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Abstract: Road extraction from high-resolution remote sensing images is a critical task in image
understanding and analysis, yet it poses significant challenges because of road occlusions caused by
vegetation, buildings, and shadows. Deep convolutional neural networks have emerged as the leading
approach for road extraction because of their exceptional feature representation capabilities. However,
existing methods often yield incomplete and disjointed road extraction results. To address this issue,
we propose CR-HR-RoadNet, a novel high-resolution road extraction network that incorporates local
and global context reasoning. In this work, we introduce a road-adapted high-resolution network as
the feature encoder, effectively preserving intricate details of narrow roads and spatial information. To
capture multi-scale local context information and model the interplay between roads and background
environments, we integrate multi-scale features with residual learning in a specialized multi-scale
feature representation module. Moreover, to enable efficient long-range dependencies between
different dimensions and reason the correlation between various road segments, we employ a
lightweight coordinate attention module as a global context-aware algorithm. Extensive quantitative
and qualitative experiments on three datasets demonstrate that CR-HR-RoadNet achieves superior
extraction accuracy across various road datasets, delivering road extraction results with enhanced
completeness and continuity. The proposed method holds promise for advancing road extraction in
challenging remote sensing scenarios and contributes to the broader field of deep-learning-based
image analysis for geospatial applications.

Keywords: remote sensing; image segmentation; road extraction; deep learning; convolutional neural
network (CNN)

1. Introduction

Roads are essential artificial objects and serve as fundamental geographic information.
The extraction of road information from remote sensing images holds immense significance
across various domains, such as urban planning, land management, traffic management,
automatic navigation, route analysis, and emergency response [1–4]. In recent years, remote
sensing images have witnessed a notable trend toward vast volumes, multiple sources,
and high-resolution capabilities, making them a convenient, dependable, and high-quality
data source for high-precision road extraction tasks [5,6]. In high-resolution remote sensing
images, roads are characterized by narrow straight lines composed of interconnected homo-
geneous regions. Distinguishing roads from backgrounds primarily relies on attributes such
as spectrum, texture, and topology. However, real-world geographic scenes encompass
complex background information, and different roads may exhibit significant variations
in appearance, material, and structure [3,7–9], which significantly hinders the accurate
identification and positioning of roads. Meanwhile, the problem of road occlusion remains
a formidable challenge in high-resolution remote sensing image-based road extraction
tasks, as depicted in Figure 1. Various factors, such as trees, vehicles, buildings, or shad-
ows, occlude roads, impacting their spectral, color, and texture consistency to varying
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degrees. This directly results in incomplete and discontinuous extraction results [10–15].
The omnipresence of road occlusion presents a significant challenge in road extraction:
how to ensure the completeness and continuity of roads during the extraction process
and effectively enhance the model’s anti-occlusion capability. As a result, achieving effi-
cient, high-precision, and automated road extraction while ensuring road continuity has
consistently remained a major challenge in the field of remote sensing.
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Prior to the emergence of deep learning, the mainstream road extraction method
involved manually designing effective features for road properties, such as spectrum,
geometry, color, texture, and topology. Machine learning algorithms, like clustering and
classification, were then employed to distinguish roads from the background [4]. These
methods can be categorized as pixel based or object based depending on the analytical
scale, and feature based or classification based depending on how features are represented
and learned. However, in recent years, deep convolutional neural networks have taken
center stage in road extraction tasks, gradually becoming the dominant technology. Most
deep-learning-based road extraction methods are based on the encoder–decoder structure,
effectively extracting road semantic features from complex scenes and handling highly
differentiated roads with robust processing capabilities [5,6]. Some studies aim to optimize
the model’s internal structure and enhance road feature representation through effective
feature extraction modules, thus improving the accuracy of road extraction [12–16]. Other
studies employ multi-task learning methods, extracting road surfaces, centerlines, and
boundaries simultaneously, to enhance road feature representation through constraints
among multiple tasks [17,18].

However, the existing research’s feature representation mode, based on a local recep-
tive field, faces challenges in effectively establishing the topological relationship between
road segments separated by occlusions [12,19]. Consequently, some studies employ con-
text information to enhance the road semantic features of occluded parts, ensuring road
completeness and continuity. Context information extraction algorithms utilize either
multi-scale feature representation [20–25] or attention mechanisms [12,23,26–30]. While
multi-scale features can model dependencies between geo-objects and the background,
attention mechanisms can model correlations between homogeneous geo-objects. However,
there are concerns regarding the insufficient coupling of multi-scale feature modules with
the feature-learning process and the large number of parameters and computations asso-
ciated with the self-attention mechanism when applied to high-resolution feature maps.
Furthermore, encoder–decoder networks may suffer from the loss of narrow road infor-
mation because of downsampling, and the skip connections between visual and semantic
features may introduce irrelevant low-level noise information.

To address the challenges posed by road occlusion in high-resolution remote sensing
images, we investigate strategies to enhance the completeness and continuity of road
extraction results and propose a context-reasoning high-resolution road extraction network,
CR-HR-RoadNet. Specifically, we leverage a road-adapted high-resolution network as the
fundamental feature encoder to effectively preserve narrow road information and spatial
details, thus enhancing the model’s feature representation capability and improving road
boundary extraction accuracy.

To better utilize multi-scale features, we introduce a multi-scale feature representation
module, which couples multi-scale features into the feature-learning process to enhance
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local context reasoning. This module effectively models dependencies between roads and
their backgrounds, enhancing the semantic features of occluded roads.

Addressing the computation concerns of the self-attention mechanism, we employ
a lightweight coordinate attention module for global context reasoning. This module
generates effective channel and spatial attention weights, enhancing the model’s ability to
reason about correlations between homogeneous road objects and improving the semantic
features of occluded roads.

In summary, the main contributions of this paper are as follows:
(1) We address the loss of narrow road information caused by downsampling and

irrelevant low-level noise from skip connections by using a road-adapted high-resolution
network as the feature encoder. This approach effectively retains narrow road information
and spatial details, enhancing the model’s feature representation ability and improving
road boundary extraction accuracy.

(2) To improve the utilization of multi-scale features, we propose a multi-scale feature
representation module that integrates multi-scale features into the feature-learning process,
enhancing the model’s local context reasoning ability. This facilitates effective modeling of
dependencies between roads and their backgrounds and enhances the semantic features of
occluded roads.

