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Abstract: Reservoir water and rainfall, leading to fluctuations groundwater levels, are the main
triggering factors that induce landslides in the Three Gorges Reservoir area. This study investigates
the response mechanism of landslide deformation under reservoir water and rainfall variations
through long-time on-site observations. To address the non-stationary characteristics of the time-
series records, joint time-frequency analysis (JTFA) is first introduced into our landslide prediction
model. This model employs optimal variational mode decomposition (VMD) to obtain specific signal
components with clear physical meaning, such as trend component and periodic components. Then,
multi-scale response analysis between the displacement and external factors three wavelet methods
was conducted. The analysis results show a 1 year primary cycle of the time series associated with the
landslide evolution. The reservoir water level and rainfall show anti-phase fluctuations. The periodic
displacement correlates significantly with rainfall, lagging by about two months. The reservoir
water is anti-phase with the landslide displacement, preceding it by approximately three months
(−51 ± 8◦ phase difference). For landslide displacement prediction, the gated recurrent units (GRU)
neural network model is integrated into the deep learning forecasting architecture. The model takes
into account the correlation and hysteresis effect of input variables. Through six experiments, we
investigate the effect of data volume on model predictions to determine the optimal model. The
results demonstrate that our proposed model ensures high performance in landslide prediction.
Moreover, a comparison with six other intelligent algorithms shows the advantages of our model in
terms of time-effectiveness and long-sequence forecasting.

Keywords: joint time-frequency analysis (JTFA); multi-scale response analysis; hysteresis effect; deep
learning forecasting model

1. Introduction

Since the Three Gorges Reservoir (TGR) was put into operation in June 2003, the
stability of slopes along the TGR bank has changed dramatically in response to the periodic
fluctuation of the rainfall intensity and the reservoir storage [1–3], resulting in thousands
of reactivated landslides. The geomechanical and hydrologic characteristics of these land-
slides are continually affected by the consistent water levels and rainfall changes, leading
to catastrophic events [4]. For example, the July 2003 Qianjiangping landslide developed
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during the initial reservoir impoundment, causing 24 fatalities and significant economic
losses [5]. Since then, research on long-term monitoring and early warning of these land-
slides has steadily expanded, leading to a deeper understanding of the inherent patterns
and the response mechanism of reservoir landslides.

Studies have revealed that the evolution of the reservoir landslide involves a com-
plex, non-stationary and nonlinear dynamic process [6,7]. Consequently, the long-term
observations collected on the landslide’s behavior exhibit non-stationary time-varying
characteristics with specific trends and/or seasonality. Although the deformation evolution
and response analysis of reservoir landslides in TGR have been extensively studied and dis-
cussed in the time domain [8–10], their characteristics in the frequency domain are relatively
unexplored, concealing valuable spectral information. Furthermore, non-stationary time
series show time-frequency characteristics [6,11,12], making time-frequency representation
of the signal essential for identifying the dominant fluctuation modes/spectra of different
signals and understanding how those modes vary over time.

The empirical mode decomposition (EMD), developed by Huang et al. [13], is well-
known for its time-frequency analysis, which is suitable for processing non-stationary
time series. This method decomposes the data into different band-limited intrinsic mode
functions (IMFs), but is sensitive to noise and sampling [14]. The variational modal
decomposition (VMD), a more recent signal decomposition technique, enables fully intrinsic
and adaptive decomposition [14]. In addition, Isham et al. also pointed out the importance
of determining the number of VMD modes to obtain specific signal components with
explicitly physical meaning [15]. To achieve efficient decomposition, the Shannon entropy,
reflecting the uniformity of probability distribution, can be used as a fitness function to
derive optimal parameters through an optimization method, such as the harmony search
(HS) algorithm [16] and the wolf optimization algorithm (GWO) [17] employed in this
study. GWO is easily implemented and exhibits advantages in strong convergence with
few parameters.

Moreover, it is crucial to explore the response mechanisms of landslide deforma-
tion [18] to unveil the changing patterns of specific signal components at different scales.
In 1998, Torrence et al. proposed wavelet analysis (WA) to study non-stationary time series
in signal processing [19]. Presently, wavelet decomposition and denoising are the most pop-
ular WA methods in time series analysis widely used in Geophysics [19], Geography [20]
and Meteorology [21]. However, WA methods, such as continuous wavelet transform
(CWT), cross-wavelet transform (XWT) and wavelet coherency (WTC), are more suitable
for analyzing non-stationary time series at different scales [7,22–24]. Unfortunately, they
are rarely used to analyze long-term non-stationary observations associated with landslide
behavior. As a result, this study will extend WA methods and optimized VMD into a deep
learning framework to conduct a joint time-frequency analysis (JTFA) before establishing a
landslide forecasting model.

So far, various approaches have been developed for landslide hazards research, rang-
ing from physics-based to statistics-based models [9,25,26]. Over the past decades, the
integration of machine learning (ML) methods into landslide research has led to significant
advancements [2,8,9]. In recent years, deep-learning approaches, like recurrent neural
networks (RNN) and their variants, designed to address the gradient explosion problem,
have shown impressive success in predicting landslide displacements based on GNSS time
series data [4,10,27,28]. Among these variants, the gated recurrent unit (GRU) proposed
by Chung et al. [29] stands out, surpassing other RNN variants, such as the LSTM, in
terms of training time, parameter update and generalization ability. Its outstanding perfor-
mance extends to diverse fields, including economics [30], flood control [31] and disaster
reduction [10], among others.

This paper presents a deep learning neural network model for predicting landslide
displacement, incorporating a joint time-frequency analysis (JTFA) module. The JTFA
employs optimal variational mode decomposition (VMD) to obtain specific signal com-
ponents with clear physical meaning (e.g., trend component and periodic component).
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Subsequently, multi-scale response analysis between the displacement and external factors
is carried out by wavelet transform (CWT), cross-wavelet transform (XWT) and wavelet
coherency (WTC). The enhanced GRU model based on deep learning architecture is em-
ployed to forecast landslide displacement (Figure 1e–g). Additionally, the model considers
the correlation and hysteresis effect of input variables, such as impact factors, during the
modeling process.
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Figure 1. Architecture of the forecasting model.

