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Abstract

:

Rice is one of the world’s three major food crops, second only to sugarcane and corn in output. Timely and accurate rice extraction plays a vital role in ensuring food security. In this study, R-Unet for rice extraction was proposed based on Sentinel-2 and time-series Sentinel-1, including an attention-residual module and a multi-scale feature fusion (MFF) module. The attention-residual module deepened the network depth of the encoder and prevented information loss. The MFF module fused the high-level and low-level rice features at channel and spatial scales. After training, validation, and testing on seven datasets, R-Unet performed best on the test samples of Dataset 07, which contained optical and synthetic aperture radar (SAR) features. Precision, intersection, and union (IOU), F1-score, and Matthews correlation coefficient (MCC) were 0.948, 0.853, 0.921, and 0.888, respectively, outperforming the baseline models. Finally, the comparative analysis between R-Unet and classic models was completed in Dataset 07. The results showed that R-Unet had the best rice extraction effect, and the highest scores of precision, IOU, MCC, and F1-score were increased by 5.2%, 14.6%, 11.8%, and 9.3%, respectively. Therefore, the R-Unet proposed in this study can combine open-source sentinel images to extract rice timely and accurately, providing important information for governments to implement decisions on agricultural management.
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1. Introduction


Human life is inseparable from food crops such as rice, wheat, and corn. The output of food crops determines the economic development of a country, and ensuring food security is also one of the national strategies [1,2,3]. As one of the three most important food crops in the world, rice is widely planted in Asia, Africa, and America. Therefore, timely and accurate extraction of rice planting areas plays a decisive role in guiding national agricultural production [4,5]. Since the end of the last century, the successive launches of remote sensing (RS) satellites have provided abundant data sources for the application of RS technology. RS images are characterized by timeliness, periodicity, and repetition and can provide timely data for the extraction of crop planting areas at the national and provincial levels. Therefore, RS technology has become one of the most important means in the field of agricultural research, such as rice mapping [6,7].



In recent years, optical data (Landsat, Sentinel-2, etc.) have been widely used in agricultural RS fields such as rice planting extraction [8,9,10,11,12,13] and crop yield estimation [14,15]. Scholars mainly extracted rice based on the vegetation indices (VIs) of the rice growth period, such as the normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), land surface water index (LSWI) [16,17,18,19], etc. Based on the time-series EVI and LSWI of rice, ref. [17] formulated a decision tree rule to extract rice in India. However, in tropical and subtropical rice-growing areas, affected by the monsoon, a large amount of cloud cover will affect the optical image quality. In contrast, radar images can successfully acquire microwave information about ground objects in cloudy, foggy, and rainy weather [20,21]. Meanwhile, rice contains a large amount of water during the growth period, and the dielectric constant of the water is large, which is different from other types of ground features [22,23]. Therefore, in addition to optical images, radar images are important data sources in the field of rice extraction research, such as synthetic aperture radar (SAR) Sentinel-1 [24,25,26]. Recently, scholars have carried out rice mapping work by obtaining time-series SAR parameters during the rice growth period, such as the backscattering coefficient (σ0) and polarization decomposition parameters [27,28,29,30]. Ref. [28] used the random forest (RF) method to perform rice mapping in Hanoi, Vietnam, based on rice time-series σ0. Existing studies on rice extraction using single optical or SAR data are extensive, but few studies combine the two. A single data source cannot extract the optical and SAR features of rice at the same time, but the combination of the two can fuse optical and SAR features to improve the accuracy of rice mapping.



So far, rice extraction methods mainly include two types, one is traditional machine learning (ML) methods, such as support vector machines [13], decision trees [24,25,31], RF [13,28,32], etc., and the other is deep learning (DL) methods. Traditional ML has been widely used in rice extraction studies. The traditional ML model has a simple structure and can only learn the shallow features of rice, with poor robustness and limited precision. Recently, DL, as a popular research method in the field of computer vision, has been widely used in target detection and other fields due to its unique network structure, high robustness, and excellent fitting ability [33,34,35,36]. With the rapid development and innovation of DL, scholars have applied DL to RS image classification and obtained satisfactory results [37,38]. The semantic segmentation model is a classic model in DL that is widely used in the field of medical image classification [39]. At present, scholars have used deep semantic segmentation models, such as U-Net [38,39,40,41,42], SegNet [43,44], FCN [45,46], etc., to successfully complete rice mapping. U-Net was first proposed and applied to medical image segmentation by scholars. However, in the research on rice extraction, the U-Net model structure is relatively simple, and the precision of rice mapping is limited. Recently, scholars have extracted rice by improving the U-Net model [38,40]. Ref. [38] proposed a new network, MobileUNet, based on polarization decomposition parameters of rice, combining U-Net and MobileNet, and MobileUNet had a better rice extraction effect. Ref. [40] extracted rice based on time-series σ0, using U-Net as the architecture, combined with VGG16 and other backbones, and the rice extraction effect was better than U-Net. The above method can extract the rice planting area, but it does not take into account the multi-scale feature information of rice. Furthermore, in the field of rice extraction research, there are limited DL models focusing on rice extraction.



