAV equipped with an RGB camera recently measured the height of Kenaf stems [5].
Moreover, numerous research projects using multispectral or hyperspectral cameras are
actively underway. With these cameras, not only the RGB data but also the vegetation
index (VI), which is a spectral imaging transformation of multiple bands (red-edge and
near-infrared bands), can be used to facilitate the process of analyzing crop growth as well
as plant pests and diseases [6,7].

Measuring growth data entails a high level of precision as it greatly affects the pre-
diction of crop quality. That is, there must be a strong correlation between growth-related
data measured from aerial image registration or mosaicking and data measured on the
ground. To measure crop growth data with greater accuracy using aerial image mosaicking,
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it is of utmost importance to enhance the image resolution and quality [8] and ensure
consistency in crop location information between images. Ground sample distance (GSD)
refers to the dimensions of a single pixel in an image as measured on the ground [9]. When
analyzing growth data using UAV images, the lower the GSD, the greater the data accuracy.
Furthermore, consistency in crop location information between captured images allows
growth data to be charted accurately during image registration.

However, only one agricultural UAV is used in most cases, and its technical limitations
may undermine the quality of the measured data. Since most crop fields are large, capturing
images using a single UAV inevitably results in time lags between registered images. Most
crops are sensitive to wind and convey constantly changing location information, leading
to inconsistencies in crop location information between captured images on the UAV, which
adversely affects the data during image registration. In addition, most agricultural UAVs
can only have a flight time of 25–30 min, owing to their short battery duration. This means
that several UAV flights must be made to monitor every part of the field that needs to be
inspected and take images, which is a time-consuming process. To address the short battery
duration and reduce the working time of UAVs, agricultural UAVs can be programmed to
fly and take images at higher altitudes, compromising image quality due to higher GSD. In
spatial resolution analysis using UAVs, Kim et al. demonstrated that the spatial resolution
and location accuracy were high at low altitudes with mean errors of 0.024 m at 40 m and
0.034 m at 100 m for altitude-specific orthoimages [10].

Employing multiple UAVs to solve the flight route-related problems of using a sin-
gle UAV can ensure higher accuracy of crop location information, reduced mission time,
increased coverage area, and improved image resolution through low-altitude photogra-
phy [11]. The typical flight route of a single UAV over an open field consists of repetitive
patterns of flying forward a certain distance, making a right or left turn, and flying back in
the opposite direction. This mapping process leads to significant time lags between images.
In contrast, a collaborative driving system with multiple UAVs (hereinafter “the multiple
UAV system”) can produce a series of images of a specific location captured simultaneously
and from different viewing angles. Thus, this system makes it possible to acquire more
accurate location information, even for crops such as rice, whose location information is
heavily affected by wind. Compared to a single UAV driving system (hereinafter “the
single UAV system”), the multiple UAV system also greatly reduces the flight time required
to monitor the same area. As discussed above, flying UAVs at high altitudes to address
the problem of short battery duration compromises image resolution. On the other hand,
using the multiple UAV system reduces the strain on individual batteries and allows for
a longer flight time [12]. Additionally, high-quality plant growth data can be acquired
through low-altitude monitoring (low GSD).

These days, the agricultural sector is witnessing vigorous research endeavors to
explore the possibility of using multiple agricultural machines simultaneously to streamline
work processes and produce high-quality crops. Soil compaction problems due to single
heavy-duty agricultural machines can be solved by dividing the works into multiple small
and medium-sized machines [13]. The latest ground-based agricultural machines are self-
driving ones equipped with cutting-edge technologies. Autonomous farming machines
leverage location technology such as GPS to perform their duties efficiently by accurately
detecting crops and seamlessly navigating their paths. The development of innovative
systems is underway, in which multiple self-driving agricultural machines share their
locations for collaborative tasks. Similarly, for UAV-based aerial photography, leveraging
multiple UAVs can facilitate image acquisition in a large field and address the problems
arising from using a single UAV.

However, coordination and communication between several UAVs is a significant
challenge in developing multiple UAV systems. It requires sophisticated algorithms and
software to ensure feasibility and safety [14]. Additionally, compared to single UAV
missions, multiple UAV systems may be more expensive and resource-intensive as a
requirement for several UAVs, such as related hardware and operators [15]. Lastly, there is
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a heightened chance of technical failure or malfunction in UAV–UAV cooperation systems,
which may result in mission failure or equipment damage, as with any situation involving
many moving components.

In China, Wu et al. developed an auto-steering-based collaborative operating system
for fleet management (FMCOS) of multiple tractors, which improved the work quality and
the vehicle management efficiency by 25.03% and 32.72%, respectively, compared to those
without the FMCOS [16]. In Japan, Noguchi and Barawid used various agricultural robots to
develop an autonomous robot farming system in which robots deploy various agricultural
technologies to improve crop quality and productivity [17]. Park et al. presented guidelines
for efficient agricultural production methods through which multiple robots collaborate to
perform agricultural tasks; they utilize self-driving systems and sensors to monitor crop
locations and growth conditions and minimize and optimize the application of fertilizers
and pesticides based on their monitoring [18].

Avellar et al. demonstrated that using multiple UAVs, as opposed to a single UAV,
is more efficient for acquiring images of an expansive area in a short period of time [19].
Ju et al. of Kyungnam University analyzed seven functions (total time, setup time, flight
time, battery consumption, inaccurate mapping survey, haptic control effort, and coverage
ratio) to evaluate the performance of both single and multiple UAV systems and confirmed
the superiority of the multiple UAV system [20]. While elaborating on the heterogeneous
collaboration between UAVs and unmanned ground vehicles, Vu et al. specified the
limitations of each vehicle and discussed the problems that can be addressed through
the collaborative system involving two different vehicles [21]. Meanwhile, as a way to
streamline the agricultural tasks of the multiple UAV system, Engebråten et al. proposed
a distributed control algorithm based on the multi-drones’ non-linear dynamics model
to construct a drone swarm system. The performance of this drone swarm system was
evaluated in real-world settings, which confirmed the system’s capabilities to operate safely
and efficiently in various agricultural tasks [22].