2. Methodology

As can be seen in Figure 1, the forecasting model consists of seven parts: Figure 1 (a)
signal decomposition of landslide displacement, Figure 1 (b) signal decomposition of the
impacting factors, Figure 1 (c) multi-scale response analysis of landslide deformation by
JTFA, Figure 1 (d) data packet preparation for the deep-learning neural network model,
Figure 1 (e) trend displacement prediction by DES, Figure 1 (f) periodic and random
displacement prediction by GRU, and Figure 1 (g) cumulative displacements prediction by
the optimal model.

First, the on-site measured landslide displacements and the pre-selected impact factor
sequences are decomposed into specific IMF components by an optimal VMD (Figure 1a,b).
The number and parameters of the VMD modes with explicit physical meanings are deter-
mined by employing the Shannon entropy as a fitness function and the GWO optimization
method. Then, a multi-scale response analysis between the displacement and external fac-
tors is carried out by three wavelet analysis methods to investigate landslide deformation
response mechanisms and to reveal the changing patterns of specific signal components
at different scales (Figure 1c). Finally, the enhanced GRU and DES model based on deep
learning architecture is used to predict the landslide displacement (Figure 1e–g).

2.1. Joint Time-Frequency Analysis (JTFA)

The collected long-term observations associated with the landslide’s behavior are non-
stationary time series with specific trends or/and seasonality. The landslide displacement is
a time-series function controlled by geological conditions, reflecting long-term deformation
trends. While subject to external influences, the landslide displacement behaves as a
periodic variation with near-white noise associated with random factors. Therefore, the
landslide displacement time series can be expressed as follows:

Yt = Tt + Pt + Rt (1)

where Yt is the landslide displacement at time t; while Tt, Pt and Rt are the trend, periodic
and random terms, respectively.
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While studies on the deformation characteristics of landslides have been extensively
explored in the time domain, the significance of time-frequency analysis of the signal should
not be overlooked. Time-frequency analysis reveals the time-frequency features, and it pro-
vides access to the implicit spectral information of displacement Yt with different spectra,
enabling a time-frequency perspective of information mining. Having a time-frequency rep-
resentation is indispensable to investigate the dominant fluctuation spectra of deformation
signals and understand how those spectra vary over time. This involves one-dimensional
time series converting into a diffuse two-dimensional time-frequency image, allowing for a
comprehensive examination of the signal’s temporal and frequency properties.

2.1.1. Grey Wolf Optimized Variational Mode Decomposition (GWO-VMD)

The VMD enables fully intrinsic and adaptive signal decomposition [14], by which the
input displacement signal could be divided into several intrinsic mode functions (IMFs)
with specific characteristics determined in advance. To ensure that (1) the central frequency
bandwidth of each IMF is limited, (2) the sum of the estimated bandwidths is minimized,
and (3) the sum of each IMF equals the original signal f so that the constrained variational
equation can be expressed as follows:

min
{uk},{wk}

{
∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2

}
s.t.

K
∑
k

uk = f
(2)

where uk is the kth decomposed IMF with a center frequency wk; and δ(t) and * indicate the
Dirac function and the convolution operator, respectively.

Then, the Lagrange multipliers λ and decomposition parameter ε are introduced to
transform the constrained problem into an unconstrained variational one, yielding the
augmented Lagrange expression:

L({uk}, {ωk}, λ) =

ε∑
k
‖∂t[(δ(t) + j/πt) ∗ uk(t)]e−jωkt‖2

2+

‖ f (t)−∑
k

uk(t)‖2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

Here, the alternating direction multiplier method (ADMM) is used to search the saddle
points of the unconstrained model to obtain the optimal IMFs and the center frequency of
the constrained model. This process is defined as a function fVMD in the Algorithm 1.

The VMD is used to decompose complex digital signals, and the empirical decomposi-
tion parameter ε is usually K > 3. This value will not be physically meaningful when applied
to the landslide displacement decomposition. Thus, obtaining suitable VMD modes is
crucial to getting specific signal components with explicitly physical meaning. At this point,
the Shannon entropy (Equation (4)) is introduced to obtain the optimal IMFs with sparse
features: the larger the value is, the better the uniformity of the probability distribution
is [32].

H(uk) = −
n

∑
i=1

ui
k log ui

k (4)

As for the landslide’s periodic displacement, the probability distribution is relatively
uniform and sparse. Thus, the value of ε is optimized using the grey wolf optimizer (GWO)
with H(uk) as the fitness function [26] to obtain the periodic displacement with a uniform
probability distribution and strong sparsity along with the trend and random terms.

The landslide displacement Yt is used as input. The population size P of the grey wolf,
the upper bound Xup and lower bound Xlow of the individual grey wolves are initialized.
Then, the algorithm iterates and updates N times to obtain the optimal value of ε (see the
Algorithm 1). In the Algorithm 1, both A and C are coefficient vectors with A = 2a · r1 − a
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and C = 2 · r2. r1 and r2 are random values between 0 and 1. The convergence factor,
a = 2− 2n/N, decreases linearly from 2 to 0 during the iteration.

Algorithm 1 The GWO-VMD

Initialize εα, εβ, εδ, n ← 0
ε1

p ← Xlow +
(
Xup − Xlow

)
× rand(0, 1) (5)

repeat
n ← n + 1{

up
k

}
← fVMD

(
Yt, εn

p

)
(6)

Update εα, εβ, εδ:

εα, εβ, εδ ← max
1,2,3

H
({

up
k=2

})
(7)

for p = 1 : P do
Update εp:

X1 ← εα − A1

∣∣∣C1εα − εn
p

∣∣∣ (8)

X2 ← εβ − A2

∣∣∣C2εβ − εn
p

∣∣∣ (9)

X3 ← εδ − A3

∣∣∣C3εδ − εn
p

∣∣∣ (10)

εn+1
p ← mean(X1, X2, X3) (11)

end for
until n = N.

