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Abstract: Feature extraction and recognition of underwater targets are important in military and
civilian areas. This paper studied water surface acoustic wave (WSAW) detection by a millimeter wave
(mmWave) radar. The mmWave-based endpoint detection method of the WSAW was introduced.
Simulated results show that the continuous wavelet transform (CWT) method has a better detection
performance. A 77 GHz large aperture antenna mmWave radar sensor and an underwater acoustic
transmitter have been applied to conduct laboratory experiments. Still water surface experimental
results verify that the CWT method has better detection capability, and the mmWave radar can
accurately detect even 155 nm WSAW. Wavy water surface experimental results demonstrate the
ability of the mmWave radar to analyze the time-frequency feature of the weak WSAW signal. These
works indicate the potential of mmWave radar for the cross-medium detection and recognition of
underwater targets.

Keywords: surface acoustic wave; endpoint detection; millimeter wave radar

1. Introduction

When sound waves are emitted toward the water surface, they will stimulate micro-
vibrations on the water surface due to the mismatch between the specific acoustic impedances
of the water–air interface. The sound-induced micro-vibration, whose particle vibration
is between shear wave and longitudinal wave, propagates along the water surface and
vibrates with the incident sound [1]. This micro-vibration is a kind of surface acoustic
wave (SAW). The water surface acoustic wave (WSAW) contains acoustic transmission
information of underwater targets and can play the role of a bridge that transmits under-
water information to in-air equipment. Recently, human detection activities in the ocean
have been increasing along with the continuous improvement of marine strategic status [2].
The detection of the WSAW can be used in searching and detecting noisy underwater
equipment. Moreover, it also can be used in the active wireless cross-media information
transmission of underwater equipment.

Because of its great significance, the related research of SAW detection has been
underway for decades. The optic/laser technique was the first technique to be applied
in SAW detection [3]. This technology is fully extended to the characteristics detection
of the SWAW [4]. Acousto-optic technique-based WSAW detection has been studied
via several techniques [5,6], including laser diffraction detection technology [7,8], laser
slope scanning technology, laser interferometry technology, and laser phase scanning
technology. In 1979, Weisbuch et al. [7] first proposed the realization of optical diffraction
grating with a liquid surface wave and established the optical measurement method of
surface tension. In 1988, Lee et al. [9] detected the sound-induced micro-vibrations with
a laser. Interferometric techniques using coherent laser radiation to measure the acoustic
signals on a vibrating surface have been successful [10]. An uplink underwater acoustic
communication experiment was conducted in [11]. However, since the laser wavelength is
very short, it is susceptible to water surface waves. Even when the water surface is calm,
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only a small amount of probe beam power will re-enter the interferometer [12]. In addition,
the noise caused by a natural water surface seriously impairs the performance of the laser
system. In the natural world, the water surface is full of waves. It is difficult to detect the
WSAW using a laser outside the lab.

With the development of high-frequency radio wave radar, it has been found that
millimeter wave (mmWave) radar can be used to detect the WSAW on fluctuating water
surfaces. In 1972, Tremain and Angelakos detected underwater sound sources using
37 GHz microwave radiation reflected from the water surface. The experiment detected the
45 and 55 Hz WSAW with a maximum amplitude of either 0.16 cm or 0.08 cm [13]. In 2018,
A 60 GHz mmWave radar was used to detect the WSAW and realize the cross-medium
wireless communication [14]. Experimental results show that the mmWave radar-based
technology can be applied to a few microns of a WSAW to communicate in the presence of
surface waves with a max 16 cm peak-peak height, which is much higher than the wave
heights allowed by a laser system.

The technology is verified again in [15]. Ref. [16] applied a 0.33 THz radar to detect
20 µm WSAW. Ref. [17] used an improved Relax algorithm to detect the frequency of the
WSAW. Compared with the acousto-optic technique, the mmWave-based WSAW detection
technology has stronger robustness due to the longer wavelength of the mmWave. The
amplitudes of waves on the natural wavy ocean surface are always 5–7 orders of magnitude
larger than the sound-induced WSAW, which leads to unreliable unwrapping and echoes
swaying. These significantly degrade the performance of WSAW detection through the
natural water–air interface. The mmWave-based WSAW detection technology is expected
to realize the WSAW-based underwater detection on the natural wavy water surface.