In our previous research, several UAV collaborative driving systems, route-generation
programs, and virtual simulators were built [23]. A set of flight routes can be fed into
multiple UAVs, which will fly over the area to be monitored and take pictures at the
designated points using the attached cameras. To generate the flight path for each UAV,
various datasets (respective altitudes, image overlaps, GSD, home coordinates, and the
coordinates of the target areas) are provided so that individual UAVs fly on their designated
flight routes. The developed UAV was based on the Python system, and a Gazebo-based
simulation system was designed to test the vehicle for any code modification errors or
potential flight-related problems. A PC was connected to multiple UAVs using the robot
operating system (ROS), making it possible to flight-test UAVs through Gazebo simulation.
To prevent UAVs from deviating from their flight routes or potentially crashing into each
other, distance-specific safety boundary and collision avoidance systems were designed
to ensure safe navigation. When multiple UAVs were tested using this system, the flight
accuracy (RMSE) was 0.46 m, and the actual field flight accuracy was 0.36 m.

This paper aimed to develop a multiple UAV system to address the limitations and
problems attributable to a single UAV system, such as poor aerial image processing, limited
flight time, time-consuming monitoring and overall, to improve the accuracy of crop phe-
notyping. Comparative analyses between the two systems of crop phenotyping accuracy
confirmed the need to develop a multiple UAV system. The number of points and point
densities generated from image registration and point clouding are essential information
needed to derive accurate data from aerial images. To examine the degree to which the
multiple UAV system can improve the accuracy of image-based phenotyping, various
boxes were arranged on the field, and the images of the boxes captured from each of the
systems were compared in terms of box length error, the number of box points, and box
point densities. The leaf area index (LAI) and crop height are critical for analyzing plant
growth stages, and image analysis based on aerial images is widely used for that purpose.
To evaluate the performance of the multiple UAV system, rice field dioramas (hereinafter
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“the crop fields”) were created, and the data on LAI and the height of the crops measured
from each of the systems were compared, the results of which proved that the accuracy
was improved when using the multiple UAV system. Moreover, comparative analyses of
flight times support the need to leverage the multiple UAV system to improve the accuracy
of crop phenotyping. The multiple UAV system demonstrated its ability to complete the
mission faster and overcome the battery-induced flight time limitations.

2. Materials and Methods

Multi-path generation and multiple UAV collaborative driving algorithms developed
in our previous studies were used [18]. Several simulators developed in our previous
studies were employed to analyze the number of points and point densities based on aerial
images generated and registered through the two systems (single UAV system and multiple
UAV system). The actual field flight was carried out after the safety assessment using
a model flight on the route generated from the simulators. To compare the two image
datasets (one from the single UAV system and the other from the multiple UAV system),
the boxes and crop fields were arranged to analyze the boxes’ point densities and measure
the LAI and height of the crop models through image-to-point cloud registration.

2.1. The Setup of the UAV Collaborative System

Figure 1 shows the detailed structure of a UAV used in this study for collaborative
driving. A hexacopter (Tarot T810-Hexa, Tarot, Taiwan) was used to improve the flight
stability, flight time, and payload of the UAV employed in our previous studies. Tarot
T810-Hexa, hexacopter was chosen as the main UAV platform for this study because it
was allowed to customize both the software and hardware. Lee et al. (2018) [24] used
the same UAV platform in their research on vision-based autonomous landing of a multi-
copter unmanned aerial vehicle using reinforcement learning, which further validated
the feasibility of this UAV. Additionally, to synchronize multiple UAVs during the flight
mission, custom flight mission settings, communication between two UAVs, and additional
safety protocols must be added to the UAV system. A commercial UAV platform such as DJI
is not an open-source UAV platform; therefore, modification is not possible. A Pixhawk 4
(Holybro, Hong Kong, China) flight controller was used. For precise positioning and control
of the UAV, an H-RTK F9P ROVER LITE (Holybro, Hongkong, China) was installed on the
ground owing to its ability to receive location information from GPS, GLONASS, BeiDou,
and Galileo, which ensures centimeter-level positional accuracy. To control the speed and
direction, an electronic transmission controller (MR-X3, ZTW Electronics, Shenzhen, China)
was used. A wireless communicator (Telemetry Radio V3 433 Mhz, Holybro, Hongkong,
China) and the allocation of UAV-specific IDs made wireless communication between a PC
and individual UAVs possible. A laptop (Galaxy Book Pro, Samsung, Suwon-si, Republic
of Korea) was used as a PC, and a LiPo 6S 16,500 mAh battery (PT-B12000-Montage30,
Polytronics, Taiwan) was mounted on the UAV. The maximum flight time of the UAV with
the camera and all equipment attached is approximately 12–15 min.

This study used an RGB camera (HERO10, Gopro, San Mateo, CA, USA) for aerial
photography (Figure 2), and Table 1 exhibits its specifications. The RGB camera has a
1920 × 1080 pixels resolution, which is sufficient for plant phenotyping. Camera angle
(e.g., nadir, oblique, and double grid) is one of the variables that may affect the phenotyping
result. However, following the standard UAV-based plant phenotyping method, a nadir
camera angle was used during the mission to reduce experiment complexity. To synchronize
the camera with the UAV, an ESP32 (NodeMCU-32U, Espressif Systems, Shanghai, China)
wireless communication module (Figure 3) was connected to the camera through Bluetooth
pairing to control the taking of photographs.
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Table 1. Specifications of the visible-light GoPro 10 camera.

Camera Variables Values

Camera resolution (pixels) 1920 × 1080
Sw (mm) 6.17
FR (mm) 2.92
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2.2. The Collaborative Driving Control System

For this study, the UAV collaborative driving system developed in our previous
studies was employed to connect individual UAVs and a PC through MAVlink. Using the
telemetry radio, long-range communication with the laptop was made possible. Through
the MAVlink router, two UAVs were connected to the laptop using the User Datagram
Protocol in Mission Planner, a program designed to control systems such as UAVs and
robots. A schematic illustration of the control system is presented in Figure 4.
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Figure 4. Schematic of the UAV collaborative driving control system.

