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Abstract: In this paper, we demonstrate the capabilities of Pleiades-1a imagery for very high reso-
lution (VHR) crop yield estimation by utilizing the predictor variables from the horizontal-spectral
information, through Normalized Difference Vegetation Indices (NDVI), and the vertical-volumetric
crop characteristics, through the derivation of Crop Canopy Models (CCMs), from the stereo imaging
capacity of the satellite. CCMs captured by Unmanned Aerial Vehicles are widely used in precision
farming applications, but they are not suitable for the mapping of large or inaccessible areas. We
further explore the spatiotemporal relationship of the CCMs and the NDVI for five observation dates
during the growing season for eight selected crop fields in Germany with harvester-measured ground
truth crop yield. Moreover, we explore different CCM normalization methods, as well as linear
and non-linear regression algorithms, for the crop yield estimation. Overall, using the Extremely
Randomized Trees regression, the combination of CCMs and NDVI achieves an R2 coefficient of
determination of 0.92.
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1. Introduction

Agriculture is under increasing pressure to transform and innovate its production
processes. The growing world population requires a growing amount of food, feed, and raw
materials for industrial processes and energy production [1]. At the same time, reducing
inputs such as fertilizer and agrochemicals is vital for reducing the negative impacts on the
environment and natural resources, such as groundwater and the biosphere [2].

Finally, yet importantly, the declining number of people involved in agricultural
production is challenging. It results in the urgent requirement to make human labor more
productive or to replace it. On the other hand, it supports a process described as the erosion
of knowledge, meaning that specific knowledge of farm managers on the characteristics of
fields on a subfield level, until recently used for optimizing production processes, decreases
along with the agricultural workforce.

1.1. Precision Agriculture

Precision agriculture is a toolset of digital technologies. It aims at supporting human
labor or replacing it. It also provides data and information on the spatial and temporal
variability of parameters affecting processes in plant production, including soil maps,
nutrient maps, yield maps, data collected with vehicle-mounted sensors, and satellite
data [3]. The aims of precision agriculture are (1) raising yield, (2) minimizing input and
input costs, and (3) reducing negative impacts on natural resources and the biosphere.
Therefore, it helps to address the challenges mentioned above that agriculture is facing,
now and in the future.

Remote Sens. 2023, 15, 3990. https://doi.org/10.3390/rs15163990 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15163990
https://doi.org/10.3390/rs15163990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-0226-6609
https://doi.org/10.3390/rs15163990
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15163990?type=check_update&version=1


Remote Sens. 2023, 15, 3990 2 of 15

Yield data are crucial in precision plant production [4]. On the one hand, understand-
ing the spatial variability of yield potential within fields is of substantial importance. It
helps to delineate management zones requiring different treatments for tillage, seed density,
fertilization, and the application of agrochemicals. On the other hand, yield data help eval-
uate and validate the effects of site-specific treatment, equivalent to the local adjustment of
agricultural tasks, such as tillage, seeding, fertilizing, and the application of agrochemicals.

Yield data are usually acquired during harvest by applying the GNSS and dynamic
weighing technology integrated into combine harvesters [5]. However, the adoption of
yield data collection systems could be higher. Farmers are unwilling to invest in additional
technology with an unknown return on investment, which requires additional attention
before and during harvest. Contractors providing harvest as a service for farmers are
reluctant to introduce yield data collection technology, as delivering yield data is usually
not rewarded. Last, but not least, yield data collected in the field is or may be erroneous,
and they therefore require treatment before processing and further use in precision farming
applications, such as site-specific treatment. For the reasons mentioned above, developing
processes that allow estimating local yield on fields without applying yield collection
technology is more than desirable.

1.2. Crop Canopy Models (CCM)

Photogrammetric methods applied to imagery from UAVs and other airborne sensors
have been widely used for precision farming, forestry, and hydrological (e.g., irrigation
engineering, glaciology) applications. High-resolution imagery (with grid sampling sizes
of less than 30 cm) offers high-precision three-dimensional modeling and object height
estimation (crop height, stem height, tree canopy height). Kümmerer et al. have lately
shown that Crop Canopy Models (CCMs) are very suitable for assessing the yield of mixed
cover crop stands [6]. Bendig et al. has shown that a combination of spectral measurements
and the determination of the canopy helps to estimate barley biomass [7].