(3) To address computation concerns related to the self-attention mechanism, we
introduce a lightweight coordinate attention module for global context reasoning. This
module generates effective channel and spatial attention weights, enhancing the model’s
ability to reason about correlations between homogeneous road objects and improving the
semantic features of occluded roads.

2. Related Work
2.1. Traditional Road Extraction Methods

Traditional road extraction methods primarily rely on manually designed features,
such as spectrum, texture, and geometry, to distinguish roads from the background. We
review existing research conducted at two different analytical scales: pixel-based methods
and object-based methods [23]. These studies employ feature-based and classification-based
approaches at varying analytical scales.

Pixel-based methods focus on extracting spectral and texture features at the pixel level
and utilize algorithms like classification algorithms to identify road areas. For instance,
Song and Civco [31] proposed a two-stage model for road extraction from remote sensing
images. They initially classify all pixels into road and non-road groups using the support
vector machine algorithm based on their spectral features. Subsequently, the road group
is further refined using a segmentation algorithm to generate accurate road areas. Jing
et al. [32] presented a road centerline extraction method based on multi-scale joint features.
This method effectively integrates spectral, geometric, and texture features of roads in
high-resolution images to produce multi-scale unified features. Pixel-based methods
can successfully extract roads with clear boundaries and straightforward backgrounds.
However, the results may suffer from salt-and-pepper noise, necessitating sophisticated
post-processing methods for refinement.

Object-based methods, on the other hand, identify road objects as a whole, which helps
to mitigate salt-and-pepper noise and spectral outliers, providing robust noise immunity
and applicability. Maboudi et al. [33] introduced an object-based method for road extraction
from high-resolution images, integrating spatial, spectral, and textural descriptors and
using object-based image analysis and the ant colony algorithm to extract road regions.
Chen et al. [34] proposed a two-stage approach that combines region and boundary infor-
mation. The first stage involves performing connection analysis on discrete line features
with direction consistency to extract potential road objects, and the second stage employs
shape features to further refine the results. However, these methods heavily rely on the
segmentation outcomes of objects in the image, and confusion can easily occur between
adjacent objects with similar spectra.
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2.2. Deep-Learning-Based Road Extraction Methods

Given that most road features are artificially designed and cannot adequately represent
roads under various conditions, traditional road extraction methods suffer from several
shortcomings, including low automation, complicated and time-consuming operations,
and limited generalization [19,23]. In recent years, deep convolutional neural networks
(DCNN) have garnered significant attention in road extraction because of their powerful
nonlinear feature-learning capabilities. DCNN methods have become the mainstream
technology for road extraction tasks.

Long et al. [35] proposed a Fully Convolutional Neural Network (FCN), which re-
stores the size of the feature image by upsampling, allowing it to not only identify the
cat-egory of every pixel but also restore the position of pixels in the original image. Given
that the FCN can realise the pixel-level classification of the image, many methods have
been improved and optimised based on the FCN, such as SegNet [36], UNet [37] and
DeepLab [38]. Currently, most road extraction research is based on encoder–decoder
architectures, which have shown excellent performance and rapid development [5,6]. The
encoder gradually reduces the resolution of feature images through downsampling to
expand the receptive field and extract deep semantic road features. Meanwhile, the decoder
gradually restores the resolution of feature maps through upsampling, achieving end-to-
end pixel-level road extraction.

Researchers have improved road extraction accuracy by optimizing existing model
structures, such as loss functions, feature-learning units, and multi-level feature mod-
ules. For instance, Zhang et al. [16] combined residual learning and U-Net to design
a deep residual U-Net network for road extraction. Yang et al. [39] proposed a new
recurrent convolutional neural network U-Net with an RCNN module that effectively
utilizes spatial semantic information and rich visual features to address noise and complex
background issues.

Furthermore, the road’s narrow and elongated appearance, ranging from several
meters to tens of meters in width, often occupies a small area in remote sensing images.
Continuous downsampling operations can cause some narrow roads to disappear in feature
maps, leading to missing information that is challenging to recover accurately during up-
sampling and adversely affecting the extraction accuracy. Additionally, many studies have
used skip connection architectures to obtain spatially detailed information. However, it has
been observed that low-level features contain more noise because of problems like occlusion
and spectral outliers, leading to uneven road boundaries and interruptions when using skip
connections between shallow and deep features. Thus, employing multiple skip connection
operations in the encoder–decoder structure is unnecessary for road extraction [40].

To establish an effective topological relationship between road segments separated
by occlusions and ensure a continuous road extraction result, researchers have focused
on enhancing the feature representation of occluded parts by incorporating road context
information to improve the model’s anti-occlusion ability [19,20,23,25]. Context infor-
mation encompasses dependencies between geo-objects and the background, as well as
correlations between homogeneous geo-objects. Currently, most studies capture effective
context information using multi-scale features, attention mechanisms, and self-attention
mechanisms.

Multi-scale feature techniques, such as image pyramids, pyramid pooling, skip connec-
tions, and atrous convolutions, effectively capture local context and have found widespread
use in road extraction tasks. For example, D-LinkNet [21] is a UNet-like network that in-
corporates multi-scale atrous convolution modules, enabling the model to capture road
features at multiple scales. Other studies, like those of Gao et al. [12], Wu et al. [22], Zhu
et al. [23], and Tan et al. [24], have proposed customized multi-scale modules to enhance
accurate road edge perception and feature representation. Despite the effectiveness of these
multi-scale modules in capturing local context, there remains room for improvement in
terms of the interaction between multi-scale modules and feature learning in the encoder,
which affects the model’s overall feature representation ability for road extraction.
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Attention mechanisms play a vital role in road extraction by enhancing feature rep-
resentation. These mechanisms can be categorized into channel attention and spatial
attention. Spatial attention focuses on establishing attention weights on spatial locations
through large-scale kernel convolutions, thereby improving road extraction by considering
the local texture and morphological structure of the road. On the other hand, self-attention
mechanisms establish long-distance spatial or channel dimension attention. The use of
self-attention has shown promise in improving the segmentation accuracy of roads in
remote sensing images by capturing global context and enhancing the completeness of
road regions [23,30].