Python (2.7.11) was used to make the UAVs fly autonomously on specific routes. The
system was structured so that entering various capturing conditions (field center position,
overlap, flight altitude, camera GSD, direction, and capturing times per waypoint) into the
developed route-generation program automatically generates routes and enables multiple
UAVs to fly simultaneously via command execution. Figures 5 and 6 show examples of
routes created using the route-generation algorithm of the automatic route-generation
program. To prevent UAVs from crashing into each other or causing dangerous situations,
such as deviating from their flight paths, an effective control system was developed in
which UAVs are instructed to keep a safe distance from each other and stop flying if the
distance between them is too close. Moreover, based on the control system, the UAVs stop
flying if they deviate from their designated flight areas.
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2.3. Experimental Methods

For initial performance evaluations of the multiple UAV system, it was decided to use
alternative monitoring objects considering risk factors such as crashing. Once the multiple
UAV system has been proven safe, a series of tests will be conducted over crop fields or
orchards for plant phenotyping and VI determination. As part of a preliminary field test,
boxes and crop models were used to gain insight into the degree of point-cloud generation
and the accuracy of crop phenotyping. Based on the locations of the boxes and crop models,
the flight area and information for the UAVs were determined.

As shown in Figure 7, the experiments of this study were conducted on a field of
the College of Biomedical Sciences at Kangwon National University in Korea (latitude:
37.8684◦, longitude: 127.7518◦). Experiments were conducted within the established flight
area. The UAVs took pictures of boxes between 9 and 10 a.m. on 12 April 2022, and
captured images of the crop fields between 4 and 5 p.m. on 27 October, 17 November, and
30 November 2022.
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2.3.1. Box Phenotyping

Boxes were used first in the experiments designed to improve the accuracy of crop pheno-
typing through the multiple UAV system. Figure 8 exhibits three blue boxes (60 × 40 × 40 cm3),
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three green boxes (48× 35× 35 cm3), and three green boxes (38× 34× 28 cm3). Nine boxes
were arranged 5 m apart, and the UAVs were instructed to fly over them. The box positions
and UAV routes are presented in Figure 9, and two sets of images (one from the single UAV
system and the other from the multiple UAV system) were compared regarding box length
error, the number of points, and point densities. Image registration using Pix4dMapper
(v4.4.12, Pix4D, Prilly, Switzerland) measured the number of box points and point densities
in CloudCompare (v2.11.1, Daniel Giradeau-Montaut, Grenoble, France).
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Figure 8. Three different colors and sizes of boxes used in this study. 

 
Figure 9. Box positions and flight routes for the dual UAV system.

To prevent people and parked cars from being injured or damaged by malfunctioning
UAVs, the flight altitude was set at 15 m, which is lower than the fence installed around the
field. An aerial photography plan was formulated in which the overlap was set at 75% to
facilitate image registration. The speed used in this study was 3 m/s; however, unlike the
common commercialized flight mission wherein the UAV flies at a constant speed while
capturing images at designated locations, in this study, the dual-UAV system was designed
to fly at 3 m/s to each designated location and then stop to capture the image. This way,
the two UAVs could capture the images simultaneously and avoid blur. Table 2 illustrates
the specific aerial photography-related values, and Figure 10 displays the actual location
for aerial photography.

Table 2. Aerial photography-related values for boxes phenotyping.

Input Variables Values

Site area 641 m2

Flight altitude 15 m
Ground sample distance (GSD) 1.65 cm/pixel

Image overlap 75%
Flight speed 3 m/s
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2.3.2. Crop Model Phenotyping

The second experiment measured the LAI and height of crop field dioramas made
from styrofoam through aerial images and point clouds. To measure the LAI of the crop
model (the yellow part of the crop is equivalent to a leaf), the yellow band index obtained
from the RGB camera images was used to measure the number of points representing
a yellow leaf. In fact, real crops have leaves all the way down to the bottom, and most
experiments calculate LAI through multispectral images. Nevertheless, since the primary
goal of this study was to leverage the multiple UAV system to improve the accuracy
of image processing, the success of the experiments depended on whether there were
differences in leaf-related data accuracy between the single and multiple UAV systems.
Table 3 shows the flight parameters for crop model phenotyping. Given the wind effect,
the flight altitude for the UAVs was set to 7 m, the minimum height that allows a low
GSD (0.77 cm/pixel) and high-definition images without the downwind from the UAVs
affecting the images. The overlap was set at 75%, and a speed of 1 m/s was fed into
the automatic route-generation system for autonomous navigation. For aerial imagery,
crop models were placed 50 cm apart. Ground control points (GCPs) are usually used to
determine the exact latitude and longitude of a point on the map of the Earth. It is essential
for spatiotemporal analysis, wherein the data from several flights on different dates can be
compared. However, in this study, spatiotemporal analysis was absent; therefore, using
GCPs for accurate mapping was optional.

Table 3. Aerial photography-related values for crop models phenotyping.

Input Variables Values

Site area 641 m2

Flight altitude 7 m
GSD 0.77 cm/pixel

Image overlap 75%
Flight speed 1 m/s

The densities and heights of the crop models varied from one crop field to another.
Nine crop fields were created: three had 64 crop models (8 × 8) each, three had 36 crop
models (6 × 6) each, and three had 16 crop models (4 × 4) each. The heights of the crop
models were 57 cm, 47 cm, and 37 cm, respectively. Figure 11a shows how the crop field
and crop models look, while Figure 11b,c show detailed images of the crop model (only
yellow crop models were used) and the 3D crop field, respectively. Figure 12 displays the
layout of the crop models and fields.
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Figure 12. Test layout of the crop fields based on three different kinds of heights and densities.

To test the effect of wind-induced plant movement on the imaging data registration,
a fan was installed to produce artificial wind and make the crop models move. Aerial
photography proceeded using the single and multiple UAV systems under three condi-
tions. Figure 13 illustrates such conditions: (1) with a fan placed between the 8 × 8 and
6 × 6 fields, (2) with a fan placed between the 6 × 6 and 4 × 4 fields, and (3) without a fan.
The fan was positioned 70 cm away from the nearest field so that its wind could make the
crop models move.
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2.4. Image Processing for Phenotyping
2.4.1. Box Measurement Procedures

For the first experiment of box mosaicking, aerial images were registered using Pix4D,
and the point cloud was generated. The phenotype of the boxes was determined based on
the points derived from the point cloud. Next, for the data generated from Pix4dMapper,
CloudCompare was employed to calculate point densities, the number of points, and
box length error from the mosaicking images acquired from the single and multiple UAV
systems. The box phenotyping method is presented in Figure 14. The above three values
(point densities, the number of points, and box length error) were measured because they
can affect the accuracy of crop phenotyping and vegetation index measurement.
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2.4.2. Crop Fields Measurement Procedures

For the second experiment of field mosaicking, aerial images were registered using
Agisoft Metashape (v1.4.0, Agisoft LLC, St. Petersburg, Russia), and the point cloud was
generated, thus creating the digital elevation model (DEM) map and the orthomosaic map
to measure height and LAI, respectively.

