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Abstract: Polarimetric synthetic aperture radar (PolSAR) is widely used in remote sensing applica-
tions due to its ability to obtain full-polarization information. Compared to the quad-pol SAR, the
dual-pol SAR mode has a wider observation swath and is more common in most SAR systems. The
goal of reconstructing quad-pol SAR data from the dual-pol SAR mode is to learn the contextual
information of dual-pol SAR images and the relationships among polarimetric channels. This work is
dedicated to addressing this issue, and a multiscale feature aggregation network has been established
to achieve the reconstruction task. Firstly, multiscale spatial and polarimetric features are extracted
from the dual-pol SAR images using the pretrained VGG16 network. Then, a group-attention module
(GAM) is designed to progressively fuse the multiscale features extracted by different layers. The
fused feature maps are interpolated and aggregated with dual-pol SAR images to form a compact
feature representation, which integrates the high- and low-level information of the network. Finally,
a three-layer convolutional neural network (CNN) with a 1 x 1 convolutional kernel is employed
to establish the mapping relationship between the feature representation and polarimetric covari-
ance matrices. To evaluate the quad-pol SAR data reconstruction performance, both polarimetric
target decomposition and terrain classification are adopted. Experimental studies are conducted on
the ALOS/PALSAR and UAVSAR datasets. The qualitative and quantitative experimental results
demonstrate the superiority of the proposed method. The reconstructed quad-pol SAR data can
better sense buildings” double-bounce scattering changes before and after a disaster. Furthermore, the
reconstructed quad-pol SAR data of the proposed method achieve a 97.08% classification accuracy,
which is 1.25% higher than that of dual-pol SAR data.

Keywords: synthetic aperture radar (SAR); multiscale features; convolutional neural network (CNN);

terrain classification; polarimetric target decomposition

1. Introduction

Synthetic aperture radar (SAR) is capable of working in all-day and all-weather
conditions [1]. It has become the mainstream microwave remote sensing tool and is widely
applied in disaster evaluation [2-5] and terrain classification [6-9]. Polarimetric SAR is a
type of SAR that transmits and receives electromagnetic waves in multiple polarization
states. It provides additional information about the scattering mechanisms of targets,
which enables it to distinguish between different types of scatterers, such as vegetation,
water, and urban areas [2-9]. Based on different polarization transmission and reception
configurations, some of the most common polarimetric SAR modes include:

(1) Single polarization: In this mode, the SAR system transmits and receives signals in
a single-polarization state, either horizontal (HH) or vertical (VV);

(2) Dual polarization: In this mode, the SAR system transmits and receives signals in two
polarization states, either horizontal-transmitting (HH-VH) or vertical-transmitting (VV-HV);
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(3) Quad polarization: In this mode, the SAR system transmits and receives signals in
all four polarization states, including both horizontal and vertical polarizations;

(4) Compact polarimetry: In this mode, the SAR system transmits and receives signals
in a combination of horizontal and vertical polarizations, which can be viewed as a special
category of the dual-pol SAR mode.

In the above four polarimetric modes, the single-polarization SAR mode has the least
amount of scattering information of targets, while the dual-pol SAR mode can provide
more target-scattering information than the single-polarization SAR mode. Compared
with the dual-pol SAR mode, the quad-pol SAR mode provides the most detailed and
accurate information of targets and is suitable for various applications, such as land-cover
classification [6-8]. However, the relatively narrow observation swath and higher system
complexity restricts the applications of the quad-pol SAR mode. In this vein, to integrate
the strengths of the dual-pol and quad-pol SAR modes, we can reconstruct the quad-pol
SAR data from the dual-pol SAR mode, and the reconstruction advantages are twofold. On
the one hand, complete scattering information can be obtained to extend the applications
of dual-pol SAR data. On the other hand, the observation swath is enlarged compared with
the real quad-pol SAR data.

For quad-pol SAR data, the fully polarimetric information can be represented by 3 x 3
polarimetric covariance matrices. Principally, the nine real elements of the polarimetric
covariance matrix have intrinsic physical relationships for certain targets [2,3]. If such latent
relationships are estimated, the quad-pol SAR data can be reconstructed from dual-pol SAR
data. Recently, a series of methods have been proposed to obtain quad-pol SAR data from
the dual-pol SAR mode [10-12]. In [11], a regression model was developed to predict the
VV component based on the linear relationship among the HH, HV, and VV components in
the dual-pol SAR data. To improve the sea-ice-detection performance of dual-pol SAR data,
some specific quad-pol SAR features are simulated from dual-pol SAR data via a machine
learning approach [12]. Compact polarization, as a special form of dual polarization, mainly
includes the pi/4 mode [13], dual-circular polarimetry (DCP) [14], and circular-transmit
and linear-receive (CTLR) modes [15,16]. Pseudo-quad-pol SAR data can be reconstructed
from compact-pol SAR data by utilizing the assumption of reflection symmetry and the
relationship between the magnitude of the linear coherence and cross-pol ratio [13-16].
For instance, Souyris et al. proposed the polarimetric interpolation model to reconstruct
the quad-pol SAR data, which is specific to the pi/4 compact-polarization mode [13].
Stancy et al. developed the DCP mode and its reconstruction is validated by X-band SAR
data [14]. Raney et al. proposed the CTLR mode and utilized the m-6 method to decompose
the CTLR SAR data. Nord et al. compared the quad-pol SAR data reconstruction perfor-
mance of the pi/4, DCP, and CTLR modes. Additionally, the polarimetric interpolation
model is amended, making it applicable to double-bounce-scattering-dominated areas [15].
Benefiting from the strong feature-extraction and nonlinear-mapping abilities, convolu-
tional neural networks (CNNs) [17,18] have been utilized to reconstruct quad-pol SAR data
from the partial-pol SAR mode. Song et al. proposed using a pretrained CNN to extract
multiscale spatial features from grayscale single-polarization SAR images, and the spatial
features are converted into quad-pol SAR data by the deep neural network (DNN) [19].
On the other hand, Gu et al. proposed using a residual convolutional neural network
to reconstruct the quad-pol SAR image from the pi/4 compact-polarization mode [20].
To improve the reconstruction accuracy of the cross-polarized term, the complex-valued
double-branch CNN (CV-DBCNN) has been proposed in [21] to extract and fuse spatial
and polarimetric features.