However, it should be noted that spatial attention mechanisms based on convolution
operations can only capture local relations and may not adequately model desired long-
range dependencies. Similarly, self-attention mechanisms, although effective in capturing
global context, can introduce a large number of parameters and computations, leading to
increased time and memory costs during model training and inference. This issue becomes
particularly challenging when applied to high-resolution feature maps.

To address these challenges and improve the accuracy and completeness of road
extraction results, this work proposes a high-resolution road extraction network (CR-HR-
RoadNet) based on context reasoning. The network aims to enhance feature representa-
tion by effectively utilizing multi-scale context information while addressing the issue of
road occlusion.

3. Methods

To address the practical problem of incompleteness and discontinuity caused by oc-
clusions in remote sensing images, we propose a CR-HR-RoadNet by using the feature
enhancement effect of prior contextual information. On the one hand, the feature represen-
tation ability of the model is enhanced during the feature-learning process. On the other
hand, the road information of the occluded part is mined. The specific model structure
is shown in Figure 2, which includes two main parts: a road-adapted high-resolution
backbone network and a local and global context reasoning module. The local and global
context reasoning modules include the multi-scale feature representation module and the
coordinate attention module. In particular, the multi-scale feature representation module,
as the main feature-learning module, exists in the entire feature-learning process and is
used to reason local context information. The coordinate attention module is between
different feature-learning stages and is used to reason global context information. The two
modules influence each other. The richer the multi-scale road features captured by the
multi-scale feature representation module, the more effective the subsequent coordinate
attention module will be, and vice versa.
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3.1. Road-Adapted High-Resolution Network

The continuous downsampling operation in the encoder–decoder network will reduce
the resolution of the feature map, causing some narrow roads to disappear in the low-
resolution feature maps. Skip connections may also bring irrelevant noise information,
which seriously affects the effect of road extraction. We aim to ensure that the road
information is not lost, whilst enabling the network to extract deep semantic features and
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capture rich spatial details. On the basis of [41], we use a high-resolution network to replace
the encoder–decoder network as the backbone network to ensure that the feature maps
are maintained at a high resolution. Specifically, this network is able to not only retain the
complete road information but also ensure that the road has rich spatial detail information.
The specific structure is shown in Figure 2.

First, we use two standard convolutions of 3 × 3 with a stride of 2 to process the input
image and downsample the image resolution to the quarter of the original image. The
result is used as the high-resolution input of the next module to reduce model computation
and preserve complete road information and valid spatial details. Then, the branch with
4× downsampling is used as the first stage in the multi-resolution branch structure. The
model will gradually add a new branch according to the resolution from high to low to
generate a new structure. Specifically, the parallel branch of the later stage is composed
of all the branches of the previous stage and a new branch with a lower resolution. Then,
feature fusion is performed on the feature maps of all branches in the output part of the
model. A fusion feature map with 4× downsampling is obtained by merging the outputs
of the three branches. Finally, the bilinear interpolation operation is used to restore the
size of the fusion feature map to the original image size, and the final prediction map is
obtained through the standard convolution of 1 × 1.

The HRNet-w32 is selected as the main backbone model and adapts the network
structure in the original paper for the task of road extraction. The original 32× downsam-
pling branch is deleted to prevent the disappearance of road semantic information caused
by a considerably low resolution. Therefore, the proposed road-adapted high-resolution
network has a total of three parallel branches, and the corresponding image resolutions
are 4×, 8×, and 16× downsampling. The proposed multi-scale feature representation
module is used as the basic feature-learning module in all branches, thereby improving
the feature representation ability of the backbone model. The higher-resolution branch
in the multi-branch structure enables the model to always retain accurate spatial detail
information and complete narrow road information. The low-resolution branch enables
the model to extract sufficiently effective deep semantic features. Thus, the multi-branch
structure can achieve strong semantic information learning and precise location information
capture. Considering that the model has multiple branches, the number of feature channels
in the model must be reduced to minimize the scale of the model and prevent the amount
of model parameters and computation from being considerably large.

After each stage of feature learning is completed, a deep information interaction occurs
between different branches, namely, the feature fusion process, as shown in Figure 3. In the
case of three branches in parallel, (a) represents the 1/4 branch fuse feature information
from the 1/8 and 1/16 branches, (b) represents the 1/8 branch fuse feature information
from the 1/4 and 1/16 branches, and (c) represents the 1/16 branch fuse feature information
from the 1/4 and 1/8 branches. The upsampling operation is mainly realized by bilinear
interpolation, and the downsampling operation is realized by standard convolution with
a stride of 2. The feature fusion aims to exchange information between multi-resolution
representations. Each branch can receive feature information from other branches to
supplement the information loss caused by the reduction in the number of feature channels
and effectively enhance the feature representation ability of the model.
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Figure 3. Multi-branch feature fusion process. (a) represents the 1/4 branch fuse feature information
from the 1/8 and 1/16 branches, (b) represents the 1/8 branch fuse feature information from the 1/4
and 1/16 branches, and (c) represents the 1/16 branch fuse feature information from the 1/4 and
1/8 branches.

3.2. Multi-Scale Local Context Reasoning

The multi-scale feature representation module combines multi-scale convolution and
residual learning units [42]. This module aims to realize the effective representation and
aggregation of the local context information with multiple scales, thereby improving the
feature representation ability of the encoder and enhancing the feature representation of
the occlusion parts by reasoning the dependence between the road and the background en-
vironment. The module is embedded in each branch of the backbone network. Accordingly,
the multi-scale feature representation is fused in the whole feature-learning process, and
the coupling degree between the two parts is effectively improved. The specific module
structure is shown in Figure 4. According to the different types of residual learning units,
the corresponding multi-scale feature representation modules are also different: (a) de-
notes the multi-scale feature representation module based on the BasicBlock module, and
(b) denotes the multi-scale feature representation module based on the BottleNeck module.
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In Figure 4, we modify the original residual learning unit and replace the standard
convolution of 3 × 3 with multi-scale convolution. We use atrous convolution as the main
technique to extract multi-scale local context [38,43–46] and control the size of the dilation
rate to realize receptive fields of different sizes. The multi-scale feature representation
module mainly uses three convolution kernels of different sizes to extract road features
of different spatial scales: that is, the standard convolution kernel of 1 × 1, the dilated
convolution of 3× 3 with dilation rate of 1, and the dilated convolution kernel of 3× 3 with
dilation rate of 2. The standard convolution kernel of 1 × 1 is used to extract the features of
the road itself, whilst the other two dilated convolutions are utilized to capture local road
context information. The feature representation of the occlusion parts is enhanced by the
reasoning local context information at different scales. The module inputs the feature maps
into the three convolutional layers for feature extraction and uses the addition operation to
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fuse the output feature maps of the three scales. Then, the fusion result is inputted into the
subsequent residual learning process.