The created orthomosaic map was executed in ENVI (v3.1.0, L3 Harris Technologies,
Melbourne, FL, USA), and the region of interest (ROI) for each crop field was set to measure
the number of points in the yellow area that corresponds to the leaf of the crop model.
The yellow index threshold that measures the number of pixels in the yellow area was
subsequently calculated through Equation (1). Using R (red), G (green), and B (blue), the
yellow band formula was written for the yellow area in the image, and the numbers of
points and pixels were calculated for areas whose numerical value was 70 or more.

YellowIndexThreshol =
100, 000× R + 100, 000×G− 100, 000× B

100, 000
(1)
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The number of pixels in the yellow area derived from this formula refers to the two-
dimensional data obtained through aerial photography that does not consider angles.
Raj proposed a method by which the LAI of angled crops can be calculated using RGB
images [25]. This study cited the formulae and found θ that is equivalent to the angle of
the leaf in Figure 15, given that crop models used in this study have only one leaf. To
calculate the LAI, the number of yellow pixels in each crop field was divided by sinθ
using the area corresponding to the leaf at the upper part of the crop model. The angle
of 10 leaves in each field was measured, the average of which (θ) was 35◦. To determine
the LAI, Equation (2) was used to derive the leaf canopy cover fraction (LCC), which is
the relational expression between pixels and the area of the styrofoam field. In the next
step, Equation (3) was applied to identify the relationship between the number of pixels
and leaf angle and to finally derive the LAI. The LAI measurement algorithm is illustrated
schematically in Figure 16.

LCC = Leaf canopy cover fraction
=

Number of Yellow Leaves Pixels in Subplot
Number of Field Pixels in Subplot

(2)

LAIm(mosaic) =
LCC
sinθ

(3)

To ascertain the relationship between the LAI derived from aerial images and the
LAI measured on the ground and compare the accuracy of the two LAIs, a measurement
instrument (LI-3300C, LI-COR, Lincoln, NE, USA) was employed (Figure 17) to measure
the actual leaf area. LA refers to the area of a single leaf, and LI-3300C measures LA using
reflected light detected at the wavelength of 905 nm and the area based on the amount of
light emitted from the subject in response to the sensor’s beam.
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Figure 17. Leaf area measurement instrument (LI-3300C) for measuring ground-truth LAI.

To derive the average leaf area of the crop models, 16 yellow leaves (upper part of the
crop model) were sampled (Figure 18), and the average area of the yellow leaf part was
calculated. It was then compared with the crop field area to derive the ground-measured
LAI using Equation (4). For example, the ground-measured LAI for the 4 × 4 layout field
can be derived by dividing the total leaf area of 16 crop models by the field area (Figure 19).

Ground−measured LAI =
Yellow Leaf Area

(
m2)×Number of leaves

Styrofoam field area (m2)
(4)

With the ground-measured LAI value derived from Equation (4) being set as a refer-
ence value, the prediction error (% Error) of the aerial image-based LAIm was analyzed
using Equation (5).

%Error =
|Ground measured LAI− LAIm|

Ground measured LAI
(5)

The DEM map generated in Agisoft was executed in ENVI to derive the height data.
In measuring the height of the crop field, the lowest height of the yellow leaf (HLL) served
as a reference point. The height data of the yellow leaf that existed in yellow pixels were
extracted from the datasets for any part higher than the reference point. Based on the
assumption that the average height of a given field should ideally correspond to the height
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of the middle point of the yellow leaf area, the height was calculated by adding half the
height of the yellow leaf to the average value. Figure 20 shows a schematic of the height
measurement algorithm for the crop model, and Figure 21 is an illustrative example of the
aforementioned height measurement method for the crop model.

Since the height of the yellow leaf, and accordingly half the height, changes due
to the angle when placed in the field, it can be measured using Equation (6). Using
Equation (7), the height of crop models can be measured by adding the height—derived
through Equation (6)—to the average height value obtained in ENVI and subtracting the
ground height.

Height of Half leaf = Length of Half leaf× cos(θ) (6)

Crop Height = Average Height + Height of half leaf−Ground height (7)
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Figure 21. An illustrative example of the height measurement method for the crop model, where the
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measurement for the crop model.

3. Results and Discussion
3.1. Box Phenotype Comparisons Based on Aerial Images Captured by the Single and Multiple
UAV Systems
3.1.1. The Registered Images Captured by the Single UAV System and Box Phenotyping

Figure 22a exhibits all of the registered images captured by the single UAV, and the
black areas in each box image in Figure 22b were caused by the non-generation of points.
Four of nine boxes (box 4, box 7, box 8, and box 9) incurred image loss, making it impossible
to measure box length error. In terms of point density, an essential element for phenotyping,
the average point density was 8789 points/m3. Box 7 showed the lowest point density of
3261.83 points/m3, hindering image registration and making the box shape unidentifiable,
as shown in Figure 22a,b.
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3.1.2. The Registered Images Captured by the Multiple UAV System and Box Phenotyping

Figure 23a exhibits all the registered images captured by the multiple UAV system. As
illustrated in Figure 23b, box length errors were measurable, and a large number of box
points were generated. The average point density was measured to be 14,204 points/m3,
with box 3 displaying the lowest point density of 12,666.66 points/m3, showing far higher
point densities than those generated in the single UAV system. The number of box points
and point densities in the multiple UAV system were 2–4 times higher than those of the
single UAV system. High point densities translated into almost no black areas and sharper
box images. Table 4 compares the box data from the single UAV and multiple UAV systems.
For box phenotyping, the multiple UAV system generated much higher levels of box
points and point densities than the single UAV system, resulting in sharper box images.
Considering these outcomes, deeper phenotyping can be achieved with consistent location
information and simultaneous multi-angle captures.
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Table 4. Comparison of box’s size error, point number, and point density from the single UAV and
multiple UAV systems.

