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Abstract: Satellite remote sensing (RS) has been drawing considerable research interest in land-cover
classification due to its low price, short revisit time, and large coverage. However, clouds pose
a significant challenge, occluding the objects on satellite RS images. In addition, snow coverage
mapping plays a vital role in studying hydrology and climatology and investigating crop disease
overwintering for smart agriculture. Distinguishing snow from clouds is challenging since they
share similar color and reflection characteristics. Conventional approaches with manual thresholding
and machine learning algorithms (e.g., SVM and Random Forest) could not fully extract useful
information, while current deep-learning methods, e.g., CNNs or Transformer models, still have
limitations in fully exploiting abundant spatial/spectral information of RS images. Therefore, this
work aims to develop an efficient snow and cloud classification algorithm using satellite multispectral
RS images. In particular, we propose an innovative algorithm entitled UCTNet by adopting a dual-
flow structure to integrate information extracted via Transformer and CNN branches. Particularly,
CNN and Transformer integration Module (CTIM) is designed to maximally integrate the information
extracted via two branches. Meanwhile, Final Information Fusion Module and Auxiliary Information
Fusion Head are designed for better performance. The four-band satellite multispectral RS dataset for
snow coverage mapping is adopted for performance evaluation. Compared with previous methods
(e.g., U-Net, Swin, and CSDNet), the experimental results show that the proposed UCTNet achieves
the best performance in terms of accuracy (95.72%) and mean IoU score (91.21%) while with the
smallest model size (3.93 M). The confirmed efficiency of UCTNet shows great potential for dual-flow
architecture on snow and cloud classification.

Keywords: multispectral imagery; satellite remote sensing; snow coverage mapping; UCTNet

1. Introduction

Land-cover classification via satellite remote sensing (RS) images is an essential task
in the field of earth observation. It has been widely applied in various areas, such as land
water resources, vegetation resources, environmental monitoring, natural disaster forecast-
ing [1], urban planning [2–5], environmental impact assessment [6,7], and precision agricul-
ture [8,9]. In particular, Sentinel-2 series satellites, one of the main RS platforms for land
cover mapping, are capable of enabling persistent sensing for civil applications because of
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their multispectral information via customized sensors with high spatial/spectral/temporal
resolutions in a wide range. However, as reported in [10], 66% of Earth’s surface is covered
by clouds. As a result, clouds inevitably appear on the acquired satellite images, restricting
their applications in land-cover classification [11]. Meanwhile, it is also reported in [12]
that snow coverage mapping plays an important role not only in studying hydrology and
climatology but also in investigating crop disease overwintering for smart agriculture since
snow coverage in winter not only weakens the negative effects of extreme cold temperature
on crops but also have certain protection effects on crop diseases (e.g., yellow rust disease
in wheat [13]). Considering that snow and clouds share a very similar appearance and
color distribution, manually separating snow pixels from cloud pixels requires expert
knowledge and is a tedious and time-consuming process. Therefore, it is desirable to
develop an automated algorithm to discriminate cloud/snow in RS images, facilitating the
post-processing operations and interpretation of RS images, which is highly beneficial for
land cover classification and precision agriculture applications.

Conventional snow/cloud classification algorithms could be generally divided into
two categories, including threshold-based [14–17] and machine-learning-based ones [18–20].
Threshold-based methods are conducted by manually setting spectral thresholds according
to the representation of objects in different bands for object mapping such as clouds
and snow. For example, Function of mask (Fmask) [14] and Automated Cloud Cover
Assessment (ACCA) [15] are two classical threshold-based algorithms. For Fmask, various
developments have been made to further improve its algorithm performance. For example,
Tmask utilized multi-temporal Landsat images to classify clouds and snow, outperforming
the single-date Fmask approach [16]. Timbo introduced CFmask for snow/cloud mask error
assessment, achieving an overall precision of 70% on Landsat imagery [17,21]. Machine-
learning-based approaches adopted handcrafted classifiers combined with multi-features
to improve classification precision and speed. For example, a Support Vector Machine
(SVM) incorporating multi-feature strategies was used in [18] to classify clouds and other
objects, aiming to make full utilization of RS image information. Nijhawan integrated
several individual classifiers for accuracy improvement, including SVM, Random Forest
(RF), Rotation Forest (ROF), etc., achieving outstanding performances on the Landsat
multispectral images [19]. Nafiseh applied Random Forest classifiers in the fusion of visible-
infrared (VIR) and thermal data for snow and cloud detection, providing a novel insight
for feature selection in precise cloud/snow discrimination [20]. It should be noted that
some problems and limitations still exist in traditional approaches. First, threshold setting
heavily relies on manual experience, making the snow/cloud mapping process empirical
and subjective. In addition, handcrafted classifiers in machine learning algorithms are poor
at extracting useful information from RS images (especially for two similar objects), which
are less accurate for differentiating cloud and snow via high resolution images.