It is acknowledged that quad-pol SAR data has superior performance compared to
dual-pol SAR data in applications such as urban damage level mapping [3-5] and terrain
classification [6-9]. Once the quad-pol SAR data can be reconstructed from the dual-pol
SAR data, its target-detection and classification performance [22,23] will improve based
on the well-established full-polarimetric SAR techniques [24-33]. However, to date, there
are few published studies on quad-pol SAR data reconstruction from the dual-pol SAR
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mode (HH-VH or VV-HV SAR modes). In this work, we propose a dual-pol to quad-pol
network (D2QNet) using a multiscale feature aggregation network aimed at achieving this
goal. Compared to the reconstruction of quad-pol SAR data from single polarization, the
proposed method in this work utilizes a fully convolutional neural network that deeply
integrates multiscale features, leading to improved accuracy in reconstructing the quad-pol
SAR data. Additionally, using the quad-pol SAR data reconstructed by our method can
improve terrain classification accuracy. Unlike the reconstruction of quad-pol SAR data
from compact polarization, which relies on the assumption of reflection symmetry, the
proposed approach presented in this work is more universal and does not require such
assumptions. It also serves as a valuable guideline for reconstructing quad-pol SAR data
from general dual-polarization SAR modes. The main contributions of our work are listed
as follows:

(1) We propose a multiscale feature aggregation network combining with a group-
attention module (GAM) to reconstruct the quad-pol SAR data from the dual-pol SAR mode;

(2) The quad-pol SAR data reconstructed by our proposed method can sense changes
in targets’ scattering mechanisms before and after a disaster;

(3) The quad-pol SAR data reconstructed by our proposed method achieve a 97.08%
terrain classification accuracy, which is 1.25% higher than the dual-pol SAR data.

This paper is organized as follows: Section 2 introduces the proposed quad-pol SAR
data reconstruction method. Section 3 analyzes the reconstructed quad-pol SAR data and
its polarimetric target decomposition results. Section 4 compares the terrain classification
results with real and reconstructed quad-pol SAR data. Section 5 discusses some issues in
quad-pol SAR data reconstruction. Finally, conclusions are given in Section 6.

2. Quad-Pol SAR Data Reconstruction Method
2.1. Quad-Pol and Dual-Pol SAR Data Model

For polarimetric radar, the polarimetric scattering matrix with the basis of horizontal
and vertical polarizations (H, V) can be expressed as

[SHH SHV]
S =

Sva  Svv

M

where Sy means horizontal polarization transmitting and vertical polarization receiving,
and other terms are similarly defined.

Under the reciprocity condition in polarimetric radar, the quad-pol SAR covariance
matrix can be obtained as follows

<\5HH|Z> V2(SunSiry)  (SHHSYY)
C = | V2(SuvSimn) 2<|5Hv\2> V2(SuvSyy) 2
(SwSim)  V2(SwSiy) <|5vv|2>

where (-) denotes the statistically average operation.
The normalized quad-pol SAR covariance matrix can be represented as

) P12V0102  P13V/0103
C
= P12V 0162 ) 02310203 3)
P13V0103  P31/0203 03

where P is the total backscattering power, which is defined as

P = <|SHH|2>+2<|SHV|2>+<|SVV|2> 4)
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The other six parameters of the normalized covariance matrix are defined as follows

C(lsl) o 2(iswf) o (ISwP)

P 702 P 103 — P (5)

(SunuSiv) (SHHSYY) (SuvSyy)

13 = 023 = (6)

" \/<|SHH|2><|SHV2> p \/<|SHH’2><|SVV|2> 7 \/<|SHV|2><|SVV|2>

Then, the normalized quad-pol SAR covariance matrix can be denoted as a vector

Cr=1[6 & & p135 o o1a)" 7)

where the upper script T denotes the transpose operation. d;,d,, and 85 are real entities,
while p13, 023, and p1p are complex entities. Therefore, the normalized quad-pol SAR
covariance matrix can be determined by nine real parameters.

In this paper, the HH and VH dual-pol SAR mode is considered without the loss of
generality. However, other dual-pol SAR modes can be investigated in a similar manner.
The dual-pol SAR covariance matrix is defined as a 2 x 2 matrix that represents the
polarimetric information of the radar image. In the case of the HH and VH polarization
channels, the dual-pol SAR covariance matrix is given as follows:

(ISunl®)  (SemSiy)
Ciual = ®)
(SuvSin) <!5HV\2>

2.2. Quad-Pol SAR Data Reconstruction from the Dual-Pol SAR Mode

The quad-pol SAR is able to provide complete polarization information, but it is limited
by its narrow observation swath and system complexity. On the other hand, the dual-pol
SAR has a wider swath but lacks partial polarization information. The reconstruction of
the quad-pol SAR covariance matrix mainly utilizes two sources of information. Firstly,
the contextual information of the dual-pol SAR images can be employed to reconstruct
the remaining polarization channels. Therefore, multiscale spatial features extracted by
convolutional layers can be utilized for the quad-pol SAR data reconstruction. Secondly, as
Formula (3) reveals, the elements of the quad-pol SAR covariance matrix are determined
by several parameters together, which indicates that there is a certain relationship between
different polarization channels for specific land covers. With the help of deep CNN models,
we can establish a mapping relationship between the dual-pol SAR data and quad-pol SAR
covariance matrix. Once the quad-pol SAR data are reconstructed, well-established, fully
polarimetric techniques can be applied to dual-pol SAR image processing. This opens up
many interesting applications based on quad-pol SAR images that can be extended into
dual-pol SAR data, and its performance is expected to be correspondingly improved.