In short, there are three main questions in existing studies:



Q1: The rice extraction work using only high-resolution images is difficult to obtain, has a high cost, and has poor timeliness.



Q2: Rice extraction using single optical or SAR data has been extensively studied, while studies combining the two are limited. Multi-source data can simultaneously extract the optical and SAR features of rice, and the fusion of optical and SAR features can improve the accuracy of the model to a certain extent.



Q3: The traditional ML method has been widely used, but it cannot learn the deep features of rice and has poor robustness. DL algorithms are able to solve the above problems, but there is a lack of DL models focusing on rice extraction.



Aiming at the above problems, the Sentinel-2 and time-series Sentinel-1 images of the study area were pre-processed on the GEE platform to obtain the optical index and time-series σ0 of rice. Meanwhile, a new deep learning model, R-Unet, focusing on rice extraction, was proposed. The multi-scale feature fusion (MFF) module and the attention-residual module were introduced in R-Unet. The main highlights of this study are as follows:




	
The MFF module was introduced into the model decoder, where dilated convolution was used to increase the model receptive field;



	
in order to prevent the encoder from overfitting and gradient disappearance, a residual network structure was introduced to deepen the depth of the network model;



	
the channel attention mechanism was introduced into the attention-residual module to focus on the temporal features of rice;



	
the use of open-source RS images (Sentinel-1 and Sentinel-2) is low in cost, easy to obtain, high in timeliness, and can integrate optical and time-series SAR features of rice.








Comparing the test results of different baseline models on seven datasets of optical and time-series SAR features, it was found that R-Unet performed best in the rice extraction research, outperforming other models. Meanwhile, compared with other classic models, the rice extraction accuracy of R-Unet is still the highest.




2. Materials and Methods


2.1. Study Area


The state of Rio Grande do Sul in southern Brazil was selected as the study area, and study areas A and B were used as training and testing areas for rice extraction, respectively (Figure 1). As the largest country in South America, Brazil’s terrain mainly includes the Amazon Plain, the Paraguay Basin, the Brazilian Plateau, and the Guyana Plateau. Brazil is a major rice producer in South America and one of the top ten rice producers in the world [40]. Rice is the main food crop in Brazil, and its main production areas are located in the south, mid-west, and northeast of the country. The southern region is dominated by Rio Grande do Sul. The study area is located in the southernmost part of Brazil, with a subtropical climate, high temperature, and rich water resources, which are extremely suitable for the growth of rice [40]. Apart from rice, soybeans, wheat, and corn are also the main crops in this area.




2.2. Data Preparation


2.2.1. Sentinel-1 Data


In our study, the time-series Sentinel-1 ground range detected (GRD) data of interferometric wide swath (IW) mode and dual-polarization (VH and VV) C-band were obtained. The time-series is from August 2019 to May 2020, covering the main growth season of rice for a total of 10 months [40]. Based on the Google Earth Engine (GEE) platform, the collected time-series dual-polarization SAR images were pre-processed. Figure 2 shows the pre-processing of the Sentinel-1 time-series data, mainly including calibration and terrain correction [10]. Meanwhile, the average value of the monthly SAR data was calculated [10], and finally, the monthly average value of the dual-polarization backscatter coefficient (σ0) in the rice growth period was obtained, with a total of 20 bands.




2.2.2. Sentinel-2 Data


Based on the GEE platform, Sentinel-2 data with cloud cover of less than 5% in the same period were collected. The GEE platform was used to perform cloud mask processing on all images [10], and the optical indices of rice were calculated using Formulas (1)–(3) [10]. Finally, the median value of the three optical indices during the rice growth period was calculated, and the results of NDVI, EVI, and LSWI were finally obtained, with a total of three bands.


  N D V I =   N I R − R e d   N I R + R e d    



(1)






  E V I = 2.5   ∗     N I R − R e d   N I R + 6   ∗   R e d − 7.5   ∗   B l u e + 1    



(2)






  L S W I =   N I R − S W I R   N I R + S W I R    



(3)




where blue, red, NIR and SWIR represent Sentinel-2 band 2, band 4, band 8, and band 11, respectively.




2.2.3. The Ground Truth Data


The ground-truth rice map of Rio Grande do Sul was downloaded from the Brazilian Agricultural Information Portal “https://portaldeinformacoes.conab.gov.br (accessed on 7 July 2023)”. The rice map is shapefile data, which is converted into raster data to produce rice labels.