Therefore, to avoid the aforementioned problems brought by threshold-based and
machine-learning-based approaches, deep-learning methods are also introduced to address
the snow/cloud classification challenge. Recently, the strong feature extraction capability of
deep learning was verified with its extensive applications to computer vision applications.
Meanwhile, the rapid development of deep learning in RS field enables its application
in snow/cloud classification as well. However, satellite RS images with improved image
resolution have abundant spectrum features and rich texture distributions. As a result,
models that could make full use of spatial and spectral information are needed. Consider-
ing the existing model structures, deep-learning methods could be categorized into two
classes, including Convolutional Neural Network (CNN)-based and Transformer-based
methods. In particular, CNN is an efficient model for image analysis, which has been
introduced to snow/cloud classification [12,22–24]. After training with a large number
of RS images, CNN-based methods could automatically extract image spatial features for
classification. A novel CNN structure was presented to learn multi-scale semantic features
from cloud and snow multispectral imagery, achieving better precision in discriminating
the cloud and snow in high-resolution images compared to traditional cloud detection
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algorithms [22]. Four encoder–decoder-based CNNs proposed by Mohapatra obtained an
average accuracy value of 94% for the AWiFS data [23]. Recently, Wang adopted a UNet-
based structure to incorporate both spectral and spatial information into Sentinel-2 imagery,
gaining higher accuracy and robustness than other traditional methods [12]. By introduc-
ing a specially designed fully convolutional network and a multiscale prediction strategy,
Zhan precisely distinguished clouds from snow at a pixel level from satellite images [24].
Although CNN-based methods have realized local extractions of texture and semantic
information, convolution operations in CNN restrict further development on snow/cloud
distinction. Since local feature extraction limits the receptive field of features, it is difficult
for convolutions to extract spectral data efficiently. In order to make full use of spectral
information, Transformer [25–29] was introduced from natural language processing and
achieved superior classification results in the field of RS image analysis due to its powerful
capability of capturing temporal and long-distance information. For example, He proposed
HSI-BERT to capture the global dependence of bidirectional encoder representations from
Transformers for the first time [25]. With the acquisition of band connections, a cross-context
capsule vision Transformer was developed for land-cover classification and demonstrated
its efficiency on multispectral LiDAR datasets [26]. Xu proposed an Efficient Transformer
based on a Swin Transformer backbone [27] to improve segmentation efficiency, and the
edge enhancement methods were, meanwhile, adopted to cope with the inaccurate edge
problems [28]. Swin Transformer was also adopted as the backbone by Wang to extract
the context information of fine-resolution remote sensing images [29]. However, since
Transformer-based methods mainly focus on obtaining global information, local informa-
tion such as color and texture are lost in feature extraction. In addition, Transformer is
computationally intensive when the sequence length is too long.

Considering the pros and cons of CNN-based and Transformer-based methods, we
propose a dual-flow U-shaped framework named UCTNet to integrate CNNs and Trans-
formers in discriminating snow and cloud, obtaining the local and global information from
sensing images in a parallel way. The proposed model makes a complementary combi-
nation of CNNs and Transformers, making full use of spatial and spectral information
in satellite multispectral RS images, hence promoting the accuracy of snow and cloud
classification performance. In particular, the CNN and Transformer integration Module
(CTIM) is designed to maximally integrate the information extracted via two branches.
In addition, the Final Information Fusion Module is applied to fuse the two branch outputs
of the decoder, obtaining the final prediction map for supervision. Meanwhile, we proposed
an Auxiliary Information Fusion Head (AIFH) for a better feature representation ability.
Finally, to verify the effectiveness of the proposed model, the Sentinel-2 snow/cloud dataset
developed in our previous paper is utilized [12]. The original dataset from the Sentinel-2
satellite is composed of 12 multispectral bands. However, our previous work showed that
the best four-band combination can not only reduce model size but also possess the best
performance. Therefore, it is adopted in this study. The proposed UCTNet is compared
to advanced CNN-based and Transformer-based algorithms, showing that the proposed
model could achieve a state-of-the-art performance in terms of accuracy and model size.
In summary, the main contributions are as follows:

(1) A dual-flow architecture composed of a CNN branch and Transformer branch is
proposed for the first time to solve the challenge of snow/cloud classification;

(2) As the core of encoder and decoder blocks, CTIM is introduced to leverage the local
and global features for better performance;

(3) FIFM and AIFM are designed to fuse the two branches’ outputs for better supervision;
(4) Comparative experiments are conducted on the snow/cloud Satellite dataset to vali-

date the proposed algorithm, which shows that the proposed UCTNet outperforms
both CNN- and Transformer-based networks in both accuracy and model size.
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2. Materials and Dataset Collection

In this section, the overall description of Sentinel-2 satellite is introduced, including its
related spatial/spectral information details (see Figure 1). Meanwhile, the labeling process
of the snow/cloud dataset is briefly presented for the sake of completeness.

Satellite image 
collection

Data labelling

Classifier construction

Data analysis

Figure 1. Framework of snow/cloud classification research in this study.

2.1. Satellite Image Collection

Sentinel-2 series satellites are selected to collect RS images in this study, which can be
freely downloaded from Copernicus Open Access Hub, USGS EROS Archive, and Google
Earth Engine. Their customized Multispectral Instrument (MSI) sensor can provide RS
images with high spatial, spectral, and temporal resolutions. Regarding spectral informa-
tion, there are a total of 12 spectral bands, including B1 (Aerosols), B2 (Blue), B3 (Green),
B4 (Red), B5 (Red Edge 1), B6 (Red Edge 2), B7 (Red Edge 3), B8 (NIR), B8A (Red Edge 4),
B9 (Water vapor), B11 (SWIR 1), and B12 (SWIR 2) [5]. In particular, B10 is omitted due
to its lack of surface information. As shown in Table 1, three levels of spatial resolution
are available, where Band1, Band9, and Band10 are 60 m; Band8A, Band11, and Band12
are 20 m; and Band2, Band3, Band4, and Band8 are 10 m, meeting the requirements of
various applications. A Sentinel-2 Level-2A product is directly utilized in this research
rather than a Level-1C product because Level-2A is capable of offering Orthoimage Bottom
Of Atmosphere (BOA)-corrected reflectance information. Moreover, the Level-2A product
has a scene classification map composed of cloud and snow probabilities at 60 m resolution
achieved via the Sen2Cor algorithm [12]. The dataset collected in this research includes
40 different Sentinel-2 scenes across the globe covering different continents (six continents
except Antarctia) and years (2019, 2020, and 2021), months, and land-cover classes.

Table 1. Band information of Sentinel-2A/B satellite.

Band No. Characteristic Wavelength (µm) Resolution (m)

1 Coastal Aerosol 0.443 60
2 Blue 0.490 10
3 Green 0.560 10
4 Red 0.665 10
5 Near Infrared (Red Edge 1) 0.705 20
6 Near Infrared (Red Edge 2) 0.740 20
7 Near Infrared (Red Edge 3) 0.783 20
8 Near Infrared (NIR) 0.842 10