2.1.2. Wavelet Analysis (WA)

Torrence and Compo [22] proposed WA to study non-stationary time series in signal
processing. The most popular WA methods in time series analysis include wavelet decom-
position and denoising. Additionally, there are other WA methods, such as the continuous
wavelet transform (CWT), the cross-wavelet transform (XWT) and the wavelet coherency
(WTC), which excel at non-stationary time series analysis at various scales. However,
despite their effectiveness, these WA methods are still rarely used in non-stationary time
series analysis associated with the behavior of landslides.

For a discrete time-series xn (n = 1, . . ., N) with equal time spacing δt, the CWT is
used for mapping the changing properties of non-stationary signals. CWT is defined as the
convolution of xn with a scaled and translated version of the wavelet basis function:

Wn(s) =
N−1

∑
n′=1

xn′ψ ∗
[
(n′ − n)δt

s

]
(12)

where * indicates the complex conjugate, s represents the wavelet scale, and n is the
localized time index. The non-orthogonal Morlet wavelets are chosen as the basis function:
ψ0(η) = π−1/4eiw0ηe−η2/2, where η and w0 are non-dimensional parameters of time and
frequency, respectively. When w0 = 6, the wavelet scale s equals the Fourier period. The
wavelet basis functions ψ0 are then normalized to have unit energy, and the CWT is
conducted in the Fourier space to improve efficiency.

In Equation (12), Wn(s) is a complex value, and thus, |Wn(s)|2 denotes the wavelet
power spectrum that clearly discriminates the periodic fluctuation and intensity in the time
series. As the input data is assumed to be cyclic, edge effects appear in the power spectrum
when dealing with finite-length time series. Hence, the cone of influence (COI) is defined,
representing the corresponding edge effects within the region of the power spectrum. In
addition, a Fourier power spectrum is constructed by Monte Carlo to represent the red noise
background spectrum and later performs a χ2 test with a specific confidence level, e.g., 95%,
to calculate each scale and construct the confidence contour with a 95% confidence level.

The XWT of two time-series xn and yn is defined as WXY = WXWY*, which measures
the similarity between two waveforms. The arg(WXY) is the relative local phase between xn
and yn in the time-frequency space. The mean and confidence interval must be estimated
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to analyze the phase difference. The phase relation is quantified using the periodic mean of
phases over a region with a significance level of 5% outside the COI. The periodic mean of
a set of phase angles is defined as follows:

am = arg(X, Y) with X =
n

∑
i=1

cos(αi) and Y =
n

∑
i=1

sin(αi) (13)

Because the phase angles are not independent, it is difficult to calculate the confidence
interval of the mean angle. Thus, the solution is obtained by calculating the scatter around

the mean using the circular standard deviation er =
√
−2 ln

(√
X2 + Y2/n

)
.

The power spectrum of XWT only shows the high common power part, while the WTC
measures the coherence of the XWT in the time-frequency space. The WTC of two-time
series is defined as follows:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
· S
(

s−1|WY
n (s)|

2
) (14)

where S is the smooth operator, and S(W) = Sscale(Stime(Wn(S))). Sscale and Stime indicate
smoothing along the wavelet scale axis and over time, separately.

2.2. Deep Learning Forecasting Model
2.2.1. Gated Recurrent Unit (GRU)

The gated recurrent unit (GRU) is a variant of recurrent neural networks (RNN),
which outperforms other RNN variants, e.g., the LSTM [29], in terms of training time,
and has fewer parameters. The GRU enables each recurrent unit to capture dependencies
adaptively at different time scales. As a refinement of the general RNN structure, GRU
is more straightforward, owing to the absence of a separate storage unit (see Figure 2)
regulating the internal information flow via a gated unit. Moreover, it is more efficient in
training time, parameter update and generalization ability than other RNNs [29].
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Figure 2. The network structure of GRU.

The update gate zt is responsible for determining how much of the past information is
to be neglected, while the reset gate rt is responsible for deciding how much past knowledge
needs to be passed along into the future. Assume that the current input at t is xt, then one
forward calculation of GRU is as follows:

zt = σ(Wz · [ht−1, xt] + bz) (15)

rt = σ(Wr · [ht−1, xt] + br) (16)
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h̃t = tanh
(
Wh̃ · [rt ∗ ht−1, xt] + bh̃

)
(17)

where σ indicates the sigmoid function, and W and b are the weight and bias parameters,
respectively.

The hidden state at the present moment ht ht of the network is determined by the
update gate, the candidate state of the previous time step ht−1 and the current moment h̃t.
The output of the loop ŷt can be calculated by

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (18)

ŷt = σ(Wo · ht) + bo (19)

During the training process, the mean-square error (MSE) is used to measure the

errors, and the loss function is defined as loss =
T
∑

t=1
(ŷt − xt)

2/T, which is optimized by

the adaptive moment estimation (Adam) [33] to obtain the minimization loss, and update
W and b iteratively.

2.2.2. Double Exponential Smoothing (DES)

Double exponential smoothing (DES) is a weighted moving average method suit-
able for predicting time series with certain trends. This method operates by adopting a
weighted combination of the past observations and recent observations, with relatively
higher weights assigned to the more recent data points. The slope component is updated
through exponential smoothing [34], making it well-suited for time-sensitive landslide
displacement prediction. Thus, DES is employed to predict the trend component of the
landslide displacement.

Given a displacement time series with a specific trend xt, t = 1, . . ., N. st represents the
exponential smoothing value, bt represents the optimal trend estimate. The model’s output
ŷt+m is an estimate of xt+m at t + m (where m ≥ 1) and can be written as:

st = ζxt + (1− ζ)(st−1 + bt−1) (20)

bt = ξ(st − st−1) + (1− ξ)bt−1 (21)

ŷt+m = st + mbt (22)

where s1 = x1 and b1 = x1 − x0. The ζ and ξ are smoothing factors for the data and the trend,
respectively, that range from 0 to 1 and are usually set as ζ = 0.98 and ξ = 0.99.