This paper focuses on endpoint detection of the WSAW. Endpoint detection of the
WSAW is an important step in mmWave-based WSAW detection. The extremely weak
WSAW signal is always submerged in huge water surface waves. In practical applications,
it is usually required to judge whether there is a WSAW signal first, and accurately locate
the starting point and ending point of the underwater sound signal. It helps to collect
real underwater sound data, reduce the amount of data and computation, and reduce the
processing time. Time–frequency analysis simultaneously studies a signal in both the time
and frequency domains. In addition to facilitating endpoint detection, the time–frequency
distribution can also be used for underwater sound signal feature extraction and recognition.
Therefore, the research on the WSAW endpoint detection and time-frequency analysis
algorithm is of great significance.

Here, the method for mmWave-based WSAW detection is analyzed. Simulation and
experiment results are displayed to validate the potential of the technique. The rest of
this paper is organized as follows. Section 2 describes the principle and system for the
mmWave-based WSAW detection system. The algorithms for WSAW endpoint detection
are introduced in Section 3. Section 4 gives the simulation methods and results. The
experiments and discussions are described in Section 5. Section 6 concludes this paper.

2. Principle and System
2.1. WSAW Properties

The WSAW is a kind of micro-vibration of water particles. It occurs when underwater
sound waves are incident on the water–air interface. The WSAW is between shear and
longitudinal waves, propagating along the water surface. The displacement of the WSAW is
small, and the effect of gravity can be ignored. Hence, the three-dimensional mathematical
model of the WSAW with an ideal point sound wave at a horizontal plane XOZ can be
written as [1]:

z(x, y, ω, t) =
2Pi

ρwωvw
e−α
√

x2+y2
cos
(

k
√

x2 + y2 −ωt
)

, (1)

where z is the displacement, x and y represent horizontal coordinates, Pi is the incident
sound pressure at the water–air interface, ρw is the density of water, ω is the sound
frequency, and vw is the sound velocity in water. α is an attenuation coefficient related to
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water viscosity, water surface tension coefficient, water density, and acoustic frequency.
Figure 1 plots the three-dimensional WSAW excited by an ideal point sound wave.

Figure 1. Schematic diagram of ideal point source-induced WSAW.

Ignoring the horizontal attenuation, we can obtain the maximum vibration amplitude.
The amplitude is linearly related to the incident sound pressure and can be calculated as:

A(ω, t) =
2Pi

ρwωvw
. (2)

The sound pressure level (SPL) range of marine sonar can be estimated by [18]:

SPL = 10 lg Pa + 170.77 + DIT , (3)

where Pa is the sound-radiated power, DIT is the emission directivity coefficient. Generally,
the radiated sound power of marine sonar is hundreds to thousands of watts, and the
DIT is 10 to 30 dB, so the SPL is approximately 210∼240 dB/µPa. Considering a 500 m
propagation attenuation as a spherical wave (propagation attenuation can be approximately
estimated by 20 ∗ log(d), where d is the water depth in meters), the incident SPL at the
water–air interface is approximately 120∼200 dB/µPa. Figure 2 shows the amplitude of the
sound-induced micro-vibrations with different incident SPLs and frequencies. It is shown
that the amplitudes are very small (only a few hundred nanometers for 200 Hz sound with
incident SPL 150 dB/µPa).
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Figure 2. Amplitude of the micro-vibrations with different incident SPLs and frequencies.
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2.2. System

The WSAW detection system is composed of an underwater speaker as a transducer
and a mmWave radar as a receiver. Figure 3 shows the configuration of the WSAW detection
system by a mmWave radar. The underwater speaker can emit 80–8000 Hz sound, which
is used to simulate the acoustic wave of underwater targets and stimulate the WSAW on
the water–air interface. The mmWave frequency-modulated carrier wave (FMCW) radar
transmits a wideband mmWave signal. It measures its reflection on the water surface,
where the water surface has the WSAW, as Figure 3 shows.

Acoustic
Transmitter

WSAW

Amplifier

Signal 
generator

mmWave
Radar

Radar raw 
signal

PC

Wavy water surfaceWavy water surface

Figure 3. Configuration of the mmWave based on the WSAW detection system.

2.3. mmWave Radar Detection Principle

The radar sensor is based on a linear FMCW architecture. It transmits a series of linear
frequency-modulated waveforms, called chirps, with a period of T. In a sweep period T,
the expression of the FMCW signal transmitted by mmWave radar can be expressed as:

St(t) = A0 cos(2π( f0t + 0.5µt2) + φ0), (4)

where A0, φ0 represent the amplitude and random initial phase of the transmitted signal,
respectively. f0 is the carrier frequency, µ = B/T is the slope of frequency computed from
the sweep bandwidth of B and the signal duration of T. At time t, a stationary target is at
a distance r in front of the radar. The signal is reflected back from the target and returns
back to the antenna in the form of St(t− τ(t)), where τ is the round-trip delay of the echo
calculated by: τ(t) = 2r/c . The expression of the received target echo signal is:

Sr(t) = A0
′ cos(2π( f0(t− τ(t)) + 0.5µ(t− τ(t))2) + ϕ0), (5)

where A0
′ is the received target echo amplitude after propagation attenuation, c is the light

speed, and ϕ0 is the initial phase of the received echo. Both the transmitted and received
signals are mixed and low-pass filtered to produce an intermediate frequency (IF) signal
that can be written as:

SIF(t) = A0
′ cos

(
2π
(

f0τ + µτt− 0.5µτ2
))

. (6)

The last term of Equation (6) is known as the residual video phase and can be removed
for the very small τ. Substitute τ(t) = 2r/c into (6), the IF signal is obtained as:

SIF(t) = A0
′ cos[2π( f02r/c + 2µtr/c)]. (7)
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The phase of the IF signal is ϕ = 4π f0r/c. The phase changes can be used to detect
the weak displacement of the target [19]. Here, our target is the WSAW. The signal phase
from the water surface is:

φ(t) = 2π f0τ = 4π
d0(t) + A(t)

λ
, (8)

where d0(t) is the distance between the radar and the water surface, A(t) is the amplitude of
the WSAW, and λ is the wavelength of the radar transmitted signal. Ignoring the influence
of low-frequency water surface gravity waves, one can extract the high-frequency micro-
vibrations (the WSAW signal) from the phase changes of φ(t). Figure 4 gives the phase
changes for a 77 GHz mmWave radar with different sound frequencies and incident powers.
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Figure 4. Phase changes with different SPLs and frequencies for a 77 GHz mmWave radar. The white
curve is the contour that has a constant phase change. For example, the curve labeled 1 represents a
phase change of 1 mrad.

2.4. Radar Signal Preprocessing

The FMCW radar measures the reflection after a fast Fourier transform (FFT)-based
range compression. Generally, the highest reflection power range bin is chosen to extract
the phase of each chirp. The extracted phase is wrapped due to the surface waves. The
wrapped phase needs an unwrapping process before the next process. Spline interpolation
is used to fill the missing data, if necessary. Then, a high-pass filter is applied to eliminate
the low-frequency modulation of water surface waves. The surface waves always induce
spikes which degrade communication performance significantly and are difficult to filter
out. After this processing, the signal feature can be extracted from the filtered phase signal.
Finally, the WSAW endpoint can be obtained by a decision method. Signal processing steps
are presented in Figure 5.

Range 
compression  Phase extract Range bin 

choose 

High‐pass 
filter

Interference 
peak removal

Feature 
extraction

Endpoint 
decision

Radar IF signal Phase unwrap 

Spline 
interpolation 

Figure 5. Signal processing flow diagrams.

3. Algorithms for WSAW Endpoint Detection

The WSAW signal is weak, while the natural waves are huge. The WSAW signals are
always submerged in water surface fluctuation or even in the phase noise of a radar system.
Hence, it is difficult to judge its existence and endpoint position directly. The accuracy
detection of the WSAW endpoint in various noise environments is particularly important for
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practical applications. Here, we refer to the general sequential signal processing method and
show the feature extraction method and endpoint decision strategy of the WSAW signal.

3.1. Feature Extraction

The general time series endpoint detection is based on the feature extraction in time
domain, frequency domain, time-frequency domain, and cepstrum domain [20]. The
traditional short-time energy (STE) algorithm, Hilbert Huang transform (HHT) algorithm,
and continuous wavelet transform (CWT) algorithm are tested in this paper. Next, we will
give a brief introduction to these algorithms.

3.1.1. Short-Time Energy Algorithm

The STE algorithm is a simple and widely applied algorithm based on the average
energy over a sliding window of length L across neighboring elements of a signal [21]. The
STE can be calculated as:

E(i) =
1
L

n=i+L

∑
n=i

x(n)2. (9)

The algorithm can effectively reduce noise energy and amplify signal energy. Due to
the weak WSAW signal, the higher-order short-time energy algorithm is applied here to
achieve a better detection result, as:

E(2)(i) =
1
L

n=i+L

∑
n=i

E(n)2

E(3)(i) =
1
L

n=i+L

∑
n=i

E(2)(n)2.

(10)

Short-time Fourier transform (STFT) is a basic time-frequency analysis method that
can be used to analyze how the frequency content of a nonstationary signal changes over
time. It produces a time-frequency spectrum by taking the Fourier transform over a chosen
time window. In STFT, the time-frequency resolution is fixed over the entire time-frequency
space by preselecting a window length. Therefore, resolution in data analysis becomes
dependent on window length.