To achieve this goal, in this paper, we propose a dual-pol to quad-pol network
(D2QNet) to reconstruct the quad-pol SAR image from the dual-pol SAR data. As illus-
trated in Figure 1, the D2QNet-v2 architecture consists of two parts: the feature extraction
(FE) network and the feature translation (FT) network. The FE network extracts features
in both spatial and polarimetric domains and encodes them into a compact feature repre-
sentation, while the FT network decodes this representation and generates the quad-pol
SAR covariance matrices. It should be further pointed out that the only difference be-
tween the D2QNet-v1 and D2QNet-v2 is the absence of the GAM in the FE network for
the D2QNet-v1.
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Figure 1. The architecture of the proposed D2QNet-v2 model.

In the D2QNet-v2 model, the FE network is composed of the first seven convolutional
layers of the VGG16 network, as well as a group attention module (GAM), feature map
interpolation, and normalization operations. The detailed configuration of part of the
VGG16 network is provided in Table 1, which consists of seven convolutional layers with a
kernel size of 3 x 3, a rectified linear unit (ReLU) activation function, and a max-pooling
layer. To reduce the number of network parameters and prevent overfitting, pretrained
weights from the ImageNet dataset [17] are utilized in the FE network. However, since the
dual-pol SAR images have four channels, unlike the optical images that the VGG16 network
was initially designed for, the first layer of the FE network is adapted to accommodate
all four input channels. Specifically, the first three channels’” weights are identical to the
first layer of the pretrained VGG16 network, and the weights of the fourth channel are
calculated by taking the average of the weights of the first three channels.

Table 1. The configuration of part of the VGG16 network.

Name Layer Stride
Convl-1 {conv3 x 3,in_ch = 4, out_ch = 64} 1
ReLU - -
Convl-2 {conv3 x 3,in_ch = 64, out_ch = 64} 1
ReLU - -
Pooll 2x2 2
Conv2-1 {conv3 x 3,in_ch = 64, out_ch = 128} 1
ReLU - -
Conv2-2 {conv3 x 3,in_ch = 128, out_ch = 128} 1
ReLU - -
Pool2 2x2 2
Conv3-1 {conv3 x 3,in_ch = 128, out_ch = 256} 1
ReLU - -
Conv3-2 {conv3 x 3,in_ch = 256, out_ch = 256} 1
ReLU - -
Conv3-3 {conv3 x 3,in_ch = 256, out_ch = 256} 1
ReLU - -

The input dual-pol SAR data can be represented as

X = [(Ismml*) (ISuv®) Rel(SvSiny)] Im[(StvSin)]] ©)
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where subscript k denotes the k-th SAR image; Re[-] and Im|[-] are to obtain the real and
imaginary part of the complex number, respectively.

The multiscale feature groups extracted from the dual-pol SAR data by the different
layers of the FE network are denoted as X,;, n € {0,1,2,3,4,5,6}, with each group having
a channel number of d,, € {64, 64,128,128,256,256,256}. These multiscale feature groups
are then passed through the GAM, which efficiently aggregates and fuses the multiscale
features from the different layers into feature maps that have access to both high- and low-
level information [34]. As shown in Figure 2, the GAM firstly applies global average pooling
(GAP) to each feature group, squeezing their spatial information. Then, it concatenates
channel-wise statistical information from all groups to integrate intergroup and outergroup
contexts, forming a global feature representation. Specifically, given each feature group
Xy, € REnxWaxdn ‘the GAM calculates the channel-wise global representation as

1 Hi Wy
Y = concat{ ——— X, (i,7 10
anwnizzljg n( ]) ( )
N
where concat{-} is the concatenation operation, D = }_ d, is the channel number of
n=1

global representation Y, N stands for the number of feature groups, and (i, j) is the spatial
coordinate of feature map.

128d 7d
d, d, dg \310
d, 9 @ FC FC $2
3
d, d, D=d,+d +d,+d,+d,+d,+d, ‘\llji
T 2
GAP \l/
X, x¥,
XIX‘{J]
XZX\IJZ
X, x¥, @
X, x¥,
X, xV¥,
Xox ¥y
group
multiplication Output

Input @ Concatenation

Figure 2. The schematic diagram of the GAM.

To progressively fuse the multiscale features, two fully connected (FC) layers are used
to learn the attention maps ¥ that weight different feature groups. These attention maps
can be denoted as

¥ = Wy (ReLU(W1(Y))) (11)

where W1 and W are the network weights of two FC layers. The dimensions of the two
FC layers are set to 128 and 7, respectively.

Finally, each original feature group is enhanced by multiplying the channel-wise global
representation of each feature group X;, with the corresponding weights in the attention
map ¥, and the importance of each feature group is weighted as

Xy = Xp % ¥ (12)
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where ¥, is the n-th element of ¥ and * means element-wise multiplication between X,
and ¥,,.

Therefore, the GAM enables the D2QNet-v2 model to selectively focus on the most
informative and discriminative feature groups at each step of the fusion process.

The enhanced feature maps are interpolated to the same size as the input dual-pol
SAR images X and then are concatenated together to form a high-dimensional feature
representation F as

F— concat{x, Xo, X, UP ()@) UP (>~<3) UP ()@) UP (XS),UP ()?6) } (13)

where UP(-) denotes the upsampling operation with a bilinear interpolation.