2.2.3. Evaluation Indicators

Two evaluation indicators, namely the coefficient of determination (R2) and the root
mean square error (RMSE), are introduced to evaluate the performance of the deep learning
architecture forecasting mode. These indicators are widely used in deep learning regression
tasks and are defined as follows:

R2 = 1− ∑N
t=1(yt − ŷt)

2

∑N
t=1(yt − y)2 (23)

RMSE =

√
1
N ∑N

t=1(yt − ŷt)
2 (24)

where yt and ŷt are the observations and the predicted value at time t, respectively, and y
represents the mean of the N observed measures.
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3. Multi-Scale Response Analysis with JTFA
3.1. Pre-Processing of the Collected Data Sequence

Baishuihe landslide is a typical loose mound landslide in the TGR, about 56 km west
of the Three Gorges Dam in Zigui County, Hubei Province (see Figure 3a). The landslide
slope is about 30◦ with an average thickness of about 30 m, and the volume is about
1260 × 104 m3. The sliding surface is a contact zone between residual slope deposit and
bedrock that is about 0.9–3.1 m thick. Its bedrock lithology is a medium-thick sandstone
layer with a thin mudstone layer, yielding 15◦ ∠ 36◦, with joints and fissures developed in
the rock layer. The slide material consists mainly of residual Quaternary slope deposits of
gravelly soil with a gravel content of 20% to 40% [35].
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of the Three Gorges Dam in Zigui County, Hubei Province (see Figure 3a). The landslide 
slope is about 30° with an average thickness of about 30 m, and the volume is about 1260 
× 104 m3. The sliding surface is a contact zone between residual slope deposit and bedrock 
that is about 0.9–3.1 m thick. Its bedrock lithology is a medium-thick sandstone layer with 
a thin mudstone layer, yielding 15° ∠ 36°, with joints and fissures developed in the rock 
layer. The slide material consists mainly of residual Quaternary slope deposits of gravelly 
soil with a gravel content of 20% to 40% [35]. 

As shown in Figure 3b, 11 GNSS monitoring stations (with a plane accuracy of 5 ± 1 
ppm) were deployed on the Baishuihe landslide; six stations, namely the ZG93, ZG118, 
XD-01, XD-02, XD-03 and XD-04, are located in the warning zone. The observed displace-
ments and the corresponding rainfall and reservoir levels are illustrated in Figure 4. The 
TGR is in the wet season from May to September when the reservoir begins to play a 
regulatory role of releasing flood water in moderation per annum. At this time of year, a 
clear pattern of a step increase in the cumulative displacement appears, indicating a com-
bined effect of the changing reservoir water levels and rainfall on the landslide evolution. 
However, monitoring stations in the non-warning area give a relatively small displace-
ment variation with an average annual amount of around 35 mm. In the warning zone, 
the ZG93 station is located on profile III. As shown in Figure 3c, the mid-slip zone runs 
the entire slope length; the leading edge of the landslide has been submerged in water for 
years, making the stability of the slope within this area vulnerable to the reservoir water level. 
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Figure 3. (a) Location of the landslide. (b) monitoring layout diagram. (c) geological profile III’

through point ZG93.

As shown in Figure 3b, 11 GNSS monitoring stations (with a plane accuracy of
5 ± 1 ppm) were deployed on the Baishuihe landslide; six stations, namely the ZG93,
ZG118, XD-01, XD-02, XD-03 and XD-04, are located in the warning zone. The observed
displacements and the corresponding rainfall and reservoir levels are illustrated in Figure 4.
The TGR is in the wet season from May to September when the reservoir begins to play a
regulatory role of releasing flood water in moderation per annum. At this time of year, a
clear pattern of a step increase in the cumulative displacement appears, indicating a com-
bined effect of the changing reservoir water levels and rainfall on the landslide evolution.
However, monitoring stations in the non-warning area give a relatively small displacement
variation with an average annual amount of around 35 mm. In the warning zone, the ZG93
station is located on profile III. As shown in Figure 3c, the mid-slip zone runs the entire
slope length; the leading edge of the landslide has been submerged in water for years,
making the stability of the slope within this area vulnerable to the reservoir water level.
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Figure 4. Monitoring data in time series of the Baishuihe landslide.

In the subsequent analysis, the site monitoring data collected by ZG93 is selected as the
data source of displacement. Other synchronous on-site data include the monthly reservoir
water level data and the local rainfall data in the TGR between July 2003 and December
2012. As shown in Figure 4, the time-series displacement of the landslide shows specific
trends, seasonality and noise-induced fluctuations, indicating the need to obtain IFMs
based on VMD. Setting K = 3 in VMD allow us to acquire three IMFs in an increasing order
of frequency. The influence factors, e.g., the reservoir level and rainfall, mainly contribute
to the periodic terms, showing cyclical fluctuations. At this point, the Shannon entropy is
introduced as the fitness function to obtain the optimal IMFs by searching for the optimum
ε using the GWO. The population size of the GWO is set to 20, the number of iterations
to 100, and the upper-lower bounds to [0.01,100]. The optimal ε of ZG93 was determined
to be 0.55; it is then utilized in the VMD to obtain the trend, the periodic and the random
components of the displacement (Figure 5).
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Figure 5. Decomposition result of displacement at ZG93.

3.2. Pre-Selection of the Impact Factors

Surface water infiltration is an essential factor affecting slope stability, especially
concerning the matrix suction of the unsaturated zone. When the slope experiences rainfall
infiltration, the bulk density increases, causing the matrix suction to decrease, which
in turn raises the sliding forces and reduces the shear strength [36]. Moreover, rainfall
infiltration into fractures enhances the split effect and raises the groundwater table, resulting
in an increase in porewater pressure [37], thus affecting the stability of the landslide.
As shown in Figure 6, the effect of rainfall on landslide displacement has an evident
hysteresis. For example, the wet season in the TGR area typically begins in May, but the
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response of landslide deformation does not manifest until July or August. This delayed
response highlights the complex interactions between rainfall, infiltration and subsequent
landslide movements.
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Figure 6. Rainfall effects on landslide displacement.