2.2.4. Training, Validation and Test Samples


Study area A was selected as the training and validation area of the rice extraction model, which contained 222 rice and non-rice pixel samples of 256 ∗ 256 pixels. Among them, 90% of the samples were used for model training, and the rest were used for validation. The test area was study area B, which tested the performance of different models, including 150 samples of 256 ∗ 256 pixels. The training, validation, and test samples each contained 7 datasets. Table 1 shows the dataset’s information. Datasets 01–03 were the SAR datasets; Dataset 04 was the optical index dataset; and Datasets 05–07 were the combination of SAR and optical indices.





2.3. Research Technical Route


Figure 2 shows the flowchart of our study, including data preparation and the rice extraction model. Data preparation is to pre-process Sentinel-1 and Sentinel-2 data based on GEE and produce rice labels. Time-series Sentinel-1 was used to extract the dual-polarization (VH and VV) SAR features, and Sentinel-2 was used to extract the optical indices during the rice growth period. The ground-truth rice map was used to generate the rice labels. The rice extraction model was mainly based on seven datasets, and the models have been trained, validated, and tested. Finally, the accuracy evaluation and comparative analysis of the model’s performance were completed.




2.4. Models and Principles


2.4.1. R-Unet


Based on the U-Net model, a new DL model for rice extraction, R-Unet, was proposed in this study. U-Net is the most typical model in the deep semantic segmentation model, which was first applied in the field of medical imaging [47]. U-Net is composed of an encoder and a decoder. The encoder contains four times of down-sampling, including two convolutional layers and a max-pooling layer [47]. The spatial resolution of the input data is halved, and the number of channels is increased after each down-sampling. The decoder mainly includes four up-sampling layers. In the up-sampling layer, the high-level and low-level feature information of the model is concatenated in the channel dimension through skip connections, and the size of the feature map is restored by using transposed convolution [47].



In our study, the encoder and decoder of U-Net were improved. Based on the original structure of the encoder, an attention-residual module was added after the ReLU activation function of the last convolutional layer of each down-sampling layer to deepen the depth of the model and learn the characteristic information of rice [47]. The attention-residual module mainly included two convolutional layers, each of which consisted of a 3 ∗ 3 convolutional layer, a batch normalization (BN) layer, and a ReLU activation function. In order to make the model pay more attention to rice information, an attention mechanism was added. The feature map of the attention mechanism was added to the result of the ReLU activation function of the last convolution layer of the attention-residual module to obtain the feature map of the final output of the attention-residual module. A multi-scale feature fusion (MFF) module was added to the decoder. The up-sampled transposed convolution result was concatenated with the down-sampled attention-residual module as the input of the MFF module. The MFF module replaced the two convolutional layers in the up-sampling layer of the original decoder. The MFF module integrated high-level and low-level feature information to achieve channel and spatial scale fusion [47]. Figure 3 shows the R-Unet structure.



In this study, the training, validation, and testing of all DL models were performed on a laptop with an NVIDIA GeForce RTX 3060 graphics processor with 16 GB of memory and an 8-core processor with 6 GB of memory. Hyperparameters were set as follows: (a) learning rate = 0.0001, (b) batch size = 4, (c) epochs = 50, (d) Adam optimizer. The cross-entropy loss function was chosen as the loss function, and the formula is as follows:


  L o s s = − ( y l o g   P   +   1 − y     log  ⁡    1 − P   )    



(4)




where Loss is the loss value, y is the real label value, and P is the predicted probability of the model.




2.4.2. MFF Module


The down-sampling of the encoder reduces the spatial resolution of the input image, which may lead to the loss of some rice information. Dilated convolution introduces a dilated factor to increase the receptive field while maintaining the resolution of the original image, so that the feature map contains information under a larger receptive field [47]. Dilated convolution can reduce information loss to some extent [47]. Therefore, the MFF module proposed in this study can prevent the loss of rice-related feature information and improve the learning ability of the model for rice and non-rice [47].



The MFF module proposed in this paper mainly consisted of three parts. The first part was the 1 ∗ 1 convolutional layer, BN layer, and ReLU activation function, which mainly fused the input feature map on the channel scale. The second part was the 3 ∗ 3 convolutional layer, BN layer, and ReLU activation function. Finally, the third part was the dilated convolutional layer with an expansion factor of 2, which extracted rice feature information in a wide range by expanding the receptive field. Since the rice patches selected in this paper were relatively small, the detailed rice information was lost due to the large expansion factor. Finally, the feature maps obtained from the three parts were added together, and the feature information on the channel and spatial scales was fused as the final output of the MFF module. The MFF module structure is shown in Figure 4.