Box 1 Box 2 Box 3 Box 4 Box 5 Box 6 Box 7 Box 8 Box 9

Single UAV size
error (mm) 0.010 0.050 0.010 N/A 0.010 0.010 N/A N/A N/A

Multi-UAV size
error (mm) 0.005 0.010 0.010 0.010 0.005 0.010 0.010 0.020 0.010

Single UAV point
number 410 621 809 416 386 624 118 487 822

Single UAV point
density (points/m3)

11,333.400 10,561.200 8427.080 11,499.300 6564.620 10,612.200 3261.830 8282.310 8562.500

Multi-UAV point
number 502 790 1216 496 816 1035 501 861 1361

Multi-UAV point
density (points/m3)

13,876.667 13,435.300 12,666.667 13,710.700 13,877.500 17,602.000 13,848.900 14,642.800 14,177.000

3.2. Comparison of Crop LAI Values Based on the Single and Multiple UAV Systems
3.2.1. Crop LAI Measurements from the Single UAV System without Wind Effects

Figure 24 shows the crop field image captured by the single UAV system with the
leaf area represented in red, and Table 5 indicates the LAI values and error rates (%)
measured using the single UAV system. Crop models are sensitive to wind, and their
positions constantly change. Since no simultaneous multi-angle images were available,
inconsistencies in location information occurred during image-to-point cloud registration,
reducing the number of crop leaf pixels and leading to a relatively high error rate of 50.801%.
In particular, a low plant density like the 4 × 4 layout results in a significantly low LAI. For
example, the 4 × 4 layout field with 47 cm height showed the smallest number of pixels
(860) and a significantly high error rate of 82.090%. The 4 × 4 fields with three different
heights exhibited very low accuracy with an average error rate of 70.647%. High crop
densities in the 6 × 6 and 8 × 8 crop fields generated more points during image-to-point
cloud registration, resulting in average LAI error rates of 52.759% and 28.996%, respectively,
lower than that of the 4 × 4 layout. Nevertheless, their error rates are still high, and their
level of accuracy is not significant enough to predict the LAI in actual fields.
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Table 5. Yellow leaf LAI values and error rates by crop field measured using the single UAV system
without wind effects.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 1014 126,953 35 0.014 0.067 79.104
57 6 × 6 6969 126,137 35 0.096 0.151 36.424
57 8 × 8 15,998 128,214 35 0.218 0.269 18.959
47 4 × 4 860 125,435 35 0.012 0.067 82.090
47 6 × 6 5860 128,260 35 0.080 0.151 47.020
47 8 × 8 13,219 128,532 35 0.179 0.269 33.457
37 4 × 4 2438 129,065 35 0.033 0.067 50.746
37 6 × 6 2843 129,032 35 0.038 0.151 74.834
37 8 × 8 13,114 129,946 35 0.176 0.269 34.572

Average - - - - - - 50.801

3.2.2. Crop LAI Measurements from the Multiple UAV System without Wind Effects

Figure 25 shows the crop field image captured by the multiple UAV system with
the leaf area represented in red, and Table 6 indicates the LAI values and error rates (%)
measured using the multiple UAV system, which generated more leaf pixels for each field
than the single UAV system. The total numbers of pixels for the styrofoam fields and
leaves were 1054,260 and 99,417, respectively, which is 1.7 times higher than the ratio of
leaf pixels to field pixels generated in the single UAV system with a relatively low error
rate of 13.535%. Even for the crop fields with a 4 × 4 layout, 4136 pixels were generated
on average, and a maximum error rate of 13.433% was witnessed, which was about 68%
better than that of the single UAV system. These results demonstrate that the multiple UAV
system proved effective, even for the areas with low plant density. The highest error rate of
26.766% was detected in the 8 × 8 layout field with 47 cm height when yellow leaf pixels
were excessively generated, and the LAI was higher than the ground-measured LAI for the
same field. A possible reason for this could be that the leaf angle in this field was greater
than 35◦ (set as the average leaf angle), increasing the yellow leaf area measured using
aerial photography. Unlike the single UAV system, the multiple UAV system is capable of
capturing simultaneous multi-angle images and incurs smaller pixel loss thanks to a large
number of images with consistent location information, which made it possible to compile
more accurate data and achieve a relatively low error rate of 13.535%.

Table 6. Yellow leaf LAI values and error rates by crop field measured using the multiple UAV system
without wind effects.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 3884 117,578 35 0.058 0.067 13.433
57 6 × 6 8355 115,879 35 0.126 0.151 16.556
57 8 × 8 15,020 116,806 35 0.224 0.269 16.729
47 4 × 4 3862 116,874 35 0.058 0.067 13.433
47 6 × 6 11,746 117,608 35 0.174 0.151 15.232
47 8 × 8 22,670 115,885 35 0.341 0.269 26.766
37 4 × 4 4664 116,864 35 0.070 0.067 4.478
37 6 × 6 11,677 119,902 35 0.170 0.151 12.583
37 8 × 8 17,539 116,864 35 0.262 0.269 2.602

Average - - - - - - 13.535
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3.2.3. Crop LAI Measurements from the Single UAV System with Wind Effects in the 8 × 8
and 6 × 6 Layout Fields

Figure 26 categorizes leaf areas for each field based on the registered images captured
by the single UAV system when the wind was applied by placing a fan in the 8 × 8 and
6 × 6 layout fields. Table 7 indicates the LAI values and error rates (%) measured in
the single UAV system. This experiment also generated fewer yellow leaf pixels in most
fields. However, the test results were different from those of the previous experiment in
which no fan was used. The most noticeable difference between the two experiments was
witnessed in error rates. The error rates for the 4 × 4 layout with 57 cm height and the
8 × 8 layout with 57 cm height were measured to be 2.985% and 65.672%, respectively,
which significantly differed from the error rates of 79.104% and 18.959% measured in the
no-fan experiment. With no fan, the 4 × 4 layout fields were less affected. However, the
4 × 4 layout with 57 cm height, farthest away from the fan, was affected by the fan and
the crop models in that field swayed. When crop models are affected by the wind from the
fan, their stem, which is made of wire, resists the wind and moves back and forth along
with the leaf instead of the leaf moving in the opposite direction to the wind and remaining
in that position. This leaf movement may have sent inaccurate location information on
the crop model for image registration, inhibiting point generation and thus reducing the
number of pixels. The number of pixels increased because leaf movements made the leaf
angle occasionally more significant than the average angle, while leaves were accidentally
combined during image registration, which led to low accuracy with an average error rate
of 38.531%.