Studies have shown that the periodic deformation highly correlates with the cumu-
lative rainfall of the current month and the preceding two months [2]. In this study, grey
correlation analysis gives a correlation degree of 0.79 and 0.78, further confirming their
close relationship with the displacement time series. Thus, the monthly rainfall V2 and
the two-month cumulative rainfall V3 are selected to characterize the rainfall effects on
landslide displacement, thereby avoiding transitional redundancy.

The periodical variation of reservoir level alters the distribution of the seepage field
and the stress state of the rock mass, directly influencing the stability of the landslide. The
rapid decline in reservoir water results in a higher hydraulic gradient inside and outside
the slope [38]. The seepage force along the slope greatly affects the landslide’s stability,
especially during the late reservoir water decline when rainfall concentration occurs. The
landslide deformation and failure process are further accelerated [39]. As shown in Figure 7,
the changes in the periodical deformation are consistent with the reservoir level fluctuation.
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To characterize the reservoir level effects on landslide displacement, the monthly
mean water level V1, the monthly variation V4, the monthly change rate V5 and the bi-
monthly variation V6 of the reservoir water level are selected. These variables exhibit a
grey correlation degree of 0.78, 0.81, 0.8 and 0.76, respectively, signifying their significant
relationship with the displacement of the landslide.

During the decomposition of the influence factors, we set K = 2 because they mainly
show cyclical fluctuations. The other VMD settings are the same as those used for the
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landslide displacement. The Shannon entropy of the periodic term of the factors serves
as the fitness function to obtain the optimal ε. The six obtained values of ε are 0.23, 0.99,
0.13, 0.98, 0.11 and 0.95, respectively. The results are given in Figure 8, where subscript p
indicates the periodic term and subscript s indicates the random term.
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3.3. Multi-Scale Response Analysis

Investigating the deformation characteristics and the response analysis at different
scales is crucial to revealing the landslide mechanism. To achieve this, the JTFA is intro-
duced to conduct a multi-scale response analysis between the displacement and external
factors by three WA methods to investigate the deformation response mechanisms and
reveal the changing patterns of specific signal components at different scales. The WA
methods employed in this study include the continuous wavelet transform (CWT), the
cross-wavelet transform (XWT) and the wavelet coherency (WTC).

3.3.1. Analysis of CWT

The CWT extends time series analysis into a time-frequency domain to intuitively
map the changing properties of non-stationary signals. Through CWT, we have observed
an apparent yearly periodicity (1 year cycle) in the time series data associated with the
Baishuihe landslide. This periodicity is evident in the landslide displacement, rainfall
intensity and reservoir levels fluctuation, all coinciding with the primary cycle.

As critical external factors influencing landslides displacement, the variation of the
rainfall and reservoir water level (R.w.l) also exhibits specific patterns. With a subtropical
monsoon climate, the precipitation in the TGR shows seasonal features characterized by a
total rainfall exceeding 1000 mm per year. The rainfall is concentrated mainly in summer
and winter [40], which aligns with the 1 year cycle (12 months) of monsoon-related patterns
obtained by the CWT analysis (see Figure 9a).
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Figure 9. The CWT power spectrum of the rainfall (a), the reservoir water level (R.w.l) (b) and
the displacement at ZG93 (c). Regions enclosed by the heavy solid black line show a greater than
95% confidence level of the red noise standard spectrum. The cross-hatched regions on either end
indicate the “cone of influence”, where edge effects become important. Color changes mean different
magnitudes of power.

The storage of the TGR can be categorized into three stages: Stage I (June 2003–August
2006) with an average storage level of 135 m; Stage II (August 2006–August 2008) with
the highest storage level raised to 156 m; Stage III starting from November 2008 with
the highest storage level regulated to 175 m. Since then, the reservoir water level has
fluctuated between 145 m and 175 m, exhibiting a contrary periodic fluctuation to the pre-
cipitation intensity due to artificial flood control. As shown in Figure 9b, a clear 1 year cycle
(12 months) of R.w.l has been observed since 2006.

Generally, the displacement dominated by geological conditions is approximately
monotonic over time, indicating the long-term trend. The displacement affected by external
triggering factors (e.g., rainfall and R.w.l variation) can be expressed as a proximate periodic
function, leading to different deformation features. Thus, the periodical displacement is the
optimal option to illustrate the multi-scale response relationship with the impact factors.

Figure 9c gives the CWT power spectrum of the displacement at ZG93, showing a
1 year cyclic period (12 months), indicating a combined effect of changing reservoir water
levels and rainfall on the landslide displacement. In addition, a 2 years cyclic period
(24 months) is observed during extreme changes in the landslide displacement. This
phenomenon seems related to the deformation responding to the overall rise of the R.w.l,
but further research is still needed to confirm the underlying causes. Thus, cross-analysis
between the displacement and the influence factors are performed via XWT and WTC
later to further study the effect of rainfall and R.w.l variation on the kinematics of the
Baishuihe landslide.

3.3.2. Analysis of XWT and WTC

XWT is a measure of similarity between two waveforms, showing the presence of
high common power part. On the other hand, the WTC, which combines wavelet trans-
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form and coherence analysis, measures the coherence of the XWT in the time-frequency
space. It reproduces the consistency and correlation of the sequence in different periods
and scales through time-frequency analysis of the time series data [41]. Thus, employing
XWT and WTC with dual time series will contribute to further elucidating the charac-
teristics of landslide displacements and impact factors in terms of local coherence and
detailed variation.

To explore the underlying correlations and causes in multiple time periods and scales
(e.g., monthly or yearly time scales), we construct, the XWT power and the WTC coherence
spectrum of the periodic displacement and the six pre-selected impact factors. The red
noise standard spectrum is used to verify the reliability of the results, with a 95% confidence
level obtained through the standard red noise test enclosed by the heavy solid black line.
The thin solid black line enclosed area represents the cone of influence (COI) of the wavelet
analysis, where edge effects are significant; thus, the response relationships will not be
analyzed outside the COI.