3.3. Coordinate Attention-Based Global Context Reasoning

On the basis of [47], we use the coordinate attention module as the main method to
capture long-range dependence between different roads. The goal of this mechanism is
to enable the network to learn effective global context information to enhance the feature
representation of the occlusion parts by capturing the feature correlations between homoge-
neous road geo-objects. The coordinate attention module can effectively capture the global
attention in the feature channel and space location and has a low amount of computation
and parameters compared with the other attention mechanisms. This mechanism is a
lightweight module and can be well embedded anywhere in the model.

(1) Coordinate information embedding: global average pooling is often used for
channel attention to encode spatial information globally, but it compresses global spatial
information into channel descriptors. Accordingly, the location information is difficult to
preserve. Location information is the key to capture the spatial structure in vision tasks.
Therefore, accurate spatial location information must be retained, and the global feature
information must be captured during feature compression.

During the coordinate information embedding, the 2D global average pooling op-
eration is decomposed into two 1D global average pooling operations to encourage the
attention module to capture long-range spatial interactions and precise location informa-
tion. This module performs feature compression along the x direction (horizontal) and y
direction (vertical) to generate a pair of feature tensors with different spatial information,
namely, the X Avg Pool layer and the Y Avg Pool layer in Figure 5. Specifically, given
the input X ∈ RC×H×W, two 1D average pooling kernels, (1, W) and (H, 1), are used for
each channel of the feature map along the horizontal and vertical dimensions, respectively.
After information compression, two feature tensors, fx ∈ RC×H×1 and fy ∈ RC×1×W, that
aggregate different spatial information are obtained. The output of the cth channel at height
h or width w can be expressed as follows:

f c
x(h) =

1
W ∑

0≤i<W
Xc(h, i), (1)

f c
y(w) =

1
H ∑

0≤j<H
Xc(j, w) (2)
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In summary, the coordinate attention module compresses features maps along two
spatial directions through 1D global average pooling and preserves precise location infor-
mation of feature maps, which helps in accurately locating regions of interest. Coordinate
information embedding aims at aggregating global context information from different
directions, enabling information interaction between different road areas and modeling
feature connections between occlusion areas and other road areas.

(2) Coordinate attention generation: the coordinate attention generation stage aims
to reason the context information aggregated in different directions, thereby enabling the
model to localize the road regions of interest and generate effective spatial and channel
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attention weights to indirectly enhance the road features of occlusion parts. First, the
horizontal and vertical feature tensors are concatenated to generate a new feature tensor,
f ∈ RC×1×(W+H). Second, a shared 1 × 1 standard convolution is used to perform feature
transformation on the feature tensor, thereby generating a dimension-reduced feature
tensor, F ∈ RC/r×1×(W+H), where r represents the downsampling ratio of the channel
dimension. Third, the module inputs the tensor into a batch normalization layer and
a nonlinear activation layer for processing and separates the dimension of the feature
tensor F to obtain the feature tensors Fx ∈ RC/r×H×1 and Fy ∈ RC/r×1×W in two different
directions. Then, the module uses two 1 × 1 standard convolutions to perform attention
calculation on the two feature tensors, thereby obtaining attention tensors Gx ∈ RC×H×1

and Gy ∈ RC×1×W in different directions. Finally, the module uses the sigmoid function to
normalize the attention tensors and limits the value to the range of zero to one. The complete
global attention weight matrix G ∈ RC×H×W is obtained by the matrix multiplication
between Gx and Gy. This attention map contains adaptive attention in the channel and
spatial dimensions.

Then, the module multiplies the attention weight G by the initial input X to complete
the re-weighting process, thereby achieving the attention optimization and obtaining the
final output Y ∈ RC×H×W. The detailed calculation process is shown in the following
formulae:

F = ReLU
(

BN
(
Conv

([
fx, fy

])))
, (3)

Gx = Sigmoid(Convx(Fx)), (4)

Gy = Sigmoid
(
Convy

(
Fy
))

, (5)

G = Mul
(
Gx, Gy

)
, (6)

Y = X ∗ G (7)

where Conv(.) represents the convolution operation, BN(.) represents the batch normal-
ization operation, ReLU(.) represents the nonlinear activation function, Mul(.) represents
the matrix multiplication operation, * represents the element-wise multiplication, and [,]
represents the tensor stacking operation.

In summary, the coordinate attention module not only considers the importance
between different channels but also pays attention to the feature encoding between different
spatial locations. The elements in the attention tensors reflect whether the road region of
interest exists in the corresponding row and column by paying attention to the input in
both horizontal and vertical directions. In this way, the model can accurately locate the
road areas in each feature channel, achieves attention optimization in different dimensions,
and effectively enhances the feature representation of the roads, thereby helping the model
to better extract occluded road areas.

4. Experiments and Results
4.1. Datasets

We select three high-resolution remote sensing image road extraction datasets for
model evaluation, namely, the Massachusetts Roads Dataset [48], DeepGlobe Roads
Dataset [49], and CH6-CUG Roads Dataset [23], to verify the extraction effect and per-
formance of the proposed model on high-resolution remote sensing images. A specific
example is shown in Figure 6.

The Massachusetts Roads Dataset [48] is an aerial remote sensing image dataset
collected in Massachusetts. The dataset covers multiple geographic scenes, such as ur-
ban, suburban, and rural scenes. The dataset contains a total of 1171 images, of which
1108 images are used for model training, 14 images are employed for model validation,
and 49 images are utilized for model testing. The spatial resolution of this dataset is 1.2 m,
and each image is 1500 × 1500 pixels in size. We randomly crop the images in the training
and validation sets into several image patches of 256 × 256 and obtain 20,000 images for
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training and 500 images for validation. Furthermore, we randomly augment the training
images to expand the dataset during the training process.
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Figure 6. Examples of different road datasets. From left to right, the geographic extents of the images
are 1800 m × 1800 m, 512 m × 512 m, and 256 m × 256 m, respectively.