This feature representation captures both low-level and high-level information ex-
tracted from different scales of the dual-pol SAR data. In order to ensure the feature maps
in F are all on the same scale and have consistent ranges, the feature representation F is
normalized as follows

N 11
F’¢F71”,1:1,2,3,---,7 (14)
(o

where F' is the I-th feature maps, while y! and ¢ are the mean and variance values of F'.

Finally, the normalized compact feature representation F is fed into the FT network
for guiding the quad-pol SAR data reconstruction.

The FT network is proposed to map the compact feature representation F into the
polarimetric covariance matrix, which is made up of three 1 x 1 convolutional layers with
depths of 512, 256, and 32. The module names and corresponding parameters of the FT
network are given in Table 2. It can be seen that each convolutional layer is followed by a
ReLU activation function. The nine real elements of the normalized covariance matrix C¢
are quantified into thirty-two quantization levels, and the softmax function after the last
convolutional layer is utilized to predict the quantization levels of the nine real elements.
The use of 1 x 1 convolutional kernels allows for the efficient fusion of different feature
maps, which is more efficient than the fully connected networks proposed in [30] for
generating SAR images pixel-by-pixel.

Table 2. The configuration of the FT network.

The kernel size of all convolutional layers is set to 1 x 1 and the stride is set to 1

Convl: {convl x 1,in_ch = 1156, out_ch = 512}

ReLU1
Conv2: {convl x 1,in_ch = 512, out_ch = 256}
ReLU3
Conv3 —1: Conv3 —2: Conv3 —9:
{convl x 1,in_ch = 256,out_ch = 32} {conv1l x 1,in_ch = 256, out_ch = 32} T {convl x 1,in_ch = 256, out_ch = 32}
Softmax1 Softmax2 .. Softmax9

The cross-entropy loss function is adopted to drive the network.

1 9. Q T ‘
L = ) ']) =gll (]) 15
0Ss_rec 9Q]’;5§1 [yl q} D[Pl (’1)} (15)

()

where Q is the number of quantize levels to be classified and Q = 32. y;”’ is the truth value

of the j-th parameter of the i-th pixel. pfj ) (q) is the probability of the j-th parameter of the

i-th pixel being in the g-th center quantization value. §(-) is the indication function and its

(/)

value equals 1 if y;/* = g and 0 otherwise. In(-) is the natural logarithm function.
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Once the nine real parameters of the normalized quad-pol SAR covariance matrix
are reconstructed, the total backscattering power and other elements of the quad-pol SAR
covariance matrix can be calculated as follows

2
P= <|Sif> (ISwl[*) = Pés (16)
(SHHSVV) = P13 <|5HH|2>P(53, (SuvSyy) = p23 <\5HV|Z>P(53 (17)

3. Experimental Evaluation with Model-Based Decomposition

Multitemporal ALOS/PALSAR PolSAR datasets from the March 11 East Japan earth-
quake and tsunami, which caused extensive damage to coastal buildings, are adopted
for subsequent quad-pol SAR data reconstruction performance analysis. The pre-event
dataset was acquired on 21 November 2010, and the post-event dataset was obtained on
8 April 2011.

The HH and VH dual-pol SAR data are simulated from original PolSAR datasets
for subsequent investigation. The training datasets are selected from the post-event data,
which are circled in a red rectangle, as shown in Figure 3. Total pixels in the training
datasets account for 52.16% of the whole SAR image. The remaining post-event data and
all pre-event data are used to construct the testing datasets. In order to train the network
without taking up too much memory, the whole SAR image is cut into 400 x 400 slice
images with a 25% overlapping rate. To the best of our knowledge, quad-pol SAR data
reconstruction from dual-pol SAR data has not been reported. The DNN method in [19]
can reconstruct quad-pol SAR data from single-polarization SAR data, which is chosen as
the comparison algorithm. The first layer of the DNN method is similarly adjusted to four
channels to adapt the dimension of the dual-pol SAR data.

Figure 3. The Pauli image of post-event data.

The random gradient descent method (Adam optimizer) is utilized to train the net-
work, and its parameters are set as follows: 81 = 0.9, B2 = 0.999, ¢ = 107, and the learning
rate is 0.0001. The network is trained to converge until the number of epochs reaches 100.

3.1. Quantitative Reconstruction Performance Evaluation

As shown in Figure 4, the pre-event Pauli images obtained by different reconstruction
methods and the real quad-pol SAR data are compared. Visually, the pre-event Pauli images
reconstructed by the proposed D2QNet-v1 and D2QNet-v2 methods are mostly identical
to the real quad-pol SAR case. However, the Pauli image obtained by the DNN method
shows larger differences in forest areas and seashore buildings when compared to the real
quad-pol SAR data.
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(b) (c) (d)

Figure 4. The pre-event Pauli images. (a) Real quad-pol SAR data; (b) DNN method; (c) D2QNet-v1
method; (d) D2QNet-v2 method.

To validate the excellent performance of the proposed methods, we further analyze
severely damaged Ishinomaki city, circled in a red rectangle window in Figure 4a. The pre-
event Pauli images of Ishinomaki city are shown in Figure 5. It can be seen that the proposed
D2QNet-v1 method achieves better visual performance in the coastal-building area than the
DNN method. Although the D2QNet-v2 method has some deficiencies in reconstructing the
scattering information of coastal buildings, it can remove some artifacts of the D2QNet-v1
method and obtain preferable results in the whole Pauli images. Nevertheless, the quad-pol
SAR data reconstructed by the DNN method is not effective over buildings and forest areas.
Note that, since the FT network in the DNN method only adopts a fully connected network
that is unable to capture spatial correlation information among pixels, its reconstruction
performance is correspondingly decreased.