2.4.3. Attention-Residual Module


The down-sampling of the encoder may cause overfitting. In order to deepen the network depth of the encoder and prevent the model from overfitting, an attention-residual module was introduced in the encoder. The attention-residual module was added after the double convolution of the encoder. Since the time-series SAR data of the rice-growing period were obtained, the channel attention mechanism was introduced in the attention-residual module to extract the time-series features of rice. The feature responses of each channel of the input feature map were weighted to enhance the model’s attention to rice features in different channels. The channel attention mechanism can enable the model to specifically select rice and non-rice information in different channels to optimize feature representation and model performance.



Figure 5 shows the proposed attention-residual module. The attention-residual module mainly contained two branches. The first branch included two convolutional blocks, and each convolutional layer module consisted of a 3 ∗ 3 convolutional layer, a BN layer, and a ReLU activation function. The second branch was the channel attention module, which was composed of a 1 ∗ 1 convolutional layer and a sigmoid function to enhance channel attention on the input feature map. Finally, the results of the first branch and the second branch were added as the output of the attention-residual module.




2.4.4. Performance Evaluation


In this paper, overall accuracy (OA), precision, intersection and union (IOU), recall, F1-score, and Matthews correlation coefficient (MCC) were used as the main evaluation indicators for the performance evaluation of the rice extraction model. The calculation formulas for the above evaluation indicators are shown in Formulas (5)–(10):


  O A =   T P + T N   T P + T N + F P + F N    



(5)






  P r e c i s i o n =   T P   T P + F P    



(6)






  I O U =   T P   T P + F P + F N    



(7)






  R e c a l l =   T P   T P + F N    



(8)






  F 1 − s c o r e = 2   ∗     R e c a l l   ∗   P r e c i s i o n   R e c a l l + P r e c i s i o n    



(9)






  M C C =   T P + T N   T P + T N + F P + F N    



(10)




where TP represents the number of pixels correctly predicted as rice, TN represents the number of pixels correctly predicted as non-rice, FP represents the number of pixels incorrectly predicted as rice, and FN represents the number of pixels incorrectly predicted as non-rice.



OA measures the model’s ability to correctly classify the entire dataset [10,40]. Precision refers to the accuracy of the model for rice classification [10,40]. IOU is the ratio of the intersection and union of the number of pixels correctly predicted as rice and the true pixels [40]. Recall can measure the ability of the model to identify rice [10]. The F1-score is the harmonic mean of precision and recall, combining the performance of both [8,10,40]. MCC is the correction between predicted and true results [8].






3. Results


3.1. Rice Extraction Model Results for Different Datasets


In order to select the best dataset suitable for the rice extraction model, four baseline models were selected for comparative analysis with R-Unet. Since R-Unet was proposed based on U-Net, U-Net was first used as one of the baseline models. Secondly, the L-Unet model contained both the residual structure and the MFF module, which was applied to the extraction of landslides by scholars. In this study, L-Unet was used as one of the baseline models. Finally, in order to compare and analyze the influence of the combined use of the MFF module and the attention-residual module on the performance of the rice extraction model, the attention-residual module and the MFF module were added to U-Net to obtain two baseline models: Attention-ResUnet and MFF-Unet.



First, in study area A, five models were trained and validated on seven different datasets, and the training and validation loss values, and the OA, precision, IOU, recall, and F1-score of the validation samples were calculated. Figure 6 shows the loss values of the five baseline models in training and validation on Dataset 07. As the epoch increased, the loss value kept decreasing and eventually tended to be stable. Figure 7 shows the OA, precision, IOU, and F1-score of the five baseline models on the validation samples on Dataset 07. With the increase in epoch, the OA, precision, IOU, and F1-score tended to be stable, all above 0.9. Table 2 shows the results of the confusion matrix corresponding to the optimal accuracy of R-Unet in the validation samples. The OA, IOU, recall, and MCC of R-Unet on the validation samples were as high as 0.963, 0.902, 0.961, and 0.920, respectively.



Secondly, study area B without model training was selected as the test area. The five models were tested on seven datasets, and the evaluation metrics of the test samples were calculated. In addition, the average time (Time) of five baseline models to predict rice on seven datasets was calculated in milliseconds (ms). The results showed that R-Unet had the best performance on Dataset 07. Table 3 shows the test results of the five models on Dataset 07. From Table 3, the precision, OA, IOU, F1-score, and MCC of R-Unet on Dataset 07 were 0.948, 0.952, 0.853, 0.921, and 0.888, respectively, all of which performed better than the other four baseline models. Meanwhile, R-Unet achieved a test Time of 27.22 ms per sample on Dataset 07, which was faster than the other four baseline models. In contrast, the accuracy of MFF-Unet, Attention-ResUnet, and U-Net was lower than that of R-Unet. Among the above three models, the accuracy of adding the MFF module or the attention-residual module was higher than that of the U-Net model. Table S1 shows the test results of the five baseline models in Datasets 01–06. From Table S1, the accuracy of the five baseline models on a single dataset was low. The precision of R-Unet on Dataset 01 and Dataset 02 was only 0.829 and 0.772, and the IOU was 0.733 and 0.506, respectively. However, regardless of any dataset, the R-Unet performed best in the test results of the baseline models.