Table 7. The yellow leaf LAI values and error rates by crop field measured from the aerial images
captured by the single UAV system with wind effects in the 8 × 8 and 6 × 6 layout fields.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 5380 136,882 35 0.069 0.067 2.985
57 6 × 6 2621 138,594 35 0.033 0.067 50.746
57 8 × 8 1789 137,189 35 0.023 0.067 65.672
47 4 × 4 6327 135,217 35 0.082 0.151 45.695
47 6 × 6 5703 138,475 35 0.072 0.151 52.318
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Table 7. Cont.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

47 8 × 8 7713 140,375 35 0.096 0.151 36.424
37 4 × 4 13,923 134,952 35 0.180 0.269 33.086
37 6 × 6 13,390 138,392 35 0.169 0.269 37.175
37 8 × 8 17,359 145,789 35 0.208 0.269 22.677

Average - - - - - - 38.531
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3.2.4. Crop LAI Measurements from the Multiple UAV System with wind Effects in the
8 × 8 and 6 × 6 Layout Fields

Figure 27 categorizes leaf areas for each field based on the registered images captured
by the multiple UAV system when the wind was applied by placing a fan in the 8 × 8
and 6 × 6 layout fields. Table 8 indicates LAI values and error rates (%) measured using
the multiple UAV system. Compared to the LAI error rate (38.531%) measured in the
single UAV system under the same conditions, the average error rate of this experiment
was more than two times lower at 17.729%. The LAI error rate decreased in most crop
fields, which improved the accuracy. Even for the moving crop models, the simultaneous
multi-angle images captured by the multiple UAV system provided more accurate crop
location information. However, the error rate measured in the 4 × 4 layout field with 57 cm
height was 43.284%, 41 percentage points higher than the 2.985% obtained using the single
UAV system. This can be attributed to the fact that the leaf angle became smaller than the
average angle, reducing the visible leaf size and subsequently decreasing the number of
leaf pixels.
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Table 8. The yellow leaf LAI values and error rates by crop field measured from the aerial images
captured by the multiple UAV system with wind effects in the 8 × 8 and 6 × 6 layout fields.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 2457 112,925 35 0.038 0.067 43.284
57 6 × 6 2825 114,981 35 0.043 0.067 35.821
57 8 × 8 3377 115,546 35 0.051 0.067 23.881
47 4 × 4 8066 112,880 35 0.125 0.151 17.219
47 6 × 6 8425 117,021 35 0.126 0.151 16.556
47 8 × 8 9655 113,444 35 0.148 0.151 1.987
37 4 × 4 15,362 109,094 35 0.246 0.269 8.550
37 6 × 6 16,681 113,795 35 0.256 0.269 4.833
37 8 × 8 18,599 112,389 35 0.289 0.269 7.435

Average - - - - - - 17.729
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3.2.5. Crop LAI Measurements from the Single UAV System with Wind Effects in the 6 × 6
and 4 × 4 Layout Fields

Figure 28 categorizes the leaf areas for each field based on the registered images
captured by the single UAV system when the wind was applied by placing a fan in the
6 × 6 and 4 × 4 layout fields. Table 9 indicates LAI values and error rates (%) measured
using the single UAV system. The average error rate was found to be 36.119%, indicating
low accuracy. In the 4 × 4 and 6 × 6 layout fields where a fan was placed, large wind-
induced movements led to a lower level of point generation during image registration and
angle changes, which can affect the error rates of the LAI either positively or negatively.
For this reason, no comparative analysis was conducted.
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Table 9. The yellow leaf LAI values and error rates measured from the aerial images captured by the
single UAV system with wind effects in the 6 × 6 and 4 × 4 layout fields.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 6851 136,640 35 0.087 0.067 30.253
57 6 × 6 10,374 134,559 35 0.134 0.151 11.052
57 8 × 8 10,272 131,448 35 0.136 0.269 49.293
47 4 × 4 3665 137,672 35 0.046 0.067 30.849
47 6 × 6 5427 135,391 35 0.070 0.151 53.805
47 8 × 8 13,071 135,922 35 0.168 0.269 37.602
37 4 × 4 2209 137,448 35 0.028 0.067 58.271
37 6 × 6 9053 139,295 35 0.113 0.151 25.017
37 8 × 8 14,669 133,971 35 0.191 0.269 28.928

Average - - - - - - 36.119

3.2.6. Crop LAI Measurements from the Multiple UAV System with Wind Effects in the
6 × 6 and 4 × 4 Layout Fields

Figure 29 categorizes leaf areas for each field based on the registered images captured
by the multiple UAV system when the wind was applied by placing a fan in the 6 × 6 and
4 × 4 layout fields. Table 10 indicates the LAI values and error rates (%) obtained using
the multiple UAV system. The average error rate of 19.693% testified to a higher level of
accuracy for the multiple UAV system than the single UAV system. Despite the availability
of simultaneous multi-angle images, which resolved the problem of inconsistent location
information, an unexpectedly high error rate was recorded for the 4 × 4 layout field, which
can be explained by the fact that wind caused the leaf angle to become smaller than the
average angle and the leaf area decreased in the aerial images.
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Figure 29. The yellow leaf pixels of crop models measured using aerial photography from the
multiple UAV system with wind effects in the 6 × 6 and 4 × 4 layout fields.

Table 10. The yellow leaf LAI values and error rates measured from the aerial images captured by
the multiple UAV system with wind effects in the 6 × 6 and 4 × 4 layout fields.