Figure 5. The pre-event Pauli images of Ishinomaki city. (a) Real quad-pol SAR data; (b) DNN
method; (c) D2QNet-v1 method; (d) D2QNet-v2 method.

To further verify the advantages of the proposed D2QNet-v1 and D2QNet-v2 methods,
the coherence index (COI) and mean absolute error index (MAE) are utilized to evaluate
the accuracy of the reconstructed polarimetric channels.

|

M N
L Y AijBj
i=1=1

COI(A,B) = (18)

A A¥ % % iy
P B A e

M=
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M N
MAE(A,B) = MlNZ% Z;|Aij — Bjj| (19)

i=1j=
where M and N represent the number of rows and columns of the matrix A and B, respectively.
As shown in Tables 3 and 4, the COI and MAE results of the reconstructed quad-
pol SAR data in the pre-event indicate that the proposed D2QNet-v1l and D2QNet-v2
methods have higher COI values and a lower reconstruction error in nearly all reconstructed
polarimetric channels than the DNN method. The COI value of Im(Cy3) of the DNN
method is negative, which means that its reconstruction appears with serious problems. It
is worth noting that the COI and MAE indexes in one polarimetric channel cannot always
reflect the advantages of the reconstruction methods, and the COI is not strictly consistent
with the MAE index. In other words, higher COI values do not necessarily mean that
the overall reconstruction error is lower. Detailed reasons for this are explained in the

Discussion section.

Table 3. COI index of the pre-event reconstructed data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Cs3 0.9430 0.9617 0.9574
Re(Cy3) 0.5219 0.5874 0.5670
Im(Cy3) —0.4976 0.4978 0.0443
Re(Cy3) 0.6870 0.6510 0.1307
Im (Cy3) 0.7784 0.8535 0.0226

Table 4. MAE index of the pre-event reconstructed data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Css 13.2267 13.0214 12.3406
Re(Cy3) 48.2682 46.7367 45.1624
Im(Cq3) 8.8918 8.5011 8.7409
Re(Cp3) 4.9647 4.5574 44441
Im (Cy3) 2.6749 2.5001 2.6850

The post-event Pauli images of the real quad-pol SAR data and the different recon-
struction methods are shown in Figure 6, and their Pauli images of Ishinomaki city are
shown in Figure 7. Overall, it can be seen that the proposed D2QNet-v2 method achieves
the best visual performance among all reconstruction methods. The D2QNet-v1 method
provides a preferable visual experience in coastal-building areas. However, in forest and
other complex regions, the DNN method produces biased reconstruction results.

(d)

Figure 6. The post-event Pauli images. (a) Real quad-pol SAR data; (b) DNN method; (c) D2QNet-v1
method; (d) D2QNet-v2 method.
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Figure 7. The post-event Pauli images of Ishinomaki city. (a) Real quad-pol SAR data; (b) DNN
method; (c) D2QNet-v1 method; (d) D2QNet-v2 method.

Quantitative comparison results in terms of the COI and MAE indexes are given in
Tables 5 and 6. Similar to the pre-event case, the proposed D2QNet-v1l and D2QNet-v2
methods achieve a superior performance to the DNN method. The polarimetric channel
Im(Cy3) reconstructed by the DNN method is also negatively correlated with the real quad-
pol SAR data. From a reconstruction error perspective, the proposed D2QNet-v2 method
obtained optimal quantitative comparison results.

Table 5. COI index of the post-event reconstructed data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Cs3 0.9567 0.9590 0.9156
Re(Cq3) 0.5855 0.3146 0.5233
Im(Cq3) —0.4024 0.0937 0.8029
Re(Cy3) 0.7915 0.6767 0.8744
Im (Cp3) 0.7556 0.8646 0.9229

Table 6. MAE index of the post-event reconstructed data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Css 9.1733 9.2883 9.2766
Re(Cy3) 13.7921 12.9135 10.9874
Im(Cy3) 6.1376 5.9992 4.4989
Re(Cy3) 3.3636 2.9209 2.3194
Im (Cy3) 1.8960 1.7344 1.3567

3.2. Quantitative Comparison with Model-Based Target Decomposition

In order to evaluate the reconstruction performance more effectively, we utilize po-
larimetric target decomposition to assess the scattering mechanism preservation between
the real and reconstructed quad-pol data. Specifically, we use the Yamaguchi target de-
composition method on real and reconstructed quad-pol data, and the decomposed results
are illustrated in Figure 8. The red, green, and blue color of the Pauli images represent
the double-bounce scattering, volume scattering, and odd-bounce scattering, respectively.
Figure 9 shows the proportions of double-bounce, odd-bounce, and volume-scattering
components in Figure 8. It can be seen that the quad-pol SAR data reconstructed by the pro-
posed D2QNet-v1 method has the best scattering mechanism reconstruction performance,
with a scattering mechanism that is consistently similar to that of the real quad-pol SAR
data. However, the DNN method seriously underestimates the double-bounce-scattering
component, causing its value to become zero. Additionally, the DNN method overesti-
mates the odd-bounce scattering and underestimates the volume scattering, leading to poor
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reconstruction performance in forest areas. It should be noted that the targets’ scattering
information reconstructed by the DNN method is completely out of line with the real
quad-pol SAR data, rendering it unusable for practical applications.

Figure 8. The Yamaguchi target decomposition of pre-event images. (a) Real quad-pol SAR data;
(b) DNN method; (c) D2QNet-v1 method; (d) D2QNet-v2 method.