Usually, laser scanning (light detection and ranging, LiDAR) data are widely used to
generate very high-resolution CCMs and three-dimensional object extraction, but they are
spatially limited and costly [8,9].

Satellite technologies are yet limited to coarser spatial resolution, especially for creating
topographic Digital Surface Models (DSM), with a spatial resolution of 1 m, at best. As in
any photogrammetric model, the vertical accuracy depends on the density of observations
and sufficient incident angles, the provision of GNSS-based Ground Control Points (GCPs),
and other available geodetic data.

Such DSMs can be generated by high-resolution Pleiades 1a/1b or SPOT-6/-7 imagery,
as both satellite platforms provide stereo imaging. They are used for the estimation of
building volumes and building heights, as shown in [10,11]. Forestry applications are
rare, but good results were achieved for deriving forest metrics in the alpine regions [12].
Three-dimensional information from stereo imaging was used as an additional input
feature to enhance the mapping accuracy for land cover and land use classifications [13].
New research includes generative models, such as the ETH Global Canopy Height 2020
product [14], based on a probabilistic deep learning model from Sentinel-2 imagery.

One clear advantage of satellite data versus the application of UAV and aerial imagery
is the capability to observe almost any larger area worldwide, especially in inaccessible
areas, avoiding costly field campaigns and areas with legal restrictions on UAV operations.
However, such remote monitoring can only sometimes rely on the setup of geodetically
verified GCPs, leading to accuracy challenges in photogrammetric modeling.

1.3. Yield Estimation Based on Satellite Data

Refs. [15,16] provide a broad overview of applying machine learning methods for
yield estimation based on satellite data. However, most of the approaches are limited to
the application of satellite imagery. Approaches to apply DSM, such as those provided by
the Pleiades 1a/1b system, should be more served. Ref. [17] reports that modeling yield
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from satellite imagery results in low correlations (mean r = 0.12) between the actual yield
recorded on a combine harvester and the modeling results. The author investigated data
from different sensors and derived different indices collected over a period of 13 years
from more than 900 fields with cereals and canola crops. Ref. [18] reports that recurrent
neuronal networks helped to estimate yield with high accuracy (max. R2: 0.88) when taking
an image-based approach. The performance decreased when predicting data from unseen
years, especially those with weather conditions not reflected in the training data sets.

The overarching goal of this study is to explore the feasibility of satellite-based pre-
dictor variables derived from the horizontal-spectral information, through Normalized
Difference Vegetation Indices (NDVI), and the vertical-volumetric crop characteristics,
through CCMs, from Pleiades-1a imagery.

2. Materials and Methods
2.1. Study Area and Data Collection

The study area is located in the municipality of Weidenbach, district of Ansbach,
Germany (49◦12′17.30′′N, 10◦39′42.10′′E), with an average elevation above sea level of
440 m. The predominant soil is a sandy loam. The Stagnic-Cambisols developed from
shallow loess over in situ weathered sandstone–claystone (Keuper). The long-term average
annual temperature in the study region is 8.9 ◦C, and the average annual temperature in
2020 was 9.7 ◦C. The long-term average annual precipitation is 650 mm. Precipitation fell
far below this level in 2020 (545 mm) and the two preceding years (561 mm in 2019 and
566 m in 2018), producing a massive deficit in the water balance (−400 mm) [19].

Yield data were collected with a Claas Tucano combine harvester (serial number
83801623) on eight fields (Figure 1), with an area ranging between 1.08 and 4.53 hectares,
between 23 July 2020 and 11 August 2020. The crops cultivated were predominantly small
grains (winter wheat, winter barley, triticale, and oat), including one field with canola.

To remove erroneous measurements (e.g., due to lodging and resulting speed changes),
raw data were filtered on yield measurements (between 2 t/ha and 15 t/ha) as well as
forward speed (above 1 km/h) with the software (QGIS Development Team 2022). The
spatial resolution of the yield data grids is 5.4 m.

In order to ensure a common reference system and cartographic projection, the yield
data have been geodetically transformed from ETRS89 to the coordinate system of the
Pleiades data, which is WGS84 UTM Zone 15 North (EPSG 32615). We have applied
bilinear interpolation for the pixel resampling to minimize yield value and resolution
changes. Table 1 shows the average yield for each of the test fields with the respective crop
cultivated: (a) winter barley, (b) winter wheat, (c) winter oats, (d) triticale, and (e) canola.