The DeepGlobe Roads Dataset [49] is a satellite remote sensing image dataset contain-
ing images collected from Thailand, Indonesia, and India. The dataset includes geographic
scenes, such as cities and suburbs with rich road types. The original dataset contains
8570 three-channel satellite remote sensing images, of which only 6226 images contain
the corresponding real label data. The size of each image is 1024 × 1024 pixels, and the
image spatial resolution is 50 cm. We divide the images containing the ground truth labels
according to the ratio of 7:1:2. The training, validation, and test sets contain 5000, 226, and
1000 images, respectively. We randomly crop the images in the training and validation
sets into several image patches of 256 × 256 and obtain 25,000 images for training and
1130 images for validation. Furthermore, we randomly augment the training images to
expand the dataset during the training process.

The CHN6-CUG Roads Dataset [23] is a large-scale satellite image dataset containing
representative cities in China. The remote sensing images within this dataset are acquired
from Google Earth. Based on urbanization level, city scale, developmental stage, urban
structure, and historical and cultural significance, a careful selection of six Chinese cities is
made: Beijing, Shanghai, Wuhan, Shenzhen, Hong Kong, and Macau. The road types in
this dataset include railways, highways, urban roads, and rural roads. The dataset contains
a total of 4511 remote sensing images with a size of 512 × 512 and their corresponding
ground-truth labels. A total of 3608 images are used for model training, and 903 images
are utilized for testing. The spatial resolution of the images is 50 cm. We randomly crop
the remote sensing images into several image patches of 256 × 256 in the training set and
obtain a total of 23,000 images for model training. Moreover, we randomly augment the
training images to expand the dataset during the training process.

4.2. Experiment Setting and Evaluation Metrics

In the experimental part, a total of nine mainstream deep convolutional neural net-
works are selected as comparison models. These models include the FCN-style and
encoder–decoder models. All models have better context reasoning ability. For exam-
ple, the DLinkNet uses a parallel multi-scale atrous convolution model to obtain multi-scale
local context information, and the DANet captures the global context information in the
spatial and channel dimensions by using a dual attention mechanism. Therefore, these
comparative models can effectively test the effectiveness of the proposed method.

All experiments in this chapter are implemented using the PyTorch deep learning
framework. We select UNet, deeplabv3+, and other models as comparison models to verify
the effect of the proposed road extraction network and train and test these models on three
datasets. The specific experimental settings are as follows: an Adam optimizer with a
momentum of 0.5 and weight decay of 0.999 is selected as the main optimizer for training,
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the parameter weights of all models are randomly initialized, and the learning rates of all
models are initialized to 1× 10−4. We set the batch size to a dynamic interval of 8 to 16
and the number of iterations to 100 epochs and use binary cross-entropy loss and dice loss
to perform supervision on all models, depending on the scale of the model. During the
training process, the training learning rate is dynamically adjusted using the poly learning
strategy.

To accurately evaluate the performance and accuracy of the proposed model, we use
four common and effective metrics to form an evaluation system, which are precision, recall,
F1, and interaction of union (IoU). The higher the metric value of the above-mentioned four
metrics, the better the performance of the road extraction model. The specific calculation
formula is as follows:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 = 2× Precision ∗ Recall
Precision + Recall

, (10)

IoU =
TP

FP + TP + FN
(11)

where TP, FN, FP, and TN represent the true positive, false negative, false positive, and
true negative, respectively.

4.3. Result Evaluation on Massachusetts Dataset

Table 1 shows the quantitative analysis results of all models on the Massachusetts
dataset. The proposed CR-HR-RoadNet can achieve superior performance on the Mas-
sachusetts dataset and achieve the highest accuracy on precision, F1, and IoU. The recall of
the proposed model is second only to the EMANet, but the value of precision, F1, and IoU
is much higher than that of the EMANet, indicating that the comprehensive performance
of the proposed model is better. Specifically, the proposed model achieves 78.19% on F1
and 64.19% on IoU. The DLinkNet is the model with the best performance amongst all the
comparison models because it achieved 77.17% on F1 and 62.83% on IoU. The proposed
model is 1.02% and 1.36% higher on F1 and IoU, respectively, compared with the DLinkNet.
This result shows that the context reasoning frame of the proposed model can enhance the
feature representation ability and recover the features at the occlusion parts by using the
dependencies with the environment and the correlation with the homogeneous geo-objects,
thereby greatly improving the extraction accuracy. The results of the quantitative evaluation
prove the effectiveness of the multi-scale feature representation module and coordinate
attention module on the Massachusetts dataset.

Table 1. Quantitative evaluation results of different methods on the Massachusetts dataset.

Methods Backbone Precision Recall F1 IoU

UNet [37] None 79.67 74.30 76.89 62.46
DeepLabV3+ [38] ResNet101 77.33 73.30 75.26 60.34
DenseASPP [46] DenseNet121 72.15 71.36 71.75 55.95

SENet [50] ResNet101 74.81 68.08 71.28 55.38
OCNet [51] ResNet101 71.12 72.25 71.68 55.86

EMANet [52] ResNet101 73.71 77.72 75.66 60.85
DANet [53] ResNet101 60.68 74.67 66.95 50.32

ResUNet [16] UNet 78.31 75.52 76.89 62.45
DLinkNet [21] ResNet101 78.96 75.46 77.17 62.83