Height (cm) Array Crop Pixels Pad Pixels Leaf Angle
(◦) LAIm

Ground-
Measured

LAI
% Error

57 4 × 4 3764 155,322 35 0.042 0.067 37.202
57 6 × 6 13,651 153,263 35 0.155 0.151 2.780
57 8 × 8 18,083 152,360 35 0.207 0.269 22.971
47 4 × 4 4492 157,633 35 0.050 0.067 26.042
47 6 × 6 10,379 155,241 35 0.117 0.151 22.833
47 8 × 8 24,682 161,329 35 0.267 0.269 0.707
37 4 × 4 3241 160,753 35 0.035 0.067 47.619
37 6 × 6 12,097 157,474 35 0.134 0.151 11.383
37 8 × 8 22,699 156,226 35 0.253 0.269 5.696

Average - - - - - - 19.693

3.3. Comparison of Crop Height Based on the Single and Multiple UAV Systems
3.3.1. Crop Height Measurements from the Single UAV System without Wind Effects

The red areas in Figure 30 have higher height values than the HLL derived from the
aerial images captured by the single UAV system. According to Table 11, the crop height in
the 6 × 6 layout field with 47 cm height was measured to be 39.7 cm, representing a 7.3 cm
difference or an error rate of 15.532%. In contrast, the 8 × 8 layout field with a crop height
of 57 cm showed the lowest error rate of 0.877%, and the average error rate was 7.396%.
When measured based on the aerial images obtained using the single UAV system, most
crop fields exhibited no significant error rates, except for some whose error rates were over
10%. However, since these heights refer to the height values extracted from the pixels of
the yellow leaf area, a limited number of areas with heights higher than HLL (equivalent to
crop pixels) were derived. In areas with heights higher than HLL, the uneven distribution
of leaf heights caused by pixel loss affected how the average leaf height was measured,
which in turn increased the error rates.
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Figure 30. Locations of height pixels that are above the lowest leaf height measured using aerial
photography from the single UAV system without wind effects in the field.

Table 11. The heights and error rates of crop models measured from the aerial images captured by
the single UAV system without wind effects in the field.

True Crop
Height (cm) Array Ground

Height (m) HLL (m) Average Leaf
Height (m)

Compensated
Height (m)

Measured
Crop Height

(cm)
% Error

57 cm 4 × 4 −1.150 −0.746 0.746 −0.615 53.490 6.167
47 cm 4 × 4 −1.210 −0.906 0.578 −0.794 41.620 11.438
37 cm 4 × 4 −1.280 −1.076 0.423 −0.953 32.680 11.676
57 cm 6 × 6 −1.150 −0.746 0.764 −0.560 59.040 3.579
47 cm 6 × 6 −1.210 −0.906 0.600 −0.813 39.700 15.532
37 cm 6 × 6 −1.280 −1.076 0.442 −0.887 39.300 6.216
57 cm 8 × 8 −1.110 −0.706 0.787 −0.545 56.500 0.877
47 cm 8 × 8 −1.170 −0.866 0.645 −0.695 47.480 1.021
37 cm 8 × 8 −1.240 −1.036 0.500 −0.833 40.720 10.054

Average - - - - - 7.396

3.3.2. Crop Height Measurements from the Multiple UAV System without Wind Effects

The red areas in Figure 31 have higher heights than the HLL derived from the aerial
images from the multiple UAV system. According to Table 12, the crop height in the
6 × 6 layout field with 47 cm height was measured to be 50.84 cm, representing a 3.8 cm
difference or the highest error rate of 8.649%. In contrast, the 8 × 8 layout field with 47 cm
height exhibited the lowest error rate of 0.106%. The average error rate was 5.714%, and
the difference in the average error rate (2.47%) between the two systems was insignificant.
However, it is worth noting that the number of pixels for the yellow leaf area increased
when measuring heights based on the aerial images of the multiple UAV system. This led
to an increasing number of pixels with heights higher than HLL, which resulted in the
relatively even distribution of leaf pixels and contributed to the average leaf height being
determined with greater accuracy.
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Figure 31. Locations of height pixels that are above the lowest leaf height measured using aerial
photography from the multiple UAV system without wind effects in the field.

Table 12. The heights and error rates of crop models measured from the aerial images captured by
the multiple UAV system without wind effects.

True Crop
Height (cm) Array Ground

Height (m) HLL (m) Average Leaf
Height (m)

Compensated
Height (m)

Measured
Crop Height

(cm)
% Error

57 cm 4 × 4 −0.880 −0.476 0.746 −0.338 54.250 4.825
47 cm 4 × 4 −0.750 −0.446 0.578 −0.329 42.120 10.388
37 cm 4 × 4 −0.640 −0.436 0.423 −0.308 33.240 10.162
57 cm 6 × 6 −0.830 −0.426 0.764 −0.289 54.140 5.018
47 cm 6 × 6 −0.730 −0.426 0.600 −0.286 44.420 5.487
37 cm 6 × 6 −0.610 −0.406 0.442 −0.272 33.800 8.649
57 cm 8 × 8 −0.810 −0.406 0.787 −0.269 54.100 5.088
47 cm 8 × 8 −0.730 −0.426 0.645 −0.260 47.050 0.106
37 cm 8 × 8 −0.590 −0.386 0.500 −0.214 37.630 1.703

Average - - - - - 5.714

3.3.3. Crop Height Measurements from the Single UAV System with Wind Effects

Table 13 presents the data on crop field height results determined using the single
UAV system. The crop height in the 6 × 6 layout field with 47 cm height was measured to
be 50.84 cm, representing an approximately 3.8 cm difference or the highest error rate of
8.178%. In contrast, the 8 × 8 layout field with 57 cm height showed the lowest error rate
of 0.520%, and the average error rate was 6.640%. Wind-induced movements altering the
level of image registration, leaf angles, the number of yellow leaf pixels, and the varying
degree of point generation impacted the measure of the average leaf height and ultimately
changed the values.
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Table 13. The heights and error rates of crop models measured using aerial photography from the
single UAV system with wind effects in the field.

True Crop
Height (cm) Array Ground

Height (m) HLL (m) Average Leaf
Height (m)

Compensated
Height (m)

Measured
Crop Height

(cm)
% Error

57 cm 4 × 4 −1.850 −1.416 −1.365 −1.304 54.640 4.134
47 cm 4 × 4 −1.980 −1.646 −1.561 −1.500 48.040 2.221
37 cm 4 × 4 −2.110 −1.876 −1.790 −1.729 38.140 3.091
57 cm 6 × 6 −1.817 −1.383 −1.282 −1.221 59.640 4.638
47 cm 6 × 6 −1.957 −1.623 −1.510 −1.449 50.840 8.178
37 cm 6 × 6 −2.058 −1.824 −1.737 −1.676 38.240 3.361
57 cm 8 × 8 −1.763 −1.329 −1.257 −1.196 56.700 0.520
47 cm 8 × 8 −1.901 −1.567 −1.474 −1.412 48.870 3.986
37 cm 8 × 8 −2.032 −1.798 −1.707 −1.646 38.600 4.334

Average - - - - - 6.640

3.3.4. Crop height Measurements from the Multiple UAV System with Wind Effects

Table 14 shows the data on crop field height results obtained using the multiple UAV
system. The crop height in the 8 × 8 layout field with 47 cm height was measured to be
51.04 cm, representing an approximately 4 cm difference or the highest error rate of 8.603%.
In contrast, the 8 × 8 layout field with 57 cm height showed the lowest error rate of 1.901%,
and the average error rate was 4.418%. Wind-induced movements affected the average
leaf height and produced values different from those obtained without wind effects. When
there was wind, no significant height difference between the two systems was witnessed.
However, the wind changed the leaf angle, subsequently expanded or reduced the leaf
area, and made the leaf sway. This led to pixel loss, which further affected crop height
measurement.