Figure 8 shows the results of rice prediction obtained by five baseline models on Dataset 07. By comparing the rice extraction results, it was found that the overall effect of R-Unet rice extraction was better, which was basically consistent with the rice ground-truth map. However, the MFF-Unet, Attention-ResUnet, and U-Net had obvious misclassifications.




3.2. Rice Extraction Model Results of Different DL Models


R-Unet was compared with four classic models, including FCN-8s, DeepLab, SegNet, and L-Unet, to validate the rice extraction effect of R-Unet. Based on the results of 3.1, Dataset 07 was selected as the training, validation, and test dataset for the five models. Firstly, in study area A, five classic models were trained and validated on Dataset 07, and the loss value during training and validation, and the OA, precision, IOU, recall, and F1-score of the validation samples were calculated. Figure 9 shows the training and validation sample loss values of five classic models. As the epoch increased, the loss value continued to decrease and finally stabilized between 0.1 and 0.15. Figure 10 shows the OA, precision, IOU, and F1-score of the five classic models on the validation samples. With the increase in epoch, the scores of OA, precision, IOU, and F1-score tended to be stable, and the scores of OA, precision, and F1-score were all stable above 0.9. The IOU of R-Unet and L-Unet was stable at around 0.9, while FCN-8s, SegNet, and DeepLab were relatively low. Compared with FCN-8s, SegNet, and DeepLab, the performance of R-Unet and L-Unet in verification samples was generally better than the other three classic models.



Secondly, study area B, a test area without model training, was selected to test five classic models and calculate evaluation indicators. Table 4 shows the results of five classic models on test samples. From Table 4, the accuracy of R-Unet in test samples was better than in other classic models. The Time of DeepLab was the fastest among the five models, but the overall performance of DeepLab was low, with a precision of 0.896. In contrast, R-Unet has higher accuracy and a relatively faster Time. In addition, the IOUs of L-Unet, FCN-8s, and DeepLab were only 0.731, 0.707, and 0.719. Table 5 shows the confusion matrix of R-Unet in the test samples. The rice and non-rice user accuracies of R-Unet were as high as 0.948 and 0.954, respectively. The F1-score was as high as 0.921, and the MCC, IOU, and recall were all above 0.85.



Figure 11 shows the rice prediction results obtained by five classic models on the test samples. Comparing the rice extraction results, it was found that the overall effect of R-Unet rice extraction was better, and the prediction results were basically consistent with the actual rice map. The results of the second group in Figure 11 show that there are more misclassifications in FCN-8s and DeepLab. In addition, there were many misclassifications in FCN-8s, DeepLab, SegNet, and L-Unet. In contrast, the rice prediction results of R-Unet were better, and the distribution of misclassification was less.





4. Discussion


4.1. Optimal Dataset for Rice Extraction


With the successive launches of optical and radar satellites, optical and radar images have been widely used in agricultural RS fields such as rice extraction [8,9,10,11,12,13,24,25,26,27]. However, how to choose the optimal dataset for the rice extraction model is a major problem in the field of rice extraction research. Rice extraction using only single optical or radar images has been extensively studied [8,9,21,22,23,40]. In this study, to solve the above problem, seven datasets were designed to train, validate, and test five baseline models.



For Datasets 01–04 with a single data source and Datasets 05–07 with a combination of SAR and optical features, the model accuracy of the latter was better than that of the former. From Table 3 and Table S1, the precision of R-Unet on Dataset 07 and Dataset 03 was 0.948 and 0.939, respectively, and the precision on the other five datasets was all less than 0.9. For Dataset 03 and Dataset 07, the precision of the latter is 0.9% higher than that of the former, and the Time of the latter is 2.17 ms faster than the former. Except for R-Unet, the overall accuracy of the other four baseline models on Dataset 07 was better. It shows that, in the case of consistent models, the accuracy of the rice extraction model fused with SAR and optical features is better than that of a single data source.