CR-HR-RoadNet (ours) HRNet 80.34 76.15 78.19 64.19
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Figure 7 shows the qualitative analytical results on the Massachusetts dataset. The
DANet, DeepLabV3+, and DLinkNet in the comparison model are selected as the main
qualitative comparison objects. These three models can comprehensively and objectively
compare and evaluate the road extraction effect of the proposed model. The visualization
results show that the proposed model can achieve excellent road extraction results. The
road boundary in the prediction results is smoother, and the completeness and continuity
are better than those of the other three models. Meanwhile, the results also show less
misclassification and noise information. Amongst the extraction results of the three com-
parison models, the results of the DANet are the roughest, and the boundary is not smooth
enough, which may be caused by direct upsampling. The extraction results of DeepLabV3+
and DLinkNet have some incompleteness and discontinuity cases. Specifically, the complex
road and occlusion areas are marked by red circles in the visualization results. The pro-
posed model can achieve better extraction results more in line with the ground truth and
has significantly better performance than the other three models in terms of completeness
and continuity. Therefore, the qualitative analytical results can prove that the proposed
model has better road extraction effect on the Massachusetts dataset, and the extraction
advantage on some complex roads and occlusion areas is more obvious.
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4.4. Result Evaluation on DeepGlobe Dataset

Table 2 shows the quantitative analysis results of all models on the DeepGlobe dataset.
The proposed CR-HR-RoadNet can achieve superior performance on the DeepGlobe dataset
and the highest accuracy on recall, F1, and IoU. The precision of the proposed model is
lower than that of the DenseASPP, the EMANet, and the DLinkNet, but the recall of the
three models is much lower than that of the proposed model. This finding shows that
the comprehensive performance of the proposed model is better. Although the EMANet
achieves the highest precision of 82.75%, its recall is only 56.65%, resulting in the worst
accuracy on F1 and IoU. Specifically, the proposed model can achieve 76.79% on F1 and
62.33% on IoU. Amongst all comparison models, the model with the best performance is
the DLinkNet, which achieves 75.74% on F1 and 60.95% on IoU. The proposed model is
1.05% and 1.38% higher on F1 and IoU, respectively, compared with the DLinkNet model.
This finding shows that the performance of our model is much better than that of the
other comparison models. The quantitative evaluation results prove the effectiveness of
the multi-scale feature representation module and coordinate attention module on the
DeepGlobe dataset.
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Table 2. Quantitative evaluation results of different methods on the DeepGlobe dataset.

Methods Backbone Precision Recall F1 IoU

UNet [37] None 73.50 73.45 73.48 58.07
DeepLabV3+ [38] ResNet101 68.60 76.79 72.46 56.82
DenseASPP [46] DenseNet121 77.00 65.45 70.76 54.75

SENet [50] ResNet101 73.55 75.02 74.28 59.08
OCNet [51] ResNet101 72.82 71.49 72.15 56.43

EMANet [52] ResNet101 82.75 56.65 67.26 50.66
DANet [53] ResNet101 69.53 71.43 70.46 54.40

ResUNet [16] UNet 73.51 72.69 73.10 57.60
DLinkNet [21] ResNet101 76.68 74.83 75.74 60.95

CR-HR-RoadNet (ours) HRNet 76.47 77.12 76.79 62.33

Figure 8 shows the qualitative analytical results on the DeepGlobe dataset. ResUNet,
OCNet and DLinkNet are selected as the main qualitative analytical objects. The visualiza-
tion results show that the CR-HR-RoadNet can achieve the best road extraction accuracy
and can obtain more complete and continuous extraction results with smoother boundaries
and less noise. Multiple areas are marked by red circles in the visualization results. The
proposed model can obtain better road extraction results in these areas. Specifically, some
narrow roads are occluded by vegetation in the remote sensing images in the first row.
Neither the ResUNet nor DLinkNet models can completely extract the narrow roads. Al-
though the OCNet can completely extract the narrow roads, the boundaries are rough. The
proposed model can completely extract narrow roads and ensure that the road boundaries
are smooth enough, which is mainly due to the high-resolution feature encoder that can
effectively capture detailed information. In the visualization results of other rows, a large
number of road occlusions can be observed in the remote sensing images. Neither ResUNet,
OCNet, nor DLinkNet can effectively recover road information at occlusions, resulting in
severe incompleteness and discontinuity in the prediction maps. Given the existence of
effective local and global context reasoning modules in the proposed model, the proposed
model can use the dependence with background and the correlation with homogeneous
geo-objects to enhance the feature representation and effectively restore the road informa-
tion at the occlusion areas. Hence, the proposed model can obtain better completeness and
continuity results.
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4.5. Result Evaluation on CHN6-CUG Dataset

Table 3 shows the quantitative analysis results of all models on the CHN6-CUG
dataset. The proposed CR-HR-RoadNet can achieve superior performance on the CHN6-
CUG dataset and achieve the highest accuracy on recall, F1, and IoU. The precision of
the proposed model is second only to the UNet and the SENet. However, the recall of
these two models is much lower than that of the proposed model, indicating that the
comprehensive performance of the proposed model is better. The proposed model achieves
77.92% on F1 and 63.83% on IoU. Amongst all the comparison models, most models achieve
good extraction accuracy, and the model with the best performance is EMANet, which
achieves 77.16% on F1 and 62.82% on IoU. The proposed model is 0.76% and 1.01% higher
on F1 and IoU, respectively, compared with the EMANet, indicating that the proposed
model has better road extraction performance. It is worth noting that the extraction
accuracy of the UNet and ResUNet is lower, which may be due to the complex background
information on the CHN6-CUG dataset and a large amount of noisy information. The
skip connection operation in the encoder–decoder structure will introduce some irrelevant
information into the decoder, resulting in a decrease in extraction accuracy, which also
proves the advantages of the high-resolution network used in this paper. The results of
quantitative evaluation prove the effectiveness of multi-scale feature representation module
and coordinate attention module on CHN6-CUG dataset.

Table 3. Quantitative evaluation results of different methods on the CHN6-CUG dataset.