8A Near Infrared (Red Edge 4) 0.865 20
9 Water Vapor 0.945 60

10 Cirrus 1.375 60
11 Shortwave Infrared (SWIR 1) 1.610 20
12 Shortwave Infrared (SWIR 2) 2.190 20

2.2. Data Labeling

This research aims to develop a novel method for snow/cloud classification via satellite
images, so a proper method to label different objects is important. As mentioned in our
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previous work [12], a large diversity of scenes are needed to cover different continents,
years, months, and land-cover classes (see Figure 2 for the retrieved dataset). There are a
total of three classes labeled by human experts, including snow, cloud, and background.
Based on the labeling process and satellite images, the pixel-label process was carried out
in QGIS software with the help of its Semi-Automatic Classification Plugin, where the label
images are displayed in Figure 3. It is noted that, to best separate the snow pixels from
cloud pixels, not only RGB band images but also other false-color RGB images are drawn.
Please refer to [12] for more details of the labeling process, and the labeled dataset is openly
accessible for deep learning and satellite RS community. In our work, a total of 40 images are
first collected via Sentinel-2 satellite, followed by manual labeling. The dataset is divided
into training set with the size of 34 images, and the remaining 6 scenes constitute testing set.
In addition, among the 12 bands in the Sentinel-2 Level-2A product, we select four bands
data, namely B2, B11, B4, and B9, for the latter model’s training and classification [12]. It is
notable that for better feature learning of band information, different bands are re-shaped
into the same resolution of 10 m.

Figure 2. Visualization of all 40 scenes captured using Sentinel-2 satellite with scene captured
date [12].
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Figure 3. Labeled classification maps of all 40 collected scenes. The three labeled classes are in
different colors: black denotes background, red denotes cloud, and cyan denotes snow [12].

3. Methodology
3.1. A Brief Review of Transformer

Transformer network [30], one of the the main architectures for a variety of natural
language processing (NLP) tasks, has attracted an ever-increasing research interest in com-
puter vision community since the success of Vision Transformer (ViT) [31]. By overcoming
the insufficient global information modeling ability of CNNs, Transformer has created new
state-of-the-art results for many vision tasks. Built on top of self-attention mechanisms,
Transformer could build long-distance dependencies among pixels, which is crucial to
accurately discriminate two similar classes such as cloud and snow in this paper.

Before proposing the dual-flow architecture, a brief introduction of vanilla Transformer
is first reviewed [30]. The vanilla Transformer network stacks two kinds of Transformer
blocks: encoder and decoder (see Figure 4). ViT adopts the original Transformer struc-
ture from NLP with minor modifications. Taking flattened image patches as tokens via
appropriate feature embeddings, ViT only stacks the encoder blocks of vanilla Transformer
since there is no need to prevent leftward information flow in computer vision application.
A standard Transformer block is composed of a multi-head self-attention (MHSA) block
and a fully connected feed-forward network (FFN). The MHSA block is able to model
global relations with the help of self-attention characteristics, while the FFN is utilized for
linear transformation of feature representations, enhancing model non-linearity. Moreover,
these sub-layers are connected by residual connections and layer normalization to avoid
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gradient vanishing. In particular, given a feature sequence as input, the output of the nth
(n ∈ [1, 2, ..., N]) Transformer layer is calculated using Equation (1):

x′n = MHSA(LN(xn−1)) + xn−1,
xn = FFN(LN(x′n)) + x′n

(1)

where LN(∗) is the layer normalization, and xn is the output of nth Transformer layer.

Multi-Head 

Attention

Feed Forward

Layer Norm

Layer Norm

Masked Multi-

Head Attention

Feed Forward

Layer Norm

Layer Norm

Multi-Head 

Attention

Layer Norm

Linear

Input 

Embedding

Inputs

Positional 

Encodings

Outputs (Shifted right)

Positional 

Encodings

Output 

Embedding

Softmax

Outputs

Figure 4. Illustration of the vanilla Transformer architecture.

However, without strong local information extraction abilities of convolution oper-
ations, Transformers blocks are not capable of modeling local semantics efficiently. As a
result, it is intuitive that integrating Transformers and CNNs could achieve a complemen-
tary performance, which is the main task and will be explored in this paper.

3.2. Overall Architecture of UCTNet

The overall architecture of the proposed UCTNet is shown in Figure 5, which is a
well-designed U-shaped network using dual branch to extract image information and
achieve refined segmentation. The proposed network consists of two main parts, including
encoder and decoder. The encoder is composed of five stages, namely Stem, Enc1, Enc2,
Enc3. and Enc4. In particular, four Enc blocks extract hierarchical features from shallow,
fine stage (Enc1) to deep, coarse stage (Enc4). The decoder consists of five main blocks,
Dec1, Dec2, Dec3, FIFM, and AIFM, providing two prediction results based on the multi-
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level appearance information from the encoder. It is worth mentioning that, all blocks
except Stem in both encoder and decoder contain a CNN branch and a Transformer
branch to enhance global information awareness of network while retaining local details.
The green and orange arrows in this architecture represent CNN and Transformer branches,
respectively. C and D refer to the numbers of feature map channels and sequence feature
dimensions in CNN and Transformer branches. Furthermore, H and W denote the height
and width of the input image. Global perception capability of CNN branch is reinforced by
the global contexts of Transformer branch. Similarly, local features from CNN branch are
fed back to Transformer branch simultaneously, alleviating the issue of lack of spatial local
information in Transformer branch.