For the single-polarization (VH or VV) and dual-polarization (VH and VV) datasets, the latter model outperformed the former in overall accuracy. It can be seen from Table 3 and Table S1 that the overall accuracy of the dual-polarization datasets (Dataset 07 and Dataset 03) was higher, and the overall accuracy of the single-polarization datasets was lower. In the single-polarization datasets, the overall accuracy of the VH polarization datasets (Dataset 05 and Dataset 01) performed better than that of the VV polarization datasets (Dataset 06 and Dataset 02). The IOU of the R-Unet single-polarization VV dataset was only between 0.474 and 0.575. In short, the model accuracy of dual-polarization datasets performed better than that of single-polarization datasets. In the single polarization dataset, the model accuracy of VH polarization was better than that of VV polarization, which was consistent with the research results of [40].



In summary, the dual-polarization datasets that fused optical and SAR features had the highest overall accuracy. The result showed that the combination of optical and SAR data can improve the accuracy of the rice extraction model, which solved Q2. Meanwhile, the sentinel image used in this study was freely available from the European Space Agency, which solved Q1 and provided the possibility for timely and accurate rice extraction.




4.2. Optimal Model for Rice Extraction


4.2.1. Discussion of Results from Rice Extraction Baseline Models


The R-Unet proposed in this study was based on the U-Net, adding the attention-residual module and the MFF module in the encoder and decoder, respectively, to extract rice in the study area [47]. In order to evaluate the performance of R-Unet in rice extraction, based on U-Net, the attention-residual module and the MFF module were added to U-Net, respectively, and two baseline models of Attention-ResUnet and MFF-Unet were obtained. Meanwhile, the L-Unet applied to landslide extraction, which also contained MFF and residual modules, was also one of the baseline models [47]. From Table 3, it can be seen that the prediction Time of R-Unet was the shortest among all baseline models, at 27.22 ms. Table 6 was obtained by calculating the difference between the evaluation indicators of R-Unet and the other four baseline models. From Table 6, each indicator of R-Unet was better than the other four baseline models. The IOU, recall, and MCC of MFF-Unet were 6.4%, 6.3%, and 5.1% lower than R-Unet, respectively. The IOU, recall, and MCC of R-Unet were 4.7%, 4.1%, and 5.1% higher than those of Attention-ResUnet, respectively. Compared with U-Net, the precision, IOU, and MCC of R-Unet were increased by 2.1%, 2.8%, and 2.5%, respectively. Therefore, the attention-residual module and MFF module can improve the model performance of rice extraction to a certain extent, but a single attention-residual module or MFF module still cannot better learn the SAR and optical features of rice. The combination of the above two modules can efficiently learn rice features [47].



In addition, for R-Unet and L-Unet, which contained both the MFF module and the attention-residual module, the IOU, recall, and MCC of the former were 12.2%, 11.8%, and 9.6% higher than the latter, respectively. L-Unet contained both the attention-residual module and the MFF module, but the MFF module was only in the last layer of the encoder of L-Unet. The residual module of L-Unet was introduced into both the encoder and decoder. Although the network structure depth of the model was deepened, it may cause over-learning of the model, resulting in poor performance. Therefore, the position of the MFF module and the attention-residual module in U-Net can also affect the performance of the model. In the proposed R-Unet, the attention-residual module was only introduced into the encoder of the model. The attention-residual module can ensure the depth of the network, while the attention mechanism can pay more attention to the rice feature information and prevent information loss to a certain extent [10,38,39,40]. The MFF module was introduced into the model’s decoder to perform multi-scale feature fusion on the high-level and low-level feature information in the up-sampling process [47,48]. While restoring the size of the image, the output feature map contained both the channel and spatial information of the original feature map. In conclusion, the proposed R-Unet had the highest rice extraction performance among the baseline models and solved Q3 to a certain extent.




4.2.2. Discussion of Results from Rice Extraction Classic Models


With the rapid development of DL algorithms, deep semantic segmentation models have been widely used in agricultural RS research fields such as rice extraction [33,34,35,36,37]. So far, scholars have applied classic models such as FCN-8s, SegNet, and U-Net to rice extraction [38,39,40,41,42,43,44,45,46]. But the above model is not a proprietary model for rice extraction. In this study, the proposed R-Unet was compared with FCN-8s, SegNet, DeepLab, U-Net, and L-Unet. It can be seen from Table 3 and Table 5 that the accuracy and effect of R-Unet in the test samples outperformed the other five models, and the Time of R-Unet was faster, second only to DeepLab. Meanwhile, the Time of DeepLab was the shortest, but the accuracy of rice extraction was lower than that of R-Unet. Table 7 calculates the difference in evaluation metrics between R-Unet and the other five models. The precision, IOU, F1-score, and MCC of R-Unet were 2.1%, 2.8%, 1.7%, and 2.5% higher than U-Net, respectively. For the DeepLab model, the precision, IOU, F1-score, and MCC of the R-Unet model were 5.2%, 13.4%, 8.5%, and 11.5% higher, respectively. For FCN-8s, SegNet, and L-Unet, the IOU of R-Unet was around 10% higher than the other three models. In summary, the overall accuracy of R-Unet outperformed the other five models. It can also be seen from Figure 8 and Figure 11 that the rice prediction results of R-Unet were closer to the ground-truth rice map, while other classic models have some misclassifications.