As can be seen from Figure 10, there is a high common power area shared by the R.w.l
and the rainfall time series on a time scale of 1 year (12 months) throughout the study period
(2003–2012). The two time series are anti-phase relationship within the whole high common
power area, with a mean phase difference of about −178 ± 3◦, confirming a fluctuation
pattern of the R.w.l opposite to the precipitation conditions and thereby guaranteeing the
safe operation of the TGR and preventing flooding disasters.
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Figure 10. The XWT power and WTC coherence spectrum of R.w.l and rainfall. The arrow direction
reflects the phase correlation between the two time series. The arrow points from left to right indicate
the in-phase relation, and the opposite suggests the anti-phase. In XWT, the color change indicates
the magnitude of power. In WTC, the color differences suggest different magnitudes of coherence.

As shown in Figure 11, the periodic displacement and the associated impact factors
have a significant power area throughout the study period. Rainfall shows a natural cyclic
fluctuation pattern. Figure 11a,b shows that the periodic displacement shares a continuous
significant power sector with the rainfall at a time scale of 1 year (12 months) and is highly
coherent. The two time series are in-phase throughout the study period, with a phase
difference of about 34 ± 12◦, indicating about a two-month lag behind the displacement
than the rainfall. In addition, a 2 years cyclic period (24 months) coincides with the extreme
change in the landslide displacement between 2006 and 2009, showing an anti-phase with
the R.w.l. This phenomenon seems related to the deformation response to the rapid rise of
the R.w.l; since it is the first time the water level R.w.l has reached its maximum, further
research is still needed to confirm the underlying causes of this behavior.
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Figure 11. The XWT power and WTC coherence spectrum of the periodic term and six impact factors.
(a,b) indicate rainfall-type factors V2 and V3. The remainder indicates reservoir-type factors, where
(c–f) indicate monthly mean level V1, monthly variation V4, single-month rate of change V5 and
bi-monthly variation V6.

As previously stated, the fluctuation of the R.w.l shows a cyclical pattern opposite to
the precipitation conditions. As shown in Figure 11c–f, the periodic displacement and the
associated four R.w.l factors also have a significant power sector with a 1 year (12 months)
cyclic period. However, there is a notable difference with the monthly mean water level V1
during the rapid impounding of the TGR (2006–2009), as it shows an inverse phase with
the displacement. These four factors all contain a significant power sector with a 2 years
(24 months) cyclic period, showing anti-phase relations, which may share a similar cause
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as that seen in the power spectrum of displacement and rainfall. This finding suggests
that the rise of the reservoir level is closely related to the extraordinary change in landslide
displacement, providing valuable insights into the influence of the reservoir water level on
landslide behavior during specific periods.

As shown in Figure 11c, there is a phase difference of −51 ± 8◦ between the landslide
displacement and the monthly mean level of the reservoir water, indicating the displace-
ment change occurs ahead of the change in reservoir water level by about three months.
This phenomenon is likely due to the fact that rising reservoir levels contribute to landslide
stability, and the displacement increase often occurs before the reservoir level rises or after it
falls. In-phase relations are observed between the displacement and the monthly variation
V4, the monthly change rate V5 and the bi-monthly variation V6 of the R.w.l, with a mean
phase difference of −13 ± 9◦, indicating a consistent variation pattern. All pre-selected
impact factors show strong coherence over a 1 year cyclic period (12 months), except during
the period from 2006 to 2009.

The analysis above confirms the preselected six impact factors have a strong correlation
with the variation trends of landslide displacements. The periodic variation of the rainfall
intensity and the reservoir storage leads to regularly varying underground water levels and
the seepage field distribution, which adversely affects the Baishuihe landslide’s stability.
These regular variations alter the equilibrium of the slope and cause periodic changes in
landslide displacements time series. The JFTA helps illustrate the periodically changing
patterns and the response between the displacement and external factors at multi-scales
to reveal the landslide mechanism behind the landslide behavior. By employing JTFA,
we gain valuable insights into how the landslide responds to the dynamic interplay of
various factors, providing a deeper understanding of the landslide’s complex behavior and
contributing to the advancement of landslide research and prediction.

4. Model Forecast and Discussion
4.1. Training Dataset and Parameter Setting

In the experiments, monthly GNSS-measured displacements at ZG93 were acquired
from July 2003 to March 2013. Additionally, the corresponding monthly reservoir water
level and precipitation data are used in the subsequent analysis and modeling. For the
training process, datasets collected from July 2003 to June 2009, comprising 72 sets of data,
are utilized as model inputs, while 25 sets of data collected from July 2009 to July 2010 are
used as forecast datasets, and the reserved 17 sets of data from August 2011 to December
2012 are used for model validation.

Six training sets with different data volumes are obtained by dividing the dataset based
on natural years (see Table 1). Using these datasets, six training models are constructed, and
the optimal data volume for the prediction model is determined by comparing the model
performance. Throughout this process, a sequential prediction strategy is implemented,
considering the timeliness of monitoring GNSS displacement.

Table 1. The designed training dataset.

Model
Number

Data Packet Time Date
Volume200307–200407 200407–200507 200507–200607 200607–200707 200707–200807 200807–200907

1
√

12
2

√ √
24

3
√ √ √

36
4

√ √ √ √
48

5
√ √ √ √ √

60
6

√ √ √ √ √ √
72

In the experiment, the deep learning architecture of the forecasting model in this
paper is built using the Deep Learning Toolbox of Matlab2020. We empirically set the
learning rate to 0.01 and the training number to 250. However, the number of hidden
neurons is a crucial factor that can affect the prediction precision, and therefore, it should
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be determined through carefully designed comparison experiments. The results of the
seven comparison experiments are shown in Table 2. According to Table 2, the model
performance is proportional to its number of neurons. As the number of neurons increases,
the RMSE of the model first decreases and then increases, with the optimal RMSE achieved
when the number of neurons is 100. However, the computation time keeps growing as the
number of neurons increases. Consequently, the number of hidden neurons is set to 100 in
the following experiments.