Table 1. Mean yield measurements for each field.

Field Crop Area in ha Average Yield in t/ha

Rotunderacker Winter barley 3.86 7.19
Sichertsbuehl Canola 2.86 4.79
Spessartacker Winter wheat 2.99 6.86

Steinbruch Winter barley 2.92 6.13
Theateracker Winter oats 1.08 6.87
Weihenacker Winter barley 1.87 6.15

Wosanger Winter wheat 3.98 5.74
Ziegelacker Triticale 4.53 7.81

The yield value distribution per crop type is shown in Figure 2, with the median
values of the three cereal crops being very similar. In contrast, the median values of triticale
and canola crops are higher and lower, respectively.
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2.2. Pleiades 1a/1b Data

We have obtained free-for-research Pleaides 1a/1b bi-stereo data from Airbus Imaging
(OneAtlas product) for an area of interest (AOI) of 25 km2 and five different observation
dates: 12 June 2020, 26 June 2020, 22 July 2020, 10 August 2020, and 7 September 2020.

The satellite images were selected accordingly with the Pleiades mission’s availability
and the absence of clouds over the requested AOI. The sensors of the two Pleiades-1a/b
satellites, operated by the French National Centre for Space Studies (CNES) and manufac-
tured by EADS, sense the earth’s surface with four multispectral channels in 2 m spatial
resolution and one panchromatic channel with 0.5 m spatial resolution. They acquire
images in agile stereo mode with one camera to observe the same area at different angles
and form a stereo image pair to obtain stereo information. This mode is typically used to
acquire two or more times the number of observations of the same area at different angles,
using the attitude maneuver of the satellite pitch or roll axis. Relying on high satellite
agility, the agile stereo mode can make rapid stereo observations of a large area.

Due to the relatively high cost of Pleiades data (in comparison to freely available
Landsat or Copernicus data), they has not been extensively used in precision farming or
farm management applications for crop monitoring or mapping. Several research studies
have been carried out, focusing on the derivation of high-resolution parcel boundary
detection [20], derivation of crop characteristics [21], and crop type mapping [22].

3. Data Analysis

We have conducted a descriptive analysis that aims to explain the relationship be-
tween the horizontal-spectral and vertical-volumetric properties of the crops, as well as to
introduce the vertical CCM features as additional independent variables for the supervised
regression and yield estimation. This assessment aims to evaluate the level of agreement
between those datasets and yield data and enable stratified yield modeling on low and
high-productivity zones, respectively. At last, we have extracted the aggregated temporal
features to reveal the relative temporal differences between the different dates which expe-
rience a significant increase or decrease in chlorophyll content (expressed by NDVI values)
and plant height (expressed by the CCM values). Data preprocessing has been conducted
with ESRI ArcMAP software, and the data analysis with the python-based data science
packages scikit-learn, seaborn, and geopandas.

3.1. Crop Canopy Model Extraction

For each observation date, we extracted a DSM based on the provided stereo data
using the OrthoEngine of the PCI Geomatica 2016 software (Version 2016 2016-08-04)
(https://catalyst.earth/). Tie points were automatically selected through Fast Fourier
Transform Phase Matching to ensure relative orientation between the images and the
Rational Polynomial Coefficients, delivered with the metadata of the Pleiades stereo im-
ages, as described in [23]. All tie point pairs with a root mean square error greater than
0.5 were removed from further analysis to reduce the contribution of tie point mismatching.
Epipolar image pairs were created as inputs to the automated DSM extraction with a low
smoothing filter for gap filling and Wallis filtering for shadow areas (unmapped areas out
of sensor sight). In order to derive the actual vegetation heights, we normalized the height
information of each DSM by obtaining a reference Digital Elevation Model (DEM) through
three different methods, as no GCP or other ground truth reference data are available.

1. nDSM_1: In PCI Geomatica, each DSM is converted to a bare-earth DEM by masking
out pixel groups with abrupt negative and positive slope changes and spatially
interpolating the areas in between from surrounding elevation values

2. nDSM_2: Each DSM is subtracted from an aggregated per-pixel minima DSM from
all observation dates, assuming that the vegetation dynamics would reveal bare soil
information, which can be used as a reference height for the crop canopy. This method
would not work for anthropogenic objects (buildings, bridges and other infrastructure)
or tree objects, as their height would be consistent for all observation dates.

https://catalyst.earth/
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3. nDSM_3: Each DSM is subtracted from a coarse resolution EU-DEM with 25 m
spatial resolution.