Stem

Encoder Block 1

Encoder Block 2

Encoder Block 3

Encoder Block 4

FIFM

Decoder Block 3

Decoder Block 2

Decoder Block 1

CE Loss CE Loss

Enc 1

Enc i (i≠1)

Dec j

1×1 Conv Patch Embed

2 2

H W
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Stem: 7×7 Conv + BN + ReLU C-Down: GAP + 1×1 Conv + BN + ReLU

T-Down: Patch Merging

C-Up: Bilinear Interpolation + 1×1 Conv + BN + ReLU

T-Up: Patch Expanding Skip connectionPatch Embed: 1×1 Conv + Flatten Concat + 1×1 ConvC

Encoder Decoder

Figure 5. Architecture of the proposed UCTNet by dual–flow approach.

The details of the encoder design are as follows. The encoder of UCTNet is divided
into 5 stages to extract shallow spatial information and deep semantic information, includ-
ing one Stem block and four Enc blocks, namely Enci (i = 1, . . . , 4). The Stem module
used to extract local features is a 7× 7 convolution with a stride of 2, followed by a Batch
Normalization (BN) layer and a ReLU activation function. Enc1 uses a 1× 1 convolution
and a Patch Embed process to generate the 2D and 3D features for CNN and Transformer
branches. In Patch Embed process, we use a 1× 1 convolution to change the channel
numbers to D and then flatten the feature map to a sequence of size HW/4× D. After that,
we use CTIM (detailed in Section 3.3) to make full use of CNN branch and Transformer
branch information since CNN branch provides local feature and location information
for the Transformer branch, and the Transformer branch provides global context informa-
tion for the CNN branch. Other Enc stages (Enc2, Enc3, and Enc4) have the same data
processing operations. In particular, the input of CNN branch in each stage has a size of
H/2i−1 ×W/2i−1 × 2i−2C (i = 2, 3, 4), and it passes through C-Down to change features
sizes. In C-Down process, we use a maximum pooling to reduce the resolution size by
four times and a 1× 1 convolution to double the number of channels. At the same time,
we adopt T-Down (patch merging in [27]) to convert the Transformer branch sequence
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characteristics from HW/2i × 2i−2D to HW/22i × 2i−1D. Then, the two branch features
are sent to CTIM for feature extraction and fusion.

After encoder processing, the obtained hierarchical features are sent to decoder for
dimension reduction and resolution restoration. The proposed decoder is composed of five
blocks, including Decj, FIFM (detailed in Section 3.4), and AIFH (detailed in Section 3.5),
where j = 1, 2, 3. As presented in Figure 5, all of the Dec blocks share the same architecture,
including CTIM module, C-Up, and T-Up operations, processing the features from encoders
in two branches. In addition, we utilize skip connections to combine encoder features in
the decoder, relieving the missing semantic information during encoder downsampling
operations. In particular, for C-Up process in Deci blocks, we use bilinear interpolation
to achieve a resolution conversion from H/25−j ×W/25−j to H/24−j ×W/24−j, and the
number of input channels is reduced from 24−jC to 23−jC via a 1× 1 convolution. Then,
the C-Up output is concatenated with the feature map generated via the CNN branch of
Enc(4− j) along the channel dimension. After that, another 1× 1 convolution is utilized to
restore the channel of integrated feature map to the previous size before skip connection.
In Transformer branch, T-Up (patch expanding in [32]) changes the input sequence size
from HW/45−j to HW/44−j firstly. Similarly, the T-Up output is concatenated with the
sequence characteristic generated via the Transformer branch in Enc(4− j) along the channel
dimension, and a linear layer is used to divide the number of tokens into half. After dual-
flow feature restoration, the results of these two branches are sent to CTIM for effective
fusion. Finally, a well-designed FIFM integrates the outputs of two branches in Dec3 to
obtain the final segmentation prediction of size H ×W × 3 (note: 3 refers to the number of
categories, including the background). In addition, we add AIFH in the outputs of Dec2
to generate another prediction result. These two prediction results are both utilized for
better feature learning capability of the proposed model, enhancing its ability to segment
the details of snow and clouds.