3.1.2. Hilbert Huang Transform (HHT) Algorithm

HHT was applied in accurate underwater acoustic signal frequency estimation using
an acousto-optic technique [22]. As a novel and effective method for processing nonlin-
ear and nonstationary signals, the HHT method has been gradually applied in various
fields, such as seismic signal analysis, ocean signal analysis, wind speed analysis, bridge
health monitoring, voice signal processing, graphic image processing and analysis, and
in biomedicine and so on [23–25]. HHT is an adaptive time-frequency analysis method
of non-stationary signals based on data. This method is based on the Hilbert transform
(HT) [26]. The basic idea of HHT is to use empirical mode decomposition (EMD) to de-
compose the signal into a limited number of intrinsic mode functions according to certain
screening criteria [27]. Here, the HHT method decomposes the unwrap phase signal by the
EMD, obtains the Hilbert energy spectrum of the signal through adaptive weight selection
of the inherent mode function [28,29], and uses the sequential statistical filter to smooth the
energy spectrum as the distinguishing feature of the WSAW signal.

3.1.3. Continuous Wavelet Transform (CWT) Algorithm

CWT uses inner products to measure the similarity between a signal and an analyzing
function [30]. The CWT compares the signal to shifted and compressed or stretched versions
of a wavelet. Stretching or compressing a function is collectively referred to as dilation
or scaling and corresponds to the physical notion of scale. By comparing the signal to
the wavelet at various scales and positions, a function of two variables is obtained. There
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are many different admissible wavelets that can be used in the CWT. Generalized Morse
wavelet is a two-parameter family of functions, and it can be used to build up a time
series [31]. Generalized Morse wavelets are a family of exact analytic wavelets. They are
useful for analyzing modulated signals, which are signals with time-varying amplitude
and frequency. They are also useful for analyzing localized discontinuities [32]. The
Morse wavelets, represented as ψβ,γ(t), are defined in the frequency domain for β ≥ 0 and
γ > 0 as:

ψβ,γ(ω) = U(ω)aβ,γωβe−ωγ
, (11)

where ω is angular or radian frequency, U(ω) is the unit step, and aβ,γ is a real-valued
normalized constant chosen as

aβ,γ = 2(
eγ

β
)β/γ. (12)

The parameter β, called the order, controls the low-frequency behavior, which can
be viewed as a decay or compactness parameter. While γ , called the family, controls
the high-frequency decay and characterizes the symmetry of the Morse wavelet. γβ is
the time-bandwidth product. By adjusting the time-bandwidth product and symmetry
parameters of a Morse wavelet, one can obtain analytic wavelets with different properties
and behavior. A strength of Morse wavelets is that many commonly used analytic wavelets
are special cases of a generalized Morse wavelet. The (demodulate) skewness of the Morse
wavelet equals 0 when γ = 3. The wavelet transform of a square-integrable signal x(t)
with respect to the wavelet ψβ,γ(t) is defined in the frequency domain as:

ωβ,γ(τ, s) =
1

2π

∫ ∞

−∞
eiωτψ∗β,γ(sω)X(ω)dω, (13)

where X(ω) is the Fourier transform of x(t), τ is the scale factors, s is the position fac-
tors, and the asterisk denotes the complex conjugate. Here, we use the parameters as
γβ = 60, γ = 3. To further improve algorithm performance, the high-order energy of the
CWT decomposed parameters is extracted as a feature by:

E = 10log10(ωβ,γ(τ, s)4). (14)

3.2. Decision Method

An adaptive endpoint detection method is proposed to determine the final endpoint
position. The decision method is as follows:

(1) Setting the lengths of reference and protection units.The length is set according to the
length of the WSAW and the power ratio of WSAW phase signal to the noise phase
signal (SNR). Without losing generality, we set the length of reference units as 40, and
the length of the protection unit is 4.

(2) For the edge value (the first and last 40 points), the lengths of the reference unit are
less than the setting value.

(3) Calculating the left and right median values within the reference units.
(4) Calculating the difference between the left and right median values.
(5) Setting edge protection by setting the first and last 50 difference points values as 0.
(6) Finding the maximum and minimum values of the median difference between the

two sides.
(7) Making the maximum and minimum difference as the endpoint.

Figure 6 shows the decision method architecture with the length of reference unit of
40 and the length of protection unit of 4. Figure 7 gives the detailed signal processing flow
diagrams of the decision method based on the extracted feature signal. The two-parameters
method can adaptively identify the step change of the extracted feature signal.
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Figure 6. The decision method architecture with the length of reference units of 40 and the length of
protection unit of 4.
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Figure 7. Signal processing flow diagrams of decision method.