3.2. Yield Estimation

The combinatorial use of CCM and NDVI gives essential insights into the N-intake
of the plants, as well as maturation and harvesting [24]. It can also be used further for
the regressive estimation of synthetical CCM from descriptive data—such as the NDVI,
in our case—and to associate horizontal greenness and biomass information with vertical
and volumetric structures. As both datasets have a different spatial resolution, each
yield value cell has been associated with the aggregated median NDVI and median CCM
values. This also accounts for noise and erroneous CCM pixel estimates due to incidence
angle insufficiency. The mitigation of such problems is suggested via a high angle of
incidence [25].

We used and compared two supervised regression algorithms, Linear Regression
(based on ordinary least squares loss function) and Extremely Randomized Trees (ERT), an
enhanced version of the well-known Random Forest algorithm, to cope with non-linearity
in the feature space [26].

We trained different models from the ground truth data and the extracted NDVI and
CCM features from the Pleiades imagery. The ERT model is a forest of decision trees that
randomly uses different sets of splits, samples, and features to estimate the given ground
truth with the lowest possible absolute error, measured internally. By contrast, the linear
model builds a linear regression formula based on all given features by using ordinary least
squares loss.

To avoid contamination of the feature dataset with outliers (especially noisy values
from the DSM-based features), we used the Local Outlier Factor (LOF) to omit data that are
located outside the learned distribution [27]. We randomly held back 5% of the in situ data
for validation for each experimental setup and used 95% for training. The different setups
are defined as follows:

1. V1: Regression tests for different crop types
2. V2: Regression tests for different productivity levels
3. V3: Regression tests for all data (generic model)
4. V4: Cross-regression test on one field and inference on all other fields (crop-agnostic

transfer)
5. V5: Multi-temporal vs. single observations

In order to avoid the utilization of correlated features, we have applied Principal
Component Analysis (PCA) on the combined dataset consisting of NDVI and CCM features.
Furthermore, PCA transformation allows the fusion of multiple datasets with different
distributions [28].

The validation of the regression models is performed through different accuracy
metrics such as the coefficient of determination (R2), which is a widely used metric, showing
how well the ground truth data are explained by the model, as well as the root mean square
error (RMSE) and the mean absolute error (MAE); both of them represent the deviation
from the actual ground truth measurements and the modelled estimates in tons per hectare.

4. Results and Discussion

The inclusion of absolute height information from non-normalized, multi-temporal
DSMs, additionally to NDVI independent variables, has proven to improve regression
model accuracies and to lower the model error significantly for linear models (especially
when the features are PCA-transformed) but not for non-linear models (e.g., Random
Forest or ERT), where the contribution of additional features leads to a maximum gain of
R2 of about 0.05, which is not significant. On the other hand, our experiments showed
that including all features improved the estimation scores for crop-specific regression and
model transfer (from one crop to another).
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4.1. Crop Canopy Models

The relative orientation of the two satellite observations for each date achieves a
relative height estimation with an RMSE of less than 0.5 m. However, due to missing GCPs
and the use of bi-stereo instead of tri-stereo data, or even multi-bundle adjustment, vertical
deviations between the observations of quasi-invariant features such as buildings, forests,
and roads occur. Figure 3 shows the extracted nDSM and the associated NDVI image.
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10 August 2020, of the target area.

For better visualization, we have analyzed the standard deviation for 1000 random
points between all five observation dates for very low nDSM value ranges (where the
nDSM range is less than 1 m height), as shown in Figure 4. We concluded that such
average fluctuations of 0.28 m in vertical height are negligible. Based on this analysis, we
concluded that the automatically generated nDSM_1 is more suitable than the other two
nDSM derivation strategies (with higher fluctuations), and we used it as the final CCM
feature dataset.
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Figure 5 shows three-dimensional views of several parcels where row structures are
visible, as well as gaps (sowing/crop failure or other crop damages) and plowing or soil
management patterns. Such images could be combined with variable rate application maps
for fertilization or other farmer activities.
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Figure 5. CCMs on 26 June for four different fields of winter wheat and winter barley showing
different vertical structures (with brown–yellow–blue color-coding representing low–medium–high
DSM values, respectively).