[ double bounce [ volume [ Gouble bounce I Gouble bounce
[ volume I odd bounce [ volume [ volume
I odd bounce I o bounce I odd bounce

(a) (b) (c) (d)

Figure 9. The statistical results of different scattering components of pre-event images. (a) Real
quad-pol SAR data; (b) DNN method; (c) D2QNet-v1 method; (d) D2QNet-v2 method.

Similar to the pre-event case, the Yamaguchi target decomposition results of the real
and reconstructed quad-pol data in the post-event are displayed in Figure 10. Figure 11
shows the proportions of the double-bounce, odd-bounce and volume-scattering com-
ponents in Figure 10. Compared with the real quad-pol SAR data, the quad-pol SAR
data reconstructed by the proposed D2QNet-v1 method outperforms other methods in
terms of preserving the scattering mechanism. In Ishinomaki city, which suffered severe
damage in the post-event, a large number of buildings collapsed and the corresponding
double-bounce-scattering component was reduced. As a result, the percentage of double-
bounce-scattering components obtained by the proposed D2QNet-v1 method has decreased
by 2%, which is consistent with the real quad-pol SAR case. It should be noted that ob-
taining accurate information on double-bounce scattering changes is critical for disaster
evaluation. However, the DNN method still overestimates the odd-bounce scattering and
underestimates the volume and double-bounce scattering, which renders the quad-pol SAR
data reconstructed by the DNN method ineffective for practical applications.

In summary, compared with the DNN method, the proposed methods achieve superior
qualitative and quantitative quad-pol SAR data reconstruction performance. Moreover, the
proposed method can preserve the targets’ scattering mechanism well, further confirming
its excellent reconstruction performance.
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I double bounce

[ volume

l I odd bounce
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Figure 10. The Yamaguchi target decomposition of post-event images. (a) Real quad-pol SAR data;
(b) DNN method; (¢) D2QNet-v1 method; (d) D2QNet-v2 method.

[ volume I double bounce [ double bounce

0.5%
I o bounce [ volume [ volume
‘-.“ bmmcg ‘-“‘ bou"ce

Figure 11. The statistical results of different scattering components of post-event images. (a) Real
quad-pol SAR data; (b) DNN method; (c) D2QNet-v1 method; (d) D2QNet-v2 method.

(b)

4. Experimental Evaluation with Terrain Classification
4.1. Quantitative Reconstruction Performance Evaluation

Multitemporal PolSAR data have become increasingly important for applications such
as terrain classification and growth monitoring. In this section, we adopt the NASA /JPL
UAVSAR airborne L-band PolSAR data over Southern Manitoba, Canada, for further analy-
sis [7]. The pixel resolutions are 5 m and 7 m in range and azimuth directions, respectively.
The selected region for investigation comprises seven crop types, including corn, wheat,
broadleaf, forage crops, soybeans, rapeseed, and oats. These multitemporal PolSAR images
have been coregistered and their size is 1300 x 1000. The training and testing data were
collected on June 22nd (0622) and June 23rd (0623), respectively. Figure 12 shows the
PolSAR Pauli image of the training data and the corresponding ground-truth image.

Oats
Rapeseed
Wheat
Corn
Soybean
Forage
Hardwood

Unknown

(@ (b)
Figure 12. (a) Pauli images of UAVSAR 0622; (b) Ground-truth image.
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The UAVSAR 0623 Pauli images of the real quad-pol SAR data and different recon-
struction methods are shown in Figure 13. The reconstructed Pauli images have a high
degree of visual similarity to the real quad-pol SAR case, although differences can be ob-
served between the different reconstruction methods. It should be further pointed out that
some reconstruction artifacts appear in the DNN method, circled in a red rectangle frame
in Figure 13b. These artifacts are likely caused by the limitations of the fully connected
layers in the feature translation network used in the DNN method. This phenomenon is
similar with the results presented in the previous section.

(b) (c) | (d)

Figure 13. UAVSAR 0623 Pauli images. (a) Real quad-pol SAR data; (b) DNN method; (c) D2QNet-v1
method; (d) D2QNet-v2 method.

The COI and MAE results of the different reconstructed quad-pol SAR data are shown
in Tables 7 and 8. Although the DNN method obtains better quantitative COIl and MAE val-
ues in some polarimetric channels, the COI value of Re(C;3) of the DNN method is —0.8816.
This indicates that the DNN method may have limitations in accurately reconstructing cer-
tain polarimetric features. In addition, the proposed D2QNet-v1 and D2QNet-v2 methods
have their respective reconstruction advantages in certain polarimetric channels. Therefore,
it is difficult to identify which reconstruction method is the best based solely on COI and
MAE indicators. A more comprehensive evaluation approach is to apply the reconstructed
quad-pol SAR data to terrain classification to validate its advantages in this section.

Table 7. COI index of UAVSAR 0623 data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Cs3 0.8201 0.7926 0.8061
Re(Cy3) —0.8816 0.0675 0.0661
Im(Cq3) 0.6227 0.3211 0.3328
Re(Cp3) 0.8398 0.3083 0.3155
Im(Cy3) 0.6992 0.6997 0.6873

Table 8. MAE index of UAVSAR 0623 data.

Reconstructed Channel DNN D2QNet-v1 D2QNet-v2
Css 0.0311 0.0421 0.0420
Re(Cy3) 0.0150 0.0142 0.0146
Im(C13) 0.0106 0.0124 0.0122
Re(Cp3) 0.0019 0.0023 0.0023

Im(Ca3) 0.0010 0.0012 0.0013
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4.2. Classification Method

In Section 2, the quad-pol SAR covariance matrices C of the whole SAR images are
reconstructed from the dual-pol SAR data. Then, the corresponding polarimetric coherency
matrices T3 can be obtained. To validate the reconstruction effectiveness of the proposed
method, terrain classification is carried out based on the reconstructed quad-pol SAR
coherency matrices T3. Instead of directly using the elements of the coherency matrices T3
for terrain classification, polarimetric features are extract from T3 based on polarimetric
target decomposition. Inspired by SFCNN [7], three roll-invariant polarimetric features
and two hidden polarimetric features in the rotation domain, extended to the reconstructed
quad-pol SAR data, are selected for terrain classification.