Methods Backbone Precision Recall F1 IoU

UNet [37] None 78.69 67.38 72.60 56.98
DeepLabV3+ [38] ResNet101 74.85 76.80 75.81 61.04
DenseASPP [46] DenseNet121 76.84 74.86 75.83 61.08

SENet [50] ResNet101 78.59 74.16 76.31 61.70
OCNet [51] ResNet101 79.52 72.57 75.89 61.14

EMANet [52] ResNet101 77.77 76.57 77.16 62.82
DANet [53] ResNet101 77.74 72.88 75.23 60.30

ResUNet [16] UNet 77.52 66.18 71.40 55.52
DLinkNet [21] ResNet101 77.67 73.29 75.41 60.53

CR-HR-RoadNet (ours) HRNet 78.40 77.44 77.92 63.83

Figure 9 shows the visual qualitative analysis results on the CHN6-CUG dataset. Re-
sUNet, DLinkNet, and EMANet are selected as the main qualitative analytical objects to
evaluate the road extraction effect of the proposed model comprehensively and objectively.
The visualization results demonstrate that the proposed model can obtain the best road
extraction results, regardless of whether it is in terms of road completeness or road continu-
ity. Moreover, the noise information is less, and the road boundary is smoother. Multiple
areas are marked by red circles in the visualization results. Specifically, the visualization
results in the first row show that the proposed model can obtain better extraction results in
complex and dense road areas. The roads on the label maps of the second and third rows
are not smooth enough and are different from the real situation. However, the proposed
model can obtain smoother and more complete prediction results. The proposed model
can extract the road areas that are not in the label (bottom right of the image in the second
row and top of the image in the third row). The results of the fourth row show that the
proposed model has the advantage of maintaining the road completeness. Road occlusions
can be observed in the remote sensing images in the fifth row. The proposed model can also
use local and global context information to obtain extraction results with better continuity.
This finding shows that the proposed model has good anti-occlusion ability. In summary,
the proposed model can achieve far better extraction results than the other models on the
CHN6-CUG dataset, which fully proves the effectiveness of the proposed method.
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4.6. Performance Analysis

In addition, this study also conducted performance analysis regarding the parameter
size and computational complexity of the CR-HR-RoadNet model. Table 4 presents the
efficiency analysis results of several convolutional neural network models. The Params and
FLOPs of our proposed model are only 15.28 Mb and 248.90 Gbps, respectively, demon-
strating a precision advantage without significantly increasing the number of parameters
and computational load.

Table 4. Efficiency analysis results of selected models.

UNet DeepLabV3+ DANet ResUNet DLinkNet Ours

Params (Mb) 13.40 59.44 54.36 13.04 198.89 15.28
FLOPs (Gbps) 124.36 90.35 313.70 323.73 129.96 248.90

Comparing our proposed model (Ours) with other popular models, it is evident that
our model achieves competitive results in terms of parameter size and computational
complexity. With only 15.28 Mb of parameters and 248.90 Gbps of FLOPs, the model strikes
a balance between computational efficiency and accuracy.

The smaller number of parameters is beneficial for reducing model size, making it
more lightweight and easier to deploy in resource-constrained environments. Moreover,
the lower computational complexity (FLOPs) implies faster inference times and reduced
energy consumption during model execution, which is essential for real-time applications
and scenarios with limited computational resources.

4.7. Ablation Study

To further verify the role of the multi-scale feature representation module and coordi-
nate attention module, we design the corresponding ablation experiments to analyze and
verify the role of each module.
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Table 5 shows the quantitative ablation experimental results of the proposed model
on the DeepGlobe dataset. The quantitative comparison results show that the precision of
the complete model is lower than that of the model that does not include the two modules,
and the recall of the complete model is lower than that of the model that only contains
the coordinate attention module. The proposed complete model can achieve the highest
accuracy on the comprehensive indicators of F1 and IoU and has better comprehensive
performance. Specifically, the proposed model only obtains the worst road extraction
accuracy when it does not include the two modules. Meanwhile, the F1 is improved by
1.33%, and the IoU is improved by 1.74% when both modules are included, which shows
that the proposed modules can play a better positive role and proves their necessity and
effectiveness.

Table 5. Ablation experimental results of the CR-HR-ROADNET on the DeepGlobe dataset.

Multi-Scale Feature
Representation Module

Coordinate
Attention Module Precision Recall F1 IoU

× 1 × 77.32 3 73.69 75.46 60.59√ 2 × 75.49 76.79 76.13 61.46
× √

74.52 77.46 75.96 61.24√ √
76.47 77.12 76.79 62.33

1 The symbol “×” represents the non-use of the corresponding module. 2 The symbol “
√

” represents the use of
the corresponding module. 3 The optimal accuracy values are in bold font.

Specifically, the proposed model can achieve an accuracy improvement of 0.67% on
F1 and 0.87% on IoU when only the multi-scale feature representation module is included,
thereby proving the importance of multi-scale local context for road extraction tasks. When
only the coordinate attention module is included, the proposed model can achieve an
accuracy improvement of 0.5% on F1 and 0.65% on IoU, which proves the importance of
global context information for road extraction tasks. When the two modules are included,
the magnitude of the accuracy improvement on F1 and IoU is higher than the sum of
the individual improvements of the two modules. This condition may be due to the
tight coupling of the two modules in the model; the multi-scale feature representation
module is in each feature stage, and the coordinate attention module is between different
feature stages. Hence, these two modules can influence and promote each other. The more
effective features the multi-scale feature representation module extracts, the more effective
global context reasoning the coordinate attention module performs. By contrast, the better
optimization effect the coordinate attention module obtains, the more effective local context
reasoning the multi-scale feature representation module performs.

Meanwhile, the accuracy improvement of the multi-scale feature representation mod-
ule is better than that of the coordinate attention module, which may be because the
multi-scale feature representation module is closely integrated with the feature learning
process of the model. This module can extract effective multi-scale local context information
and enhance the feature representation ability of the model by capturing the dependencies
between the road and the background environment.

Figure 10 shows the ablation experimental results of the proposed model on the Deep-
Globe dataset. The visualization results indicate that the best road extraction results can be
achieved when the CR-HR-RoadNet model includes the multi-scale feature representation
module and the coordinate attention module (namely, Model C). The extraction results of
Model C have better completeness and continuity, smoother road boundaries, and less noise
information compared with those of Models A and B. Specifically, some areas are marked
by the red circle in Figure 10. Model C can achieve the best road extraction effect in these
areas. The results in the first row show that Model C can effectively distinguish geo-objects
similar to roads, thereby avoiding the problem of road misclassification. The results in the
second row show that Model C can remove irrelevant noise information caused by the
complex background environment. The results in the third row show that Model C can
effectively handle the incomplete and discontinuous roads caused by complex backgrounds.
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The results in the fourth row show that Model C can effectively handle the problem of
road discontinuity that is due to occlusion. Overall, the qualitative experimental results
fully demonstrate the effectiveness and necessity of the multi-scale feature representation
module and coordinate attention module.
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Figure 10. Ablation experimental results of the CR-HR-RoadNet on the DeepGlobe dataset. Model
A represents the CR-HR-RoadNet containing only the multi-scale feature representation module;
Model B represents the CR-HR-RoadNet containing only the coordinate attention module; and
Model C represents the CR-HR-RoadNet containing both modules. Each image covers an area
of 512 m × 512 m.