In general, the R-Unet proposed in this study can combine open-access Sentinel satellite data (Sentinel-1 and Sentinel-2) to timely and accurately extract rice planting areas in the study area. The rice extraction results of R-Unet can provide basic information for the country or the government to implement decisions on agricultural management, such as guiding national agricultural production and ensuring national food security.





4.3. Limitations and Prospects


In this study, the rice extraction research was only carried out in Rio Grande do Sul, Brazil. Two study areas were selected as the validation and testing areas, but the rice planting pattern, growth period, and growing environment are basically consistent. Differences in rice planting patterns, rice varieties, and growing environments will affect the SAR characteristics (σ0) of rice to a certain extent. At the same time, it may affect the performance of the model when learning rice features, which may cause some differences in the results of rice extraction. Further trials in other countries were not carried out in this study, and future research will be carried out in other countries with different rice growth patterns from Rio Grande do Sul. In future research, while ensuring the performance of the model, we will try our best to improve its universality and strive to develop a general model for rice extraction research.





5. Conclusions


Based on the GEE platform, the optical indices and time-series dual-polarization σ0 data during the rice growth period in Rio Grande do Sul, Brazil, were obtained, and seven different datasets were produced. Based on U-Net, a model R-Unet focusing on rice extraction was proposed, which included both the attention-residual module and the MFF module. The attention-residual module was designed to deepen the network depth of the R-Unet encoder, focusing on rice feature information while preventing information loss. The MFF module was used to perform multi-scale feature fusion processing on the high-level and low-level feature information of the decoder. In order to study the impact of different datasets on model performance, R-Unet was compared with four baseline models. Meanwhile, in order to verify the performance of R-Unet in rice extraction research, it was compared with four classic models. Ultimately, the following conclusions were drawn:




	
The model accuracy of the single-polarization SAR dataset was the worst, while the model accuracy of the dual-polarization SAR dataset was better. The precision of R-Unet on Dataset 03 and Dataset 07 was 0.939 and 0.948, respectively, while the precision on Dataset 01 and Dataset 02 was only 0.829 and 0.772.



	
The combined dataset of SAR features and optical indices (Dataset 07) had higher accuracy than single SAR features (Dataset 03) or single optical indices (Dataset 04), and the model performance was better. In Dataset 07, the precision, F1-score, and MCC of R-Unet in the test sample were 0.948, 0.921, and 0.888, respectively.



	
Compared with classic models such as FCN-8s, SegNet, U-Net, etc., R-Unet had the highest test result accuracy on the best dataset, and the rice extraction effect was the best. The precision, IOU, MCC, and F1-score of R-Unet rice extraction increased by 5.2%, 14.6%, 11.8%, and 9.3%, respectively.








In summary, the R-Unet proposed in this study can extract the rice planting area timely and accurately, and the research results can provide crucial information for governments to implement decision-making about agricultural management.
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Figure 1. Geographical location map of the study area. 
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Figure 2. The research workflow. 
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Figure 3. The structure of R-Unet. 
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Figure 4. The structure of MFF module. 






Figure 4. The structure of MFF module.



[image: Remotesensing 15 04021 g004]







[image: Remotesensing 15 04021 g005 550] 





Figure 5. The structure of the attention-residual module. 
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Figure 6. (a) Training loss values of baseline models. (b) Validation loss values of baseline models. 
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Figure 7. The OA, precision, IOU, and F1-score of the baseline models in the validation samples: where (a) is OA, (b) is precision, (c) is F1-score and (d) is IOU. 
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Figure 8. Comparison of the rice extraction results of baseline models in the test samples: where (a) is the SAR images (RGB is VV, VH, and VV/VH in December 2019), (b) is the optical indices (RGB is NDVI, EVI, and LSWI, respectively), (c) is the ground-truth map, and (d–h) are the rice prediction results of R-Unet, MFF-Unet, Attention-ResUnet, U-Net, and L-Unet, respectively. 
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Figure 9. (a) Training loss values of classic models. (b) Validation loss values of classic models. 
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Figure 10. The OA, precision, IOU, and F1-score of the classic models in the validation samples: where (a) is OA, (b) is precision, (c) is F1-score and (d) is IOU. 
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Figure 11. Comparison of the rice extraction results of classic models in the test samples: where (a) is the SAR images (RGB is VV, VH, and VV/VH in December 2019), (b) is the optical indices (RGB is NDVI, EVI, and LSWI, respectively), (c) is the ground-truth map, and (d–h) are the rice prediction results of R-Unet, FCN-8s, DeepLab, SegNet, and L-Unet, respectively. 
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Table 1. Datasets of rice extraction model.
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Datasets