Table 14. The heights and error rates measured using aerial photography from the multiple UAV
system with wind effects in the field.

True Crop
Height (cm) Array Ground

Height (m) HLL (m) Average Leaf
Height (m)

Compensated
Height (m)

Measured
Crop Height

(cm)
% Error

57 cm 4 × 4 0.250 0.654 0.746 0.807 55.740 2.204
47 cm 4 × 4 0.186 0.490 0.578 0.639 45.250 3.716
37 cm 4 × 4 0.127 0.331 0.423 0.484 35.730 3.423
57 cm 6 × 6 0.271 0.675 0.764 0.825 55.430 2.756
47 cm 6 × 6 0.220 0.524 0.600 0.661 44.140 6.077
37 cm 6 × 6 0.150 0.354 0.442 0.503 35.340 4.477
57 cm 8 × 8 0.268 0.672 0.787 0.849 58.080 1.901
47 cm 8 × 8 0.196 0.500 0.645 0.706 51.040 8.603
37 cm 8 × 8 0.167 0.371 0.500 0.561 39.440 6.604

Average - - - - - 4.418

3.3.5. Comparative Analysis of Flight Time between the Single UAV System and the
Multiple UAV System

While it took 76 s and 162 s (Table 15) for the single UAV system (Figure 32) to
complete the flight routes shown by Line 1 and Line 2, respectively, it took only 25 s and
55 s, respectively, for the multiple UAV system, a 66% reduction in flight time. In the
current single and multiple UAV systems, UAVs stop flying and wait approximately 4 s to
control their shaking and take images. This means that the more locations are captured,
the longer the wait time. For Line 1, the single UAV system has 14 capturing locations,
while the multiple UAV system has only seven capturing locations, resulting in a difference
of about 28 s in wait time alone for aerial photography. More lines translate into longer
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wait times and, ultimately, longer flight times. In the case of extensive crop fields, the
difference widens further. As an illustration, a task that takes 15 min for the single UAV
system to complete can be achieved in just 7 min using the multiple UAV system. In short,
the multiple UAV system can effectively address the battery consumption issue with its
more comprehensive coverage and shorter flight times.

Table 15. Comparison of flight times for the single UAV and multiple UAV systems.

Driving Line Flight Time Based on Single
UAV

Flight Time Based on
Multi-UAV

1 1 min 16 s 25 s
2 2 min 42 s 55 s
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4. Conclusions

Using the multiple UAV system for crop phenotyping facilitated the creation of simul-
taneous multi-angle images and achieved greater detail and accuracy for image mosaicking
and point clouds. The comparative analysis of box phenotyping for the two systems
demonstrated that the aerial images captured by the multiple UAV system generated twice
the number of box points and point densities which were twice as large as those obtained
using the single UAV system. When the crop LAI was measured using the crop field
diorama, the error rate stood at 13.535% between the LAI derived from the aerial images
captured by the multiple UAV system and the ground-measured LAI, a sharp reduction
compared to the error rate of 50.801% recorded for the single UAV system. When crop
heights were measured, the error rates obtained using the single and multiple UAV systems
were 7.396% and 5.714%, respectively. The higher accuracy of the multiple UAV system
was attributed to its ability to generate more points and pixels for each yellow leaf during
image registration. This, in turn, improved the degree of point distribution and accuracy
for height measurement. In two experiments in which wind was applied, the average
LAI error rates for the single UAV system were 38.531% and 36.119%, lower than those
obtained without wind effects. The rationale behind this could be: (1) a reduction in leaf
points owing to inconsistent location information and (2) the wind-induced larger leaf
angles (than the predetermined angle) relative to the vertical line of the ground, causing
image registration to generate more yellow leaf pixels in the aerial images. Wind-induced
changes in leaf angle and inconsistent location information affected LAI values in the single
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UAV system. However, in the multiple UAV system, the problem of inconsistencies in
location information was effectively addressed, showing higher accuracy with LAI values
of 17.729% and 19.693%, respectively, in the two experiments. When crop heights were
measured under the influence of wind, no statistically significant difference in error rate
was witnessed between the two systems (6.640% in the single UAV system and 4.418% in
the multiple UAV system). Nevertheless, as in the LAI measurement, leaf angle changes
may have affected the results. If changes in leaf angle had been analyzed in real-time, the
multiple UAV system would have proved more accurate in measuring heights. Moreover,
since the multiple UAV system reduced the processing time by 66% compared to the single
UAV system, more accurate and comprehensive data can be obtained using multiple UAVs.
In conclusion, the multiple UAV collaborative driving system was found to have enor-
mous potential to facilitate monitoring crop growth conditions by addressing the existing
problems of longer flight time and low-quality phenotyping.

5. Future Plans

To demonstrate the stability and advantages of the multiple UAV system, crop models
and boxes were used to delve deeper into image mosaicking and phenotyping. Once the
system proves itself safe and stable to the extent that it can be used in real-world settings, the
multiple UAV system will streamline the mission of monitoring and measuring crop growth
conditions. One area for improvement in the current system is related to the situation
in which UAVs stop flying at a capturing location for image stabilization. In addition to
wasting time, there is a safety issue, as strong winds can occasionally produce unpredictable
disturbances. To tackle this issue, an innovative and efficient system needs to be developed
in which UAVs control their speed without stopping, share their location information,
and arrive at a capturing location simultaneously to generate simultaneous multi-angle
images effectively and in a timely manner. This advanced system may further reduce flight
times. Additionally, upgrading the RGB camera currently used in the experiment to a
multispectral camera will provide more meaningful and high-quality data so that profound
analyses of crop growth conditions can be conducted by embracing a wide range of factors,
such as chlorophyll, nitrogen content, and visible and invisible light spectra.
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