3.3. CNN and Transformer Integration Module Design

The structure of fusion module, namely CTIM is presented in Figure 6. CTIM uses
a parallel structure of CNN branch and Transformer branch to leverage local features
and global representations. In particular, CNN and Transformer branches pass through
Conv_Block and Trans_Block, respectively. Then, the output features of one branch are
transferred to the other branch for information fusion. For better integration of these
two branches, we proposed two fusion methods in our model, including a complex way
and a simple way. Most CTIMs adopt the simple way presented in Figure 6a, using only
dimensional conversion (reshape or flatten) to bridge CNN and Transformer. In addition,
the complex one is only used in Enc3 and Enc4 stages, and its structure are shown in
Figure 6b,c. In complex way for two-branch fusion, a 3× 3 depth-wise convolution or
a linear layer is applied to obtain the pixel-wise weights and then scaled via a sigmoid
function. By assigning pixel-wise weights to the input before dimensional conversion,
the complex way is capable of achieving the integration of deep features. After data
fusion, CNN and Transformer branches pass through another Conv_Block and Trans_Block,
obtaining outputs with the same dimensions as the input features. As the core module in
the proposed dual-flow network, CTIM not only constructs the global context dependency
but also enriches the local detail information, assisting model to segment snow and cloud
accurately. The details of CNN and Transformer branches in CTIM are described as follows.
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Figure 6. Structure of CTIM module to leverage local features and global representations.

3.3.1. CNN Branch in CTIM

CNN branch mainly consists of two bottleneck blocks (Conv_Block). Following the
definition in ResNet [33], a bottleneck block contains 1 × 1 convolution, 3 × 3 spatial
convolution, batch normalization (BN), and Relu activation function. In addition, a de-
signed residual connection is used to accelerate model convergence. In order to make up
for the lack of CNN’s global information modeling ability, the outputs of Conv_Block1
and Trans_Block1 are fused. Before fusion, dimensional conversion is first carried out
by reshaping the output of Trans_Block1 from Li × Di to Hi ×Wi × Di. Then, the con-
verted feature from Transformer branch is concatenated with the feature map generated via
Conv_Block1 in the channel dimension. After a 1× 1 convolution, the combined feature
map of size Hi ×Wi × (Ci + Di) has a channel dimension reduction from Ci + Di to Ci.
Finally, the feature map is sent to Conv_Block2 to obtain the output of CNN branch with
the size of Hi ×Wi × Ci. With the help of convolution kernels sliding over feature maps,
CNN branch could extract fine-detailed local features. In addition, by constructing the
aforementioned fusion of Transformer branch information, the crucial context information
for better classification performance could also be fully utilized.

3.3.2. Transformer Branch in CTIM

Similarly, the Transformer branch is composed of two Transformer blocks (Trans_Block).
It is worth mentioning that to reduce computational complexity, we replace the original
MHSA with an Efficient Multi-head Self-Attention (EMSA), which is proposed in [27]. Each
Trans_Block consists of layer normalization (LN), EMSA, residual connections, and feed-
forward network (FFN). Similar to CNN branch, the Transformer branch fuses the output
of Trans_Block1 with the local feature representations from Conv_Block1. In particular,
the output of Conv_Block1 is first flattened from Hi ×Wi × Ci to Li × Ci and then con-
catenated with the sequence feature generated via Trans_Block1 in the channel dimension.
We utilize a linear projection to reduce the integrated feature map dimension from size
Li × (Ci + Di) to Li × Di. Finally, the feature map passes through Trans_Block2 to obtain
the Transformer branch output. By introducing the Transformer structure, the network
enhances the ability to extract global information features. Moreover, in Transformer branch
design, we discard the original location encoding as the proposed architecture could obtain
the location information and local features from CNN branch, thus avoiding the limitation
of the fixed and inflexible input size when using location encoding. To be more clear,
the Transformer branch can be calculated using Equation (2)

t̂i1 = EMSA(LN(ti1)) + ti1 ,
t′i1 = FFN(LN(t̂i1)) + t̂i1 ,
ti2 = f (Concat(t′i1 , c̃i1)),
t̂i2 = EMSA(LN(ti2)) + ti2 ,
t′i2 = FFN(LN(t̂i2)) + t̂i2