4. Simulation Test

To evaluate the performance of the algorithm in different scenarios, we simulate the
radar-received echo data based on different wavy ocean surfaces. In the simulation process,
we assume that the water surface waves are wind-induced and the unwrapping phases of
the radar echo correspond to the single point fluctuation of the water surface.

4.1. Wavy Ocean Surface Simulation

According to the linear wave theory, the randomly varying ocean surface can be treated
as the superposition of a series of single waves with different amplitudes, frequencies, and
propagation directions. Hence, the instantaneous water surface elevation corresponding to
a point can be calculated by:

Z =
n

∑
i=1

Ai cos[kix0 −ωit + ϕi], (15)

where n is the number of unit waves, Ai is the amplitude, ωi is the angular frequency,
ki is the wavenumber of spatial frequency, and ϕi is the initial wave phase angle, which
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is generally generated randomly. In a stationary random process, their spectral density
function or wave spectrum is defined as the Fourier transform of the correlation function
of rough surface waves. The wave spectrum can be used to estimate the value of Ai and to
simulate the instantaneous water surface elevation. Here, the classical PM spectrum wave
spectrum is used to simulate the random wave surface [33] as

SPM(k) =
0.0081

2
k−3 exp(−0.74(

g
kU2

19.5
)2), (16)

where k is the wave number, g is the acceleration of gravity, and U19.5 is the wind speed
of 19.5 m high on the surface. Since the phase velocity of the capillary wave is small, the
capillary wave-induced phase change in radar echoes has a lower frequency than that of
the WSAW. Furthermore, capillary wave-induced phase change can be filtered out by the
high-pass filtering process. Consequently, the influence of capillary waves is ignored here.
After the wave spectrum SPM(k) is discretized, the parameters of each unit wave can be
obtained. The classical fast Fourier transform (FFT) can be used to generate random rough
surface samples faster. The elevation ξn of the rough surface at any position x = n∆x can
be expressed as:

ξn = ξ(n∆x) =
1√
L

M

∑
m=−M

ηmei 2π∆x
L mn, (17)

where ηm is the root square amplitude of the wavenumber spectrum, L is the length of the
simulated ocean surface size L = N∆x, and M is the number of eigenvalues. The specific
conversion process is described in [34].

Figure 8 shows the 1D ocean surface retrieved under different wind speeds with
4,194,304 points. The simulation has a 50 m patch size and a spatial wavenumber reso-
lution of 0.1257 rad/m. The sample frequency is 10 kHz, and there are 60,000 samples
in total. The wind speeds of the three diagrams are 2 m/s, 4 m/s, and 6 m/s, respec-
tively. The simulated water surface fluctuation is consistent with the actual water surface
fluctuation characteristics.

4.2. Algorithms Simulation

The 77 GHz mmWave is applied in the simulation with the phase sensitivity of
1.61 rad/mm. At the same time, there are 2 s WSAW signals with different intensities, and
−73 dBW ADC quantization caused Gaussian noise in the radar phase data. Figure 9 shows
the simulated phase data. Figure 9a presents the unwrapping phase of the radar echo,
which corresponds to the single point fluctuation of the water surface at 2 m/s wind speed.
The middle red line area represents that the phase contains weak 2 s 200 Hz sinusoidal
WSAW signal. Figure 9b presents the high-pass filtered and interference peak removed
unwrapping phase of the radar echo. The SNR, the power ratio of the WSAW phase signal
to the noise phase signal, is about 7.93 dB.
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Figure 8. One-dimensional (1D) ocean elevation time series at a position retrieved under different
wind speeds.
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Figure 9. Simulation radar phases; (a) Surface elevation; (b) Filtered phase.

Figure 10 shows the extracted features and endpoint decision results obtained by
the STE, HHT, and CWT methods. The red lines show the actual endpoint location, and
the green star lines show the determined endpoint location. For the same phase data
shown in Figure 9b, the CWT method can get the best endpoint decision result, while the
short-time energy method cannot give the right endpoint location. It is worth noting that
both HHT and CWT methods have applied the frequency-domain energy distribution,
which effectively improves the detection accuracy.

In order to verify and compare the detection performance with different WSAW phases
(the amplitudes of the WSAW), we simulated the endpoint detection probabilities of the
three methods. Table 1 gives the simulation detection rates for three methods under 2 m/s
wind speed with 1000 randomly fluctuating water surfaces. When the difference between
the estimated and the actual endpoints is fewer than 0.1 s (1000 points for 10 KHz time
sampling frequency), we considered that the endpoint has been successfully detected. It
can be seen that, with the increase of the WSAW phase, the detection probability increases.
As in the previous analysis, the detection performance of the CWT method is the best,
followed by that of the HHT and STE methods. Table 2 presents the WSAW phase and the
corresponding amplitude of the WSAW. When the WSAW phase is 0.5 mrad, the amplitude
of the WSAW is only 155 nm. It is challenging to detect such weak vibration on the water
surface at a wind speed of 2 m/s, as Table 1 shows. For a 775 nm WSAW, the endpoints can
be detected on a wavy surface.