4.2. Yield Estimation
4.2.1. Per Crop Type

The yield estimation using all CCM and NDVI variables for each crop type led to
satisfactory regression results based on the non-linear ERT algorithm, with winter wheat
achieving the highest (R2 = 0.92, RMSE = 0.41, MAE = 0.31) and winter oats having the
lowest regression accuracy (R2 = 0.74, RMSE = 0.47, MAE = 0.30), as shown in Figure 6.
The linear regression, however, failed for the crop types triticale and canola, with R2

less than 0.5, and is not shown in the validation plots. The sampling was performed by
drawing model-unseen pixels stratified for a specific crop type using a 95-5 split for training
and validation.

The results show that the combined use of all features significantly improves the
estimation results for all crop types except for winter oats and wheat, which only achieve
a minor improvement. The results with CCM-only features should be considered more
for canola.
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4.2.2. Per Productivity Level

Another assessment for yield estimation responsiveness of the features was performed
by grouping the crop yields in different productivity groups (1 = low, 2 = medium, and
3 = high yield) by statistical thresholding based on the first and third quantiles of the
distribution. Results revealed a clear correlation between low yields (productivity group 1)
and respective low NDVI and nDSM values across the crops—as shown in Figure 7.
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Figure 8 shows different regression results of the linear and Random Forest algorithm
for three different productivity levels, taking into account all input features agnostically
across all crop types, again proving the assumption that the yield estimation generated
better results with a lower error at the lower productivity levels (achieving an R2 score of
0.62, RMSE of 0.35, and MAE of 0.29). In contrast, a distinction of higher yield levels leads
to higher estimation errors (with an R2 score of less than 0.4, RMSE of 0.52, and MAE of
0.45) for the ERT and the linear regression algorithms. In contrast, the linear regression
only achieves an R2 of less than 0.2 at all levels.
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4.2.3. Generic Yield Model

This experiment aimed to produce a generic yield model, by sampling through all crop
types and productivity levels, and to prove whether the inclusion of CCM-based features
achieves higher R2 scores than NDVI-only models. Thus, the experiment tested feature
sets of CCM features (achieving R2 of 0.84), NDVI features (with R2 of 0.88), and the fusion
of both feature sets by PCA transform (where the common explained variance is in the
first components), achieving R2 of 0.92 with Random Forest regression and R2 of 0.41 with
linear regression (whereas the linear model fails when using only NDVI or CCM features).

As shown in Figure 9, the contribution of additional CCM features to the NDVI dataset
does not improve the accuracy of the ERT model, and the use of NDVI (or possibly any
other spectral vegetation index) is considered sufficient for the analysis.
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Figure 9. Validation results for a generic yield estimation with different sets of features (CCM,
NDVI, and PCA-transformed fusion) demonstrated the better performance of the ERT algorithm
(upper row) over the linear regression (lower row).

4.2.4. Stratified Cross-Validation (Crop-Agnostic Transfer)

The stratified cross-validation proves whether the model is crop-agnostic and whether
the features can be utilized arbitrarily, assuming that the multi-temporal NDVI and CCM-
based features contribute to crop-independent yield estimation. The results shown in
Figure 10 (depicting the different R2 scores) reveal that some yield estimation models
trained on a specific crop type are transferable to other crop types (winter wheat to winter
oats and canola, triticale to winter wheat). In contrast, in other cases, the transferability
fails for certain crop types (winter oats, winter wheat, triticale or canola to winter barley,
winter wheat to triticale). The lack of responsive soil data (e.g., cation exchange capacity,
clay content, or soil organic carbon) or management data (e.g., plowing, fertilization) could
explain the model failure.
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Our analysis proves that the inclusion of CCM-based features for the model transfer
improves estimation accuracies for some crop types (canola to winter wheat, winter oats
to triticale, and winter wheat to winter barley). In contrast, no improvement could be
measured (canola to winter barley, winter oats to canola), or even a decrease in model
robustness took place, through assumed contamination of the predictor variables (winter
oats to winter barley, triticale to winter oats).

4.2.5. Multitemporal vs. Single Observation

We analyzed the feature importance of both datasets to assess the necessity of multi-
temporal observations (whose acquisition would be much more expensive). For each
feature and observation date, we conducted a univariate regression which did not achieve
a higher R2 score than 0.2 in all cases. We assume this is due to processing errors (gaps,
spikes, view angle shadows, mismatching) within the CCM, and it is unmistakable evidence
that the yield estimation requires multi-temporal data that captures the phenology and
considers the crop development over time.