	
Input Bands

	
Channels

	
Description






	
Dataset 01

	
VH

	
10

	
VH: vertical–horizontal polarization

VV: vertical–vertical polarization

Indices: NDVI + EVI + LSWI

NDVI: normalized difference vegetation index

EVI: enhanced vegetation index

LSWI: land surface water index




	
Dataset 02

	
VV

	
10




	
Dataset 03

	
VH + VV

	
20




	
Dataset 04

	
Indices

	
3




	
Dataset 05

	
VH + indices

	
13




	
Dataset 06

	
VV + indices

	
13




	
Dataset 07

	
VH + VV + indices

	
23











[image: Table] 





Table 2. Confusion matrix results of R-Unet in validation samples.
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Predictions

	

	




	

	

	
Rice

	
Non-Rice

	
Producer Accuracy






	
Truth

	
Rice

	
516,645

	
17,602

	
0.967




	

	
Non-rice

	
38,516

	
934,565

	
0.960




	

	
User accuracy

	
0.931

	
0.982

	




	

	
OA

	
0.963

	

	




	

	
F1-score

	
0.949

	
MCC

	
0.920




	

	
IOU

	
0.902

	
Recall

	
0.967
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Table 3. Test results of the baseline models on Dataset 07.
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	Model
	Precision
	IOU
	Recall
	F1-Score
	MCC
	OA
	Time (ms)





	R-Unet
	0.948
	0.853
	0.895
	0.921
	0.888
	0.952
	27.22



	MFF-Unet
	0.939
	0.789
	0.832
	0.882
	0.837
	0.931
	30.93



	Attention-ResUnet
	0.936
	0.806
	0.854
	0.893
	0.850
	0.937
	37.75



	U-Net
	0.927
	0.825
	0.882
	0.904
	0.863
	0.942
	29.16



	L-Unet
	0.926
	0.731
	0.777
	0.845
	0.792
	0.914
	28.41
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Table 4. Test results of the classic models on Dataset 07.
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	Model
	Precision
	IOU
	Recall
	F1-Score
	MCC
	OA
	Time (ms)





	R-Unet
	0.948
	0.853
	0.895
	0.921
	0.888
	0.952
	27.22



	SegNet
	0.928
	0.755
	0.802
	0.861
	0.809
	0.920
	27.58



	L-Unet
	0.926
	0.731
	0.777
	0.845
	0.792
	0.914
	28.41



	FCN-8s
	0.923
	0.707
	0.751
	0.828
	0.770
	0.903
	40.32



	DeepLab
	0.896
	0.719
	0.784
	0.836
	0.773
	0.905
	26.25
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Table 5. Confusion matrix results of R-Unet in test samples.
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Predictions

	

	




	

	

	
Rice

	
Non-Rice

	
Producer Accuracy






	
Truth

	
Rice

	
2,717,954

	
318,268

	
0.900




	

	
Non-rice

	
149,257

	
6,644,921

	
0.978




	

	
User accuracy

	
0.948

	
0.954
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Table 6. Differences in evaluation indicators between R-Unet and baseline models (%).
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	Model
	Precision
	IOU
	Recall
	F1-Score
	MCC
	OA





	MFF-Unet
	0.9
	6.4
	6.3
	3.9
	5.1
	2.1



	Attention-ResUnet
	1.2
	4.7
	4.1
	2.8
	3.8
	1.5



	U-Net
	2.1
	2.8
	1.3
	1.7
	2.5
	1.0



	L-Unet
	2.2
	12.2
	11.8
	7.6
	9.6
	3.8
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Table 7. Differences in evaluation indicators between R-Unet and classic models (%).






Table 7. Differences in evaluation indicators between R-Unet and classic models (%).





	Model
	Precision
	IOU
	Recall
	F1-Score
	MCC
	OA





	SegNet
	2.0
	9.8
	9.3
	6.0
	7.9
	3.2



	U-Net
	2.1
	2.8
	1.3
	1.7
	2.4
	1.0



	L-Unet
	2.2
	12.2
	11.8
	7.6
	9.6
	3.8



	FCN-8s
	2.5
	14.6
	14.4
	9.3
	11.8
	4.9



	DeepLab
	5.2
	13.4
	11.1
	8.5
	11.5
	4.7
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