Table 2. The performance of the GRU using different numbers of neurons.

Number of Neurons RMSE (mm) Time (s)

20 28.581 55.295
40 19.602 56.638
60 17.988 57.699
80 12.603 60.307

100 10.175 60.649
120 10.894 61.635
140 11.131 62.281

4.2. Prediction Results and Analyses
4.2.1. Displacement Components Prediction

The DES is employed to predict the trend component of the landslide displacement by
using a weighted combination of past observations with recent observations given relatively
higher weights than the older ones. Thus, despite the data volume difference between
the designed six training datasets, the predicted trend component displacement is almost
identical. Here, the prediction of Model 6 is taken as the final trend result. The DES results
and the absolute error are shown in Figure 12a, with R2 = 0.998 and RMSE = 2.741 mm.
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Figure 12. Predictions of each displacement component.

The GRU could adaptively capture dependencies at different time scales, especially
suitable for handling non-linear problems, and is thus used to forecast landslide displace-
ments for periodic and random terms. The performance of the GRU in predicting the
periodic component of the landslide displacement is shown in Table 3. According to Table 3,
the GRU performance increases as the training data volume increases; thus, the optimal re-
sult is achieved with Model 6. However, the model performance of the random component
displacement first increases and then decreases; the optimal results come from Model 3.
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Table 3. The performance of the GRU in predicting periodic and random displacement.

Model Number

ZG93

Periodic Random

RMSE (mm) R2 RMSE (mm) R2

1 21.562 0.503 9.647 0.507
2 20.722 0.541 8.729 0.597
3 18.741 0.624 8.127 0.651
4 14.042 0.789 9.107 0.569
5 11.171 0.867 9.196 0.552
6 10.175 0.889 9.468 0.514

The above results indicate that better periodic component prediction needs more
trained data; of the six designed models, the larger the amount of the training data, the
better. However, it does not apply to random components; for random component forecasts,
an appropriate amount of datasets works best.

4.2.2. Cumulative Displacement Prediction

The predicted cumulative displacements can be derived by combining the trend, the
periodic and the random predicted components. The optimal prediction of each component
is illustrated in Figure 12. According to Figure 12, the absolute forecast error of the trend
component remains small (<20 mm) and does not vary much, despite the deformation
being around 2 m. In contrast, the absolute forecast error of the periodic component follows
a certain regularity and shows a tendency to decrease, and that of the random component
shows randomness.

The evaluation indicators, as listed in Table 4, assess the performance of the six models.
According to Table 4, both indicators experience an increase and then a decrease as the
volume of the training dataset increases. A maximum RMSE of 26.043 mm and a minimum
R2 of 0.904 comes from Model 2 with a data volume of two natural years. The turning
point found at Model 4 with four years of data volume shows the best results among the
six models, with R2 of 0.952 and RMSE of 18.582 mm.

Table 4. Predictions of the cumulative landslide displacement.

Model Number
ZG93

RMSE (mm) R2

1 24.165 0.917
2 26.043 0.904
3 20.367 0.941
4 18.582 0.952
5 20.106 0.943
6 18.742 0.951

Optimal model 12.301 0.979

According to Section 4.2.1, Model 6 is the best model for predicting the periodic
component, while Model 3 gives the best performance for predicting the random part.
Consequently, based on this, an optimal combination prediction model for landslide dis-
placement is constructed. The evaluation indicators of the optimal model, shown in Table 4,
outperform the other six models in terms of both evaluation indicators, with an RMSE of
12.301 mm and R2 of 0.979. Compared with Model 4, the best forecast model among the six,
the RMSE decreases by 6.281 mm and R2 increases by 0.027 for the optimal model.
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4.2.3. Comparative Experiments and Analyses

In Section 3.2, we conducted a pre-selection of the impact factors, and later, through
the multi-scale response analysis in Section 3.3, we gained valuable insights into how the
landslide responds to the dynamic interplay of the selected factors. The analysis revealed
an apparent 1 year primary cycle of the time series associated with the landslide evolution.
Of particular interest were the delayed response results, which highlight the complex
interactions between the reservoir water level (R.w.l) and rainfall with the subsequent
landslide movements. This provides a deeper understanding of the landslide’s complex
behavior and guides the selection of the landslide prediction model.

GRU and other recurrent neural networks (RNNs) excel at handling the non-linear
dynamic characteristics present in complex time series. The GRU model, in particular,
has the ability to capture dependencies at different time scales, making it well-suited for
time series landslide displacement prediction. Considering the outstanding performance
of GRU in time-series forecasting, we conducted comparative experiments to analyze
the performance differences of the optimal model screened in Section 4.2.2, both when
considering impact factors and when not considering them.

Figure 13 displays the predicted cumulative displacements and absolute errors. No-
tably, when the impact factors are ignored, the model exhibits more significant deviations,
indicating a decline in prediction performance. The calculated RMSE and R2 are 20.218 mm
and 0.942, respectively. However, when considering the impact factors, the model produces
an improved performance, yielding an RMSE of 12.301 mm and R2 of 0.979. This results in
a reduction in the RMSE by 7.917 mm and an increase in R2 by 0.037, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 22 
 

 

an apparent 1 year primary cycle of the time series associated with the landslide evolution. 
Of particular interest were the delayed response results, which highlight the complex in-
teractions between the reservoir water level (R.w.l) and rainfall with the subsequent land-
slide movements. This provides a deeper understanding of the landslide’s complex be-
havior and guides the selection of the landslide prediction model. 

GRU and other recurrent neural networks (RNNs) excel at handling the non-linear 
dynamic characteristics present in complex time series. The GRU model, in particular, has 
the ability to capture dependencies at different time scales, making it well-suited for time 
series landslide displacement prediction. Considering the outstanding performance of 
GRU in time-series forecasting, we conducted comparative experiments to analyze the 
performance differences of the optimal model screened in Section 4.2.2, both when con-
sidering impact factors and when not considering them. 