4.8. Comprehensive Analysis and Evaluation of Algorithmic Performance

In the analysis of the Massachusetts dataset, we undertook a systematic approach
to achieve a more profound understanding of the distribution of algorithmic accuracy
across the dataset. Additionally, we sought to explore the potential impact of stochastic
factors present in the data on algorithmic outcomes. This endeavor involved conducting a
comprehensive evaluation of the algorithm’s stability and consistency when confronted
with diverse data samples. Our aim was to achieve a more precise assessment of the
algorithm’s overall performance, thereby enhancing its reliability in practical applications.
To accomplish this, we initiated the process by independently executing the algorithm
for each individual sample within the dataset and subsequently calculating the accuracy
of the algorithm’s outcomes. This enabled us to obtain a baseline understanding of its
performance. Building upon this, we conducted statistical analysis using techniques like
box plots to analyze the distribution of accuracy values for each sample. We also conducted
a thorough investigation to identify the potential sources of any outliers that might have
influenced the results. Furthermore, we selected four distinct representative scenes from the
Massachusetts dataset: urban arterial roads, urban residential area roads, forest pathways,
and village roads. The results of road extraction in these four scenes are showcased to
elucidate the algorithm’s road extraction capabilities in various scenes.

Based on the statistical results presented in Figure 11, several significant observations
have been drawn. Through an examination of quartiles, the relatively narrow interquartile
range underscores the limited variability in performance among distinct images, show-
casing the algorithm’s stability and its capacity to maintain consistent outcomes when
presented with diverse data samples. Concurrently, the proximity of the quartiles, medians,
and means for all four metrics suggests a consistent trend within the dataset. This signifies
that the algorithm generally attains reliable results across various scenarios.
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Figure 11. Statistical analysis of samples in Massachusetts dataset. The box segment represents
the range between the first quartile (Q1) and the third quartile (Q3) of the data. The upper limit is
calculated by adding 1.5 times the interquartile range (IQR) to the third quartile (Q3), where IQR is
the difference between Q3 and Q1. The lower limit is calculated by subtracting 1.5 times the IQR
from the first quartile (Q1). Values exceeding these limits are considered outliers. The black hollow
points represent outliers. The red vertical line denotes the median, which is the middle value when
the data is sorted. The green triangular points represent the mean.

Specifically, the complex road and occlusion areas are marked by red circles in the
visualization results. While the algorithm demonstrates robustness across quartiles and
similar statistical measures, the presence of outliers also indicates its sensitivity to data
uncertainty and randomness. The samples represented by the accuracy outliers in Figure 12
reveal that although the algorithm excels in accurately locating road positions, it faces
challenges in distinguishing lane quantities because of factors such as image clarity and
algorithmic structure, as demonstrated by the area highlighted by the red circle. This
difficulty results in the appearance of accuracy outliers.
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Figure 13 illustrates the extraction results of the algorithm in four representative
scenes. The algorithm’s capability to ensure a comprehensive and uninterrupted depiction
of roads remains robust across dissimilar scenarios. Urban arterial roads are typically
wide and bustling with traffic, presenting complex and variable occlusions from vehicles
and structures. In contrast, roadways within urban residential areas exhibit a relatively
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dense architectural layout and diverse path trajectories. Conversely, within dense forested
roadways, the occlusion from foliage often renders road recognition highly challenging.
In the context of village road scenes, in comparison to urban areas, there is a heightened
prevalence of obstructive elements such as vegetation and trees, leading to increased
occlusion. Additionally, the road pathways tend to be narrower. These diverse contextual
scenarios pose formidable challenges to our algorithm. The presented results underscore
the algorithm’s prowess in delivering accurate and coherent road extraction outcomes,
underscoring its adaptability to a spectrum of scenarios.
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5. Conclusions

CR-HR-RoadNet employs a road-adapted high-resolution network as the core feature
encoder and comprises two essential modules. The multi-scale feature representation
module enhances the feature representation capacity of the neural network model by com-
bining multi-scale information with feature learning, effectively capturing local context at
various scales. Meanwhile, the coordinate attention module captures long-range depen-
dencies and extracts vital global context information, significantly improving road feature
representation in both spatial and channel dimensions.

Through comprehensive experiments on three diverse datasets, our proposed model
has demonstrated remarkable extraction accuracy and strong anti-occlusion capabilities.
The predicted results exhibit enhanced road completeness and continuity, validating the
effectiveness and generalization of CR-HR-RoadNet. Ablation experiments further confirm
the importance and necessity of the multi-scale feature representation module and the
coordinate attention module.

Despite the overall success of CR-HR-RoadNet, we acknowledge that challenges
may arise in handling certain complex occlusions, such as cases where roads are entirely
obscured by dense and tall vegetation.

Furthermore, due to limitations within the dataset, our method’s analysis has been
primarily focused on regions concentrated in mid to low latitudes, with no exploration
or discussion regarding higher latitude areas characterized by prolonged snow cover and
more pronounced vegetation seasonality. Additionally, given the diverse developmental
trajectories of individual cities, variations in road network construction and structure exist.
However, this study has not specifically investigated the generalizability and applicabil-
ity of the algorithm under various geographical factors affecting different road network
configurations. As part of our future research, we will focus on exploring post-processing
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optimization methods to recover occluded road information effectively. Simultaneously,
we will establish datasets for higher latitude regions and areas with distinct road network
structures to analyze and enhance the generalizability and applicability of our approach.

In conclusion, our work presents a promising approach to address the road occlusion
problem in high-resolution remote sensing images using deep learning techniques. The
proposed CR-HR-RoadNet shows considerable potential for advancing road extraction
tasks in challenging environmental conditions, paving the way for further advancements
in geospatial image analysis and understanding.
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