(2)
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where i represents the ith stage, and n ∈ 1, 2 means which Trans_Block the variable is related
to. tin denotes the input of Trans_Blockn, and t̂in is the output of the EMSA in Trans_Blockn.
t′in denotes the output of Trans_Blockn, c̃i1 is the flattened output of Conv_Block1, LN(∗)
represents the layer normalization, and xn is the output of n-th Transformer layer. f (∗) is
the 1× 1 convolution for dimension reduction.

3.4. Final Information Fusion Module (FIFM) Design

As presented in Figure 7, the final information fusion module (FIFM) is proposed to
fuse the CNN and Transformer branch outputs and obtain the final segmentation results.
Both branch features (CNN and Transformer branches) pass through a linear layer and
a 1× 1 convolution, respectively. The Transformer branch features are reshaped to the
same spatial resolution as the CNN branch outputs, and these two branches results are
concatenated in channel dimension. Then, a subsequent 1× 1 convolution is utilized to
reduce the channels from D + C to C, and the output is upsampled two times via bilinear
interpolation to the size of original image. Finally, a 1× 1 class mapping convolution is
used to obtain the segmentation prediction of size H ×W × 3 (3 refers to the number of
categories, including the background, snow, and cloud).
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Figure 7. Structure of FIFM module to finally fuse CNN–Transformer branch information.

3.5. Auxiliary Information Fusion Head (AIFH) Design

The auxiliary information fusion head (AIFH), as shown in Figure 8, is designed
additionally for enhancing feature representations of stage Dec2. Similar to FIFM, we
concatenate Transformer branch and CNN branch in channel dimension. Furthermore,
a subsequent 1× 1 convolution is used to reduce the dimension from D + C to C. Then,
we use upsampling process followed by 1× 1 convolution operation twice to generate
an auxiliary segmentation map, which is used for CE loss calculation together with the
FIFM prediction map during model training, promoting the ability of feature learning in
this model.
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Figure 8. The structure of AIFH module to enhance feature representations of stage Dec2.

3.6. Loss Function Design

In the output of FIFM and AIFH, we calculate the Cross Entropy Loss (CEloss) as
a training loss function, which is a natural choice for image segmentation. In particular,
as presented Equation (3), CEloss is the sum of cross entropy terms for each pixel in the
output images and ground truth, where xi denotes the predicted map, and yi means the
labeled map.

CELoss(x, y) = −∑n
i=0 yi ∗ log(xi) . (3)

3.7. Experimental Settings

Our proposed UCTNet is implemented on the PyTorch platform and trained with
two high performance computing (HPC) resource NVIDIA RTX 2080 Ti GPUs. We trained
our method for 120 epochs using AdamW strategy [34], with a cosine decay learning
rate scheduler and 5 epochs of warm-up. An initial learning rate of 5× 105 , a weight
decay of 0.01, a momentum of 0.9, and a batch size of 16 are used. Regarding parameter
configuration of the UCTNet, we set C, D for the CNN and Transformer branches to 32.
In the Transformer branch, the dimensional change rate of the linear layer in the MLP is set
as 2, the number of EMSA heads in the four encoder stages (from Enc1 to Enc4) is set as 1, 2,
4, and 8, respectively. Meanwhile, the number of EMSA heads in the three decoder stages
(from Dec1 to Dec3) is 4, 2, and 1, respectively. The reduction ratio of the EMSA from Enc1
to Enc4 is set to 8, 4, 2, and 1. Correspondingly, the reduction ratio of the EMSA from Dec1
to Dec3 is set to 1, 2, and 4.

3.8. Performance Metrics

We evaluate the segmentation performance quantitatively using five commonly-used
metrics, including Precision, Recall, F1 score, Accuracy (ACC), and Intersection over Union
(IoU). These corresponding formulations can be seen in Equations (4)–(6).