Table 1. Simulation detection rates with 2 m/s wind speed.

Method
Phase

0.5 mrad 1 mrad 1.5 mrad 2 mrad 2.5 mrad

STE 5.4% 10.9% 26.1% 53.1 % 80.1 %
HHT 5.3% 12.9% 35.4% 67.5% 89.1%
CWT 6.5% 18.0% 44.4% 75.5% 93.2%



Remote Sens. 2023, 15, 4022 11 of 19

Table 2. The WSAW phase vs. amplitude.

Phase 0.5 mrad 1 mrad 1.5 mrad 2 mrad 2.5 mrad

Amp 155 nm 310 nm 465 nm 620 nm 775 nm
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Figure 10. Feature extraction and decision result of the simulated data, the red lines show the actual
endpoint location and the green star lines show the determined endpoint location; (a) STE; (b) HHT;
(c) CWT.

The detection performances are also verified and compared under different wind
speeds. Due to the complexity and rapid changes of waves on the water surface, the impact
of water surface waves is significant and complex. The deviation of the echo caused by
water surface waves may result in the failure of receiving the echo or the absence of the
WSAW signal in the radar echo. In these cases, none of the three algorithms can detect the
endpoint of the WSAW signal. The impact of multipath interference on the received radar
echo is more complex, which is related to the fluctuation state of the water surface and the
design of the radar system. Generally, the greater the waves of the water surface, the more
significant and frequent the occurrence of non-Gaussian impulsive noise in the radar echo.
Accurate analysis and simulation of their impact are difficult and challenging. Hence, we
simplify the impact of waves uisng an α-stable process [35–37], as shown in Figure 11. Here,
the α-stable processes with α = 0.5, 1.2, and 1.7 correspond to the wave-induced impulsive
noise at 2 m/s, 4 m/s, and 6 m/s wind speeds, respectively. The simulated impulsive noise
is normalized by 0.5π and added in the simulated radar unwrapping phase as shown in
Figure 9b. It can be seen that, as the wind speed increases, the frequency and intensity of
the impulsive noise show a significant increase. Table 3 gives the simulated detection rates
at different wind speeds. The performance of all three methods decreases with increasing
wind speed, especially when the wind speed is 6 m/s. Overall, the CWT method has a
better detection performance.
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Figure 11. Simulating phase impulsive noise modeled as an α-stable process. Different α indi-
cates different wind speeds. α = 0.5, 1.2, and 1.7 corresponds to 2 m/s, 4 m/s, and 6 m/s wind
speeds, respectively.

Table 3. Simulation detection rates at different wind speeds (different α ) with 2.5 mrad WSAW phase.

Wind Speed
Method STE HHT CWT

2 m/s 25.1% 84.9% 91.8%
4 m/s 4.5% 73.6% 82.8%
6 m/s 0.1% 53.3% 53.2%

5. Experiment and Discussion
5.1. Experiment Describtion

A laboratory experiment is conducted to verify the above analysis. A general Texas
Instrument on-chip mmWave FMCW radar AWR1243 and an underwater acoustic trans-
mitter are implemented in our experiment, as shown in Figure 12a. The AWR1243 device
is an integrated single-chip FMCW transceiver capable of operating in the band of 76 to
81 GHz. It enables a monolithic implementation of a three transmitter and four receiver
channels radar system [38]. To increase the antenna aperture and antenna beam gain, the
two channels of the transceiver are designed as 16 × 16 and 32 × 32 microstrip patch array
antennas, with beam widths of 11◦ × 9◦ and 7◦ × 5◦, respectively. Figure 12b shows the
mmWave FMCW radar system. During this experiment, we used the parameter settings of
radar shown in Table 4. The mmWave radar is mounted above a 128 cm × 55 cm × 65 cm
water tank. It is about 80 cm above the water surface, and the acoustic transmitter is 13 cm
below it. The underwater transmitter has a conversion efficiency of 105 dB/w/m and
is excited by a 120 W power amplifier. A 200 Hz sinusoidal tone is transmitted by the
underwater acoustic transmitter. Figure 12a shows the experimental scene.

(a) (b)

Figure 12. (a) Experimental scene diagram; (b) Millimeter-wave radar with microstrip patch
antenna array.
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Table 4. Radar parameters.