The selected roll-invariant polarimetric features contain total backscattering power P,
entropy H, mean alpha angle &, and anisotropy Ani.

According to the eigenvalue decomposition theory [26], the quad-pol SAR coherency
matrix T3 can be decomposed as

Ay 0 0
T;=U|0 A, 0|UT A >0> 05 (20)
0 0 Az

where A1, Ay, and A3 are the eigenvalues, while U contains the decomposed eigenvectors.
The polarimetric entropy H, mean alpha angle &, and anisotropy Ani features can be
derived from the decomposed eigenvalues A;, as follows

Ay — A3
As+ Az

3 3
H=)Y pilogp,a=Y_ pia; Ani = (21)
i=1 i=1

where pi = )\Z‘/(/\l + Ay + /\3).
In [7,29], two null angle features in the rotation domain are developed, which are
sensitive to various land covers. Their definitions can be formulated as

O Re[T12] = — 3 Angle{Re[Ty3] + jRe[Ti2]}

= 1 Angle{Re[((Stm + Svv)Siy)] (22)

+i3 ((Iswl?) = (1smml)) }

Onun_Re[Ti2] = —3 Angle{Im|[Ty3] + jIm[Ty2]}
= Angle{Im[((Suu + Svv)Sjy)] (23)

+/Im[(SHuSyy)]}

where Angle{-} is the operator to obtain the phase of a complex value within the range
of [—, 7.

After the extraction of the six polarimetric features, a simple CNN model is adopted
for terrain classification [7]. The architecture of the CNN model is shown in Figure 14.
The size of the input patches is set to 13 x 13 x d, where d represents the number of
polarimetric features. The CNN model consists of three convolutional layers, two max
pooling layers, two fully connected (FC) layers, and a softmax layer. The cross-entropy loss
function is utilized to drive the CNN classifier.

In summary, the terrain classification method is summarized as follows:

(@) Apply speckle filtering to the quad-pol SAR images to reduce speckles [35-37];

(b) Construct patches from the quad-pol SAR images by using a sliding 13 x 13 window;

(c) Extract polarimetric features from each pixel;

(d) Select a percentage of the labeled samples randomly as training datasets to train the
CNN classifier. The remaining labeled samples are used as testing datasets;



Remote Sens. 2023, 15, 4182

16 of 21

(e) Classify the testing datasets based on the trained CNN classifier and evaluate its
classification accuracy.

Input patches: 13x13xd
* Classification result

{conv1 2x2,30} + ReLU + BN T
l Softmax

T

Max pooling: 2x2, stride=2
i {fe2: 7}

{conv2 2x2, 60} + ReLU + BN

i Dropout (0.5)
Max pooling: 2x2, stride=2 {fcl: 240} + ReLU
v I
{conv3 2x2,120} + ReLU + BN -] Flattening

Figure 14. The architecture of the used CNN model.

4.3. Quantitative Comparison

Five terrain-classification experiments are conducted to evaluate the efficacy of the
proposed reconstruction methods. The input data for the CNN model includes: (i) dual-pol
SAR data, six selected polarimetric features directly extracted from (ii) real quad-pol SAR
data, (iii) quad-pol SAR data reconstructed by the DNN method, (iv) quad-pol SAR data
reconstructed by the D2QNet-v1 method, and (v) quad-pol SAR data reconstructed by the
D2QNet-v2 method. The training rate is set to 1%. In order to choose the optimal training
model, the training and verification datasets are divided into a ratio of 8:2 in the training
datasets. The remaining pixels are used as testing datasets.

The stochastic gradient descent (SGD) optimizer is employed to train the network, and
the momentum is set to 0.9. The learning rate is 0.001 and the number of training epoch is
set to 200.

The terrain classification results of the UAVSAR 0623 images are shown in Figure 15
and the classification accuracies of different methods are given in Table 9. Undoubtedly,
the real quad-pol SAR data achieve the highest classification accuracy of 98.03%. Com-
pared with dual-pol SAR data, the quad-pol SAR data reconstructed by the DNN method
and the proposed D2QNet-v1 method have a lower classification accuracy. Even so, the
proposed D2QNet-v1l method has a higher accuracy than the DNN method. As can be
seen in Figure 15, the classification results of the proposed D2QNet-v2 method have the
minimum number of error classification pixels than other methods, especially in rapeseed
and wheat classes. In detail, the confusion matrix of the proposed D2QNet-v2 method and
its classification accuracies for each terrain class are given in Table 10. The rows represent
the real terrain types, while the columns represent the predicted terrain types. The values
in each cell represent the number of samples that were classified as a particular terrain
type. It is worth noting that the proposed D2QNet-v2 method achieves a 1.25% accuracy
improvement compared to the dual-pol SAR case, and is only 0.95% lower than the real
quad-pol SAR case. The classification accuracies of the proposed D2QNet-v2 method for
all terrain classes are over 95% except for rapeseed class.

To sum up, the proposed D2QNet-v2 method utilizes the GAM to obtain abundant
semantic information and aggregate the multiscale features effectively. Compared with the
DNN method, the quad-pol SAR data reconstructed by the proposed D2QNet-v2 method
can achieve a superior terrain classification performance.
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Figure 15. Classification results of UAVSAR 0623 images. (a) Dual-pol SAR data; (b) DNN method;
(c) D2QNet-v1 method; (d) D2QNet-v2 method; (e) Real quad-pol SAR data; (f) Ground-truth image.