Figure 13 displays the predicted cumulative displacements and absolute errors. No-
tably, when the impact factors are ignored, the model exhibits more significant deviations, 
indicating a decline in prediction performance. The calculated RMSE and R2 are 20.218 mm 
and 0.942, respectively. However, when considering the impact factors, the model produces 
an improved performance, yielding an RMSE of 12.301 mm and R2 of 0.979. This results in a 
reduction in the RMSE by 7.917 mm and an increase in R2 by 0.037, respectively.  

 
Figure 13. Predictions of the cumulative landslide displacement. The red marker indicates the ab-
solute error without considering influencing factors, while the blue circle indicates the absolute er-
ror of our proposed method. 

As a result, the impact factors selected in Section 3.2 have been proven to be indis-
pensable for multi-scale response analysis and the prediction model training process. De-
spite the exceptional performance of GRU in time-series forecasting, it is evident that the 
influence factors of landslides displacement have a significant impact on the predictions. 
Hence, the analysis and selection of the impact factors during the modeling process are 
crucial, underscoring the comprehensiveness of the proposed model. 

At this stage, the 17 reserved sets of data from August 2011 to December 2012 are 
utilized for model validation to further verify the model’s performance. Figure 14 displays 
the cumulative landslide displacement prediction (17 sets) and the absolute errors of the 
proposed model, resulting in a calculated RMSE of 9.715 mm and R2 of 0.967. The results 
demonstrate that the optimal combination prediction model exhibits a reliable capacity 
for predicting landslide displacement. 

D
isp

la
ce

m
en

t(m
m

)
A

bs
ol

ut
e e

rro
r(m

m
)

Figure 13. Predictions of the cumulative landslide displacement. The red marker indicates the
absolute error without considering influencing factors, while the blue circle indicates the absolute
error of our proposed method.

As a result, the impact factors selected in Section 3.2 have been proven to be indispens-
able for multi-scale response analysis and the prediction model training process. Despite
the exceptional performance of GRU in time-series forecasting, it is evident that the influ-
ence factors of landslides displacement have a significant impact on the predictions. Hence,
the analysis and selection of the impact factors during the modeling process are crucial,
underscoring the comprehensiveness of the proposed model.

At this stage, the 17 reserved sets of data from August 2011 to December 2012 are
utilized for model validation to further verify the model’s performance. Figure 14 displays
the cumulative landslide displacement prediction (17 sets) and the absolute errors of the
proposed model, resulting in a calculated RMSE of 9.715 mm and R2 of 0.967. The results
demonstrate that the optimal combination prediction model exhibits a reliable capacity for
predicting landslide displacement.
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Figure 14. Predictions of the cumulative landslide displacement. The blue circles stands for the
absolute errors of the proposed model.

To further illustrate the superiority of the proposed method compared to existing
state-of-the-art methods, such as the GWO-MIC-SVR [42], the V/S-LSTM [43], the Chaotic
DWT-ELM [44] and the Multi-Chaotic ELM [45], we conduct a comparative analysis of the
forecasts generated by these models. The performance of the forecast models is shown
in Table 5.

Table 5. Comparison of model prediction results.

Model Name Forecast Duration (month) RMSE (mm)

The method proposed 17 9.715

PSO-SVR 12 20.770
GWO-MIC-SVR 18 14.024
M-EEMD-ELM 15 -

V/S-LSTM 8 8.950
Chaotic DWT-ELM 15 23.330
Multi-Chaotic ELM 20 23.710

According to Table 5, the proposed model achieves a competitive high-accuracy result
in terms of RMSE, ranking in the top two, with an RMSE of 9.715 mm, closely following
the V/S-LSTM with an RMSE of 8.950 mm. However, what makes the proposed model
stands out is its ability to makes 17 sets of consecutive forecasts, while V/S-LSTM only
forecasts 8 sets.

Considering that forecast errors can accumulate over time, the proposed model’s
RMSE of 0.765 mm for 17 sets of consecutive forecasts demonstrates its capability for
precise and reliable long-term predictions. Thus, from a comprehensive perspective, the
proposed model exhibits both time-effectiveness and long-sequence forecasting advantages
over the other six intelligent algorithms.

5. Conclusions

This paper presents a novel deep learning architecture specifically designed for predict-
ing reservoir landslide displacement. The evolution of reservoir landslides involves highly
complicated and nonlinear dynamics, characterized by specific time-frequency features. To
address the complexities, the joint time-frequency analysis (JTFA) module is designed. This
module integrates the GWO-optimized VMD and WA methods, facilitating the extraction
of essential signal components with clear physical implications. Additionally, the module
conducts multi-scale response analysis, thereby revealing deformation variation patterns in
the underlying mechanisms governing the landslide’s response behavior. For the actual dis-
placement prediction, The GRU is integrated, which possesses the capability of adaptively
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capturing dependencies at multiple time scales. Moreover, during the modeling process,
the correlation and hysteresis effect of the impact factors are also considered, further en-
hancing the accuracy and reliability of the predictions. The model experiments show that as
the amount of training data increases, the periodic component prediction improves signifi-
cantly. For the random component forecast, an appropriate amount of datasets yields the
best results, while the trend component remains almost identical regardless of the data size.
This insight led to the construction of an optimal combination prediction model, surpassing
the performance of the other six designed models in cumulative landslide displacement
predictions. This model achieved impressive results, with a minimum RMSE of 12.301 mm
and a maximum R2 of 0.979. Moreover, the proposed architecture’s superiority in time-
effectiveness and its ability to accurately predict long-sequence landslide displacement
have been firmly established through comparative experiments and analyses, in which
we evaluated its performance against six other state-of-the-art intelligent methods. The
favorable outcomes and impressive forecasting capabilities of our proposed architecture
solidify its position as an efficient and accurate tool for landslide displacement prediction.
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