Parameters Value

Frequency 77 GHz
Bandwidth 1.53 GHz
Sample rate 10 M/s

Chirp period 100 µs
chirp number 255

Frame number 256
Range resolution 9.8 cm

Beam width for 16× 16 11◦ × 9◦

Beam width for 32× 32 7◦ × 5◦

5.2. Experiment Results on Still Water Surface

Typical experimental results on the still water surface are presented in Figure 13.
Figure 13a shows the results of range compression (FFT) by the data of the 32× 32 microstrip
patch array antenna channel. Here, the 8th range bin indicates the reflection from the nearest
water surface with the max reflection power. Note that the light points indicate relatively
strong echoes. Figure 13b gives the unwrapped phase series of the 8th range bin, and
Figure 13c is the high-pass filtered phase of the unwrapped results in Figure 13b. The phase
series in Figure 13b,c contains the WSAW signal; however, it is too small to be seen. After
high-pass filtering, the high-frequency WSAW signal is submerged in high-frequency noise,
as shown in Figure 13c.
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Figure 13. Signal process results; (a) Range vs. Chirp number matrix; (b) Unwrapped and compen-
sated phase; (c) Filtered phase.

In the experiment, the duration (6.5 s) of radar transmission is longer than that (2.1 s) of
the sound wave. The mmWave is transmitted first and then the sound wave, which ensures
that the radar echo can perceive the WSAW signal. However, when the WSAW signal is
small, it is difficult to directly judge whether the WSAW exists and the occurrence time
points by the unwrapped and filtered phases. Figure 13c shows that the WSAW-caused
phase change is below 0.5 mrad, which means that the amplitude of the WSAW is below
155 nm as shown in Table 2. The estimated SNR of the filtered phase is about −10 dB.
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Figure 14 shows the endpoint detection results from the STE algorithm of the filtered
phase signals at the 8th range cells. The results show that the WSAW signal is difficult
to extract directly from the time-series data. Frequency domain information can greatly
improve the performance of endpoint detection. Figures 15–17 present the three kinds of
time-frequency mappings and their endpoint detection results. STFT and CWT can achieve
the right endpoint detection results among the three kinds of time-frequency analysis.
Compared with STFT, CWT can achieve more precise time-frequency analysis results. In
Figure 17a, a highlighted spectral line can be seen at 200 Hz. The highlighted spectral line
lasts about 2 s, corresponding to the continuous 2.1 s 200 Hz WSAW signal. The STFT and
CWT time-frequency mappings show that the high-frequency noise mainly ranges from
300 Hz to 1000 Hz.
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Figure 14. Endpoint detection results by short-time energy algorithm, the green star lines show the
determined endpoint location.
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Figure 15. (a) STFT spectrogram; (b) Endpoint detection results by the STFT spectrogram.
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Figure 16. (a) HHT spectrogram; (b) Endpoint detection results from the HHT spectrogram.
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Figure 17. (a) CWT spectrogram; (b) Endpoint detection results from the CWT spectrogram.

5.3. Experiment Results on Wavy Water Surface

Experimental results on a wavy water surface are presented in Figure 18. Figure 18a
shows the results of range compression (FFT) from the data of the 32× 32 microstrip patch
array antenna. Here, the 8th range bin also indicates the reflection from the nearest water
surface with the max reflection power because the wave peak–peak amplitude is below
the range resolution. Figure 18b shows the unwrapped phase series of the 8th range bin
and the high-pass filtered phase of the unwrapped results. The unwrapped phase series
indicates that the wave peak-to-peak amplitude is about 0.5 cm on the water surface. Here,
the underwater speaker transmits a linear frequency modulation (LFM) signal from 100 Hz
to 1000 Hz during 2.1 s. The phase series in Figure 18b contains the LFM WSAW signal,
although the LFM WSAW signal is submerged in high-frequency noise and is hardly seen.
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Figure 18. Signal process results; (a) Range vs Chirp number matrix; (b) Unwrapped phase and
high-pass filtered phase.

Due to strong noise and signal expansion in the frequency domain, the endpoints
are difficult to detect directly. Figure 19 shows the time-frequency distribution of the
filtered phase signal. Figure 19a gives the STFT spectrogram. The spectrogram uses a Hann
window of length 128 and 96 overlapped samples for each window. The 128 points DFT
was calculated with a fixed frequency resolution of 78 Hz. In the spectrogram, a weak short
oblique line can be seen at the time of 2 s; this is the time-frequency distribution of the LFM
signal. Because the LFM signal is weak and the noise is too strong, most LFM spectrum
distribution is submerged in the noise.
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(a) (b)

Figure 19. LFM signal in time-frequency spectrum; (a) STFT spectrogram; (b) CWT spectrogram, the
red circle indicates the spectrogram of the WSAW signal.