()

Table 9. The classification results of UAVSAR 0623 image.

Dual-Pol SAR Data DNN D2QNet-vl D2QNet-v2 Real Quad-Pol SAR Data
95.83% 95.31% 95.52% 97.08% 98.03%

Table 10. The confusion matrix of the UAVSAR 0623 image based on the proposed D2QNet-v2 method.

Real\Predicted  Soybean Wheat Rapeseed Oats Corn Forage Hardwood Accuracy

Soybean 134,475 869 355 81 89 810 35 98.36%
Wheat 1628 108,302 477 648 81 149 13 97.31%
Rapeseed 2449 1822 63,955 87 5 292 3 93.21%
Oats 78 1107 179 57,250 45 102 0 97.43%

Corn 36 358 0 37 31,028 0 4 98.62%
Forage 724 546 23 4 0 30,843 38 95.85%
Hardwood 3 28 17 0 1 19 14,081 99.52%

5. Discussion
5.1. One-Sidedness of COI and MAE Indexes

In this section, we combine the visualization analysis in two-dimensional space to
illustrate the limitations of using COI and MAE indexes to evaluate the reconstruction
performance. As shown in Figure 16, the real quad-pol SAR data are annotated as a blue
point, and a blue circle is drawn with this point as the center. Except for the blue point,
other points in two-dimensional space represent the reconstructed quad-pol SAR data.
According to Formulas (18) and (19), COI can be interpreted as the cosine of the angle
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between two lines and the MAE index can be considered as the distance between two points.
It is observed that all points on the blue circle have the same MAE index values. However,
the COI values of these points on the blue circle have different COI values. Compared with
lines I and I, the COI of the points in line /; have higher values, but not all the points
in line /4 have lower MAE values. In addition, the values of the MAE index decrease as
the radius of the blue circle shrinks, but their corresponding COI values are not always
increasing. It is worth noting that the COI values of the intersection points between the blue
circle and line /3 always remain at one, regardless of the size of the blue circle. However,
the values of the MAE index increase when the blue circle enlarges. For line I5, the COI
values become negative, which is the same case as the DNN method in reconstructing some
polarimetric channels.

Y

Figure 16. Visualization plot in two-dimensions of COI and MAE.

Therefore, we can conclude that simply using COI and MAE indexes in one polari-
metric channel cannot reflect the advantages of the reconstruction method. The evaluation
methods should focus on applying the reconstructed quad-pol SAR data to improve the
performance of subsequent tasks, such as terrain classification or target detection.

5.2. Limitations of Quad-Pol SAR Data Reconstruction Methods

Although reconstructing the quad-pol SAR data from the dual-pol SAR mode has
many advantages, it also brings the following issues. Firstly, it is common to perform
multilook processing on SAR images before reconstructing the quad-pol data to ensure the
full-rank property of the quad-pol SAR covariance matrix. This preprocessing step may
indeed reduce the spatial resolution of the SAR image. Secondly, as a special form of the
dual-pol SAR mode, reconstructing the quad-pol SAR data from the compact-polarization
mode requires the assumption of reflection symmetry. Additionally, the polarization
interpolation model is used to estimate the cross-polarization terms, which results in a
certain level of error between the reconstructed quad-pol SAR data and the real quad-
pol SAR data. The lack of generalizability often appears when reconstructing quad-pol
SAR data with networks. In future work, physical characteristics will be fused into the
network architecture design to improve the interpretability and generalizability of the
network models.

5.3. Comparison of Training Time

Compared to the DNN method that uses a fully connected network for pixel-by-pixel
reconstruction, the proposed methods utilize a fully convolutional network to achieve
quad-pol SAR data reconstruction for the whole image. As shown in Table 11, the proposed
D2QNet-v1 and D2Qnet-v2 methods offer a faster training speed than the DNN method.
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Due to the addition of the GAM, the training speed of the D2QNet-v2 method is slightly
slower than the D2QNet-v1 method.

Table 11. Comparison of training times (s) of different methods.

DNN D2QNet-v1 D2QNet-v2
ALOS/PALSAR 10,814.47 6014.35 6030.24
UAVSAR 5407.28 3012.46 3021.65

6. Conclusions

In this work, a novel multiscale feature aggregation network is proposed to recon-
struct the quad-pol SAR data from the dual-pol SAR mode. The core idea is extending
well-established full-polarimetric techniques to the dual-pol SAR mode and improving the
terrain-classification performance of the dual-pol SAR data. Firstly, multiscale features are
extracted from the pretrained VGG16 network. Then, a group-attention module is designed
to enhance the multiscale feature maps and fuse the high- and low-level information of
multiple layers. Finally, the original dual-pol SAR images and fused feature maps are
concatenated and mapped into polarimetric covariance matrices through a full convolu-
tional neural network. Comparative experimental studies are conducted on different bands
and sensors of the SAR datasets from ALOS/PALSAR and UAVSAR, and the proposed
methods exhibit higher COI and lower MAE indicators. Furthermore, the results of the
Yamaguchi target decomposition on the reconstructed quad-pol SAR data indicate that
the proposed method can better preserve targets” scattering information. Compared with
the dual-pol SAR data, the reconstructed quad-pol SAR data of the proposed D2QNet-v2
method can achieve a 97.08% terrain classification accuracy and an improvement of 1.25%
over the dual-pol SAR data. From the perspective of training-network effectiveness, the
proposed methods require less training time than the DNN method. Future work will
focus on comparing the reconstructed quad-pol SAR data with dual-pol SAR data on the
performance of ship detection.
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