Figure 11 depicts the importance of different observation dates for both datasets, show-
ing that the most significant dates are those close to the peak of the season (or maximum
biomass), whereas the dates at or after harvest (with the satellite data capturing harvest
residuals and bare soil) have a much lower impact on the model. This is shown through
SHAP metrics (SHapley Additive exPlanations), which not only show the importance of
each feature but also the positive (positive x-axis) or negative (negative x-axis) impact on
the model with lower (red) or higher (blue) feature values, respectively, as well as the
distribution of the feature values [29].
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contributions to the model.

SHAP metrics can be used as an alternative feature selection method to the natively
implemented feature importance metrics of tree-based estimators (Random Forest, Gradient
Boosting Trees, Adaptive Boosting, and the ERT algorithm used in this study). Features
with a very low model contribution can be neglected for further use, such as the last NDVI
observation from 7 September, as seen in Figure 11.

4.3. Assessment of Growth Characteristics

In all cases, except the field “Theateracker” (with winter oats), the nDSM values
follow the decreasing NDVI values at the season’s end for all crops (July–August). This
observation confirms the initial assumption that, while different crops are maturing after
maximum greenness (maximum biomass at the peak of the season), the chlorophyll content
is decreasing (yellowing, ripening stages) and leading to a delayed decrease in crop stem
heights (pendent stem heads) [30,31]. Moreover, as shown in Figure 12, harvest activity
also leads to reduced crop height and decreased NDVI levels by removing stems and
above-ground biomass from the respective field.
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5. Conclusions

Generating DSMs from Pleiades imagery without pre-defined GCPs and relying only
on relative orientation through tie points is possible, but it needs to be more accurate to
derive absolute (normalized) heights. The computed DSMs, however, capture vertical
vegetation changes and can be used as an additional data source to reveal crop growth
dynamics along with NDVI time series.

While the derivation of normalized nDSM from computed DEMs may be sufficient for
forestry and urban mapping use cases, the omission of essential terrain features (through
the required filtering of gaps and spikes with too abrupt slope changes) worsens the
extraction of exact crop heights, especially for crops with a height less than 2 m. Our results
have shown that bi-stereo imaging is not sufficient for those purposes.

Future model improvements would include tri-stereo instead of bi-stereo Pleiades data,
precisely defined GCPs, and using a pre-computed reference DEM to extract normalized
heights. Moreover, deep learning methods may improve the results by convolutional
filtering as implemented in Convolutional Neural Networks—mainly to contextualize the
spatial relationship of horizontal and vertical structures expressed by NDVI and DSM
features, respectively.

Pleiades 1a/1b data are feasible for high-resolution yield estimation through NDVI
features. Further research would include the utilization of other spectral indices, which
can be derived from the Pleiades 1a/1b sensor, such as the Soil-Adjusted Vegetation
Index (SAVI), the Enhanced Vegetation Index (EVI), or the Green Chlorophyll Index (GCI).
However, including additional CCM features has yet to improve the generic (crop-agnostic)
yield estimation, where the NDVI is the most contributive variable. On the other side,
the crop-specific yield estimation and the transfer modeling between different crop types
showed that including CCM features stabilizes predictions and decreases model errors,
where crop height seems essential for yield estimation. However, the costs of stereo data
are high; on average, depending on the tasking mode (single image or multiple image
series acquisition) and the national data distributor, the price can vary between EUR 28
and EUR 38 per km2 with a minimum area of interest between about 100 km2 and 250 km2.

Moreover, the processing costs for the photogrammetric modeling and the resulting
gains in yield estimation accuracy need to be evaluated and compared against the costs,
drawbacks, and benefits (e.g., spatial resolution, acquisition swath, timeliness of data
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provision) of the utilization of UAV [32]. Especially for crop types where the biomass
(represented in the volumetric CCM features) or crop height is not related to the yield,
such as legumes, tubers, orchards, or vegetable crops, we do not recommend the inclusion
of CCMs as input features. In addition, the operational use of open-source software for
deriving a DSM from stereo imagery or bundle adjustment is still not mature enough, and
the usage of expensive proprietary software might be necessary.
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