Figure 19b presents the CWT spectrogram. The spectrogram is also obtained us-
ing the analytic Morse wavelet with a symmetry parameter (gamma) equal to 3 and the
time-bandwidth product equal to 60. The minimum and maximum scales are determined
automatically based on the energy spread of the wavelet in frequency and time. In the spec-
trogram, the oblique line at the time around 2 s represents the time-frequency distribution
of the LFM signal. This oblique line is relatively clear and longer than that in the STFT
spectrogram. The STFT technique suffers from the fixed time and frequency resolution due
to the fixed window length used in the analysis, limiting its applications in practice. The
frequency resolutions of the CWT spectrogram are variable, and about 8 Hz around 100 Hz,
and 50 Hz around 1000 Hz. When the signal is less than 1 kHz, CWT has a finer frequency
resolution than the STFT. Therefore, CWT has a stronger time-frequency analysis ability of
the WSAW signal than the STFT.

In the two spectrograms, the visible duration of the LFM signal is only about 1 s, while
the total duration of the transmitting sound wave lasts 2.1 s. This phenomenon is mainly
because the WSAW amplitude is inversely proportional to the frequency, as Equation (2)
shows. The high-frequency WSAW corresponds to a smaller amplitude, that is, a weaker
signal. Hence, high-frequency (>500 Hz) signals are submerged in noise.

In this data set, the water surface waves are small and there is no waves-induced
high-frequency interference signal. This means that the mmWave radar can detect the
below-155 nm WSAW signal. When the water surface fluctuation becomes large, mmWave
radar cannot detect such a weak WSAW signal and the strength of the WSAW needs to be
increased, as Table 1 shows.

5.4. Discussions

The optic technologies are not only sensitive to ambient light but are also more
susceptible to water surface interference than radar technology for its short wavelength.
Due to these limitations, the current optic technologies mainly conduct researches and
experiments on single-frequency or multi-frequency signal cross-medium detection in the
laboratory environment [1,39]. Laser interferometry technology has the advantages of high
sensitivity and bandwidth. However, it still has problems with detecting low-frequency
underwater sound in real-time on natural water surfaces. In 2017, this technology achieved
the real-time detection of underwater targets with acoustic frequencies ranging from
300 Hz to 19 kHz in an optical darkroom [22]. The mmWave-based cross-medium detection
technology can be used to detect low-frequency underwater sound sources (<200 Hz)
undisturbed. It is more capable of detecting the WSAW on the actual sea surface.

These experiments realized the detection of the WSAW with a minimum amplitude
below 155 nm. It infers the potential of detecting sound sources in deep water by mmWave
radar. As shown in Figure 4 and Equation (3) above, the low-frequency underwater sound
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wave (below 200 Hz) at a depth of 100 m can be detected by this mmWave radar. The
detection sensitivity is much better than the previous microwave detection results, and even
closer to the laser detection sensitivity (about 60 nm [40]), as shown in Table 5. This work
indicates the potential of mmWave radar for the cross-medium detection of underwater
sounds in an actual ocean surface environment.

Table 5. Comparison of main experiments of cross-medium detection/communication [13–15].

Organization Time Wave Length Apply Amptitude Height Frequency

Naval Research Office 1972 8 mm Detection 1.6/0.8 mm 45/55 Hz
MIT Media Lab 2018 5 mm Comunication micrometer 20–40 cm 200 Hz

Zhejiang University 2022 3.9 mm Comunication micrometer 3–50 cm <4.4 KHz
This work 2022 3.9 mm Detection <155 nm 80 cm <500 Hz

6. Conclusions

The feature extraction and recognition of underwater targets have a wide range of
needs whether in military or civilian areas. This paper studied the WSAW endpoint
detection using a mmWave radar. Three algorithms for the feature extraction were tested.
A decision method for the WSAW endpoint was introduced. Simulation results under
different wind speeds validate the decision method and indicate that the CWT algorithm has
a better detection performance. A system that combines a 77 GHz large aperture antenna
mmWave radar sensor and an underwater acoustic transmitter has been applied to conduct
laboratory experiments. The still water surface experimental results demonstrate that the
155 nm WSAW endpoint can be accurately detected. The wavy water surface experimental
results demonstrate the ability of mmWave radar to analyze the time-frequency feature of
the weak WSAW signal even on a wavy water surface. This work demonstrates that the
mmWave radar can realize cross-medium endpoint detection and time-frequency spectrum
detection of underwater sounds, which indicates its application potential in underwater
target detection and recognition. Future work will involve searching for and positioning
the WSAW signal on a large water surface area.
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