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (4)

ACC =
TP + TN

P + N
, IoU =

TP
TP + FP + FN

, (5)

F1 = 2× Precision× Recall
Precision + Recall

. (6)

where P, N, T, and F are the abbreviations of positive, negative, true, and false pixels
in the prediction map, respectively. Particularly, True Positive (TP) denotes the correctly
predicted positive values; False Positive (FP) is the value where actual class is negative,
and the predicted class is positive; False Negative (FN) means the scenario where the
actual class is positive, but the predicted class is negative; True Negative (TN) is the truly
predicted negative values. mIoU denotes the average of all categories of the IoU, which
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describes the coincidence degree of labels and prediction outputs. We select mIoU as the
main evaluation criterion in our experiments since it is one of the most popular metric in
segmentation tasks. If the class is not indicated specifically, all metrics are the average of
the three classes’ results.

4. Results
4.1. Quantitative and Qualitative Result Analysis

First, we illustrate the performance of the proposed UCTNet on the previously stated
snow/cloud dataset. As shown in Table 2, a variety of methods are used for the performance
comparison, including commonly used segmentation methods and the specially designed
snow and cloud detection method (i.e., CSD-Net [35]). Segmentation methods could be
categorized into CNN-based methods (i.e., U-Net [36] and DeepLab-V3 [37]) and recently
proposed Transformer-based networks (i.e., ResT-Tiny [38] and Swin-Tiny [27]). In addition,
multiscale testing is also used as a common trick for performance improvement, and the
results are listed to have a comparison with other popular models. It is obvious that our
proposed method UCTNet is able to achieve the best performance in terms of all evaluation
metrics, where Precision, Recall, F1, ACC, and mIoU are 96.24%, 94.68%, 95.35%, 95.72%,
and 91.21%, respectively.

Table 2. Performance comparison with current popular methods, where the best performance is
highlighted in bold.

Methods Multiscale Testing Params (M) Precision (%) Recall (%) F1 (%) ACC (%) mIoU

U-Net X 13.40 95.74 92.97 94.03 94.58 88.91
DeepLab-V3 X 16.42 95.41 93.65 94.38 94.84 89.51

CSDNet X 8.66 96.10 93.67 94.63 95.17 89.97
Swin-Tiny X 29.25 95.10 93.10 93.92 94.35 88.67
ResT-Tiny X 11.30 95.65 93.70 94.50 94.92 89.70

UCTNet (ours) X 3.93 96.24 94.68 95.35 95.72 91.21

Compared with CNN-based networks, namely U-Net and DeepLab-V3, the mIoU of
UCTNet is increased by 2.30% and 1.70%. Moreover, these two Transformer-based methods
require loading pre-trained weight and position coding, while the Transformer branch in
our model could get rid of them with the CNN branch providing the required local feature
and location information. Therefore, as presented in the results of the last three lines, there
is a 2.54% and 1.51% increase in the mIoU compared with the two Transformer-based
methods. As a result, UCTNet could combine the advantages of CNN and Transformer,
thus enhancing the feature extraction ability. It does not require pre-trained weights, being
flexibly adjusted to different input sizes without the restrictions of position coding. Such a
conclusion can also be seen from a qualitative visualization in Figure 9. It can be found that
the proposed method is much better than other approaches in segmentation details for the
snow/cloud classification task. It is noticed that the multiscale testing strategy is only used
in this section. The following comparisons with different modules are with no multiscale
testing strategy.

4.2. Exploration on the Effectiveness of Two Branches Architecture

In order to verify the effectiveness of the proposed dual-flow architecture, we make
an ablation study to compare the results of the CNN branch (Only CNN), the Transformer
branch (Only Trans), and the dual-flow architecture (CNN+Trans) in the proposed UCTNet.
The results are shown in Table 3, where C → T and T → C refer to fusing the features
extracted via CNN in the Transformer branch and fusing the features extracted via Trans-
former in the CNN branch. Taking mIoU as the main evaluation reference, it can be first
seen that a single Transformer branch could obtain 89.72% mIoU, which is higher than the
result of single CNN branch, demonstrating the superior performance of Transformer archi-
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tecture in this particular task. However, by using the dual-flow architecture, the network
could increase the mIoU score up to 90.56%, demonstrating that CNNs and Transformers
can complement each other to improve model performance.

(d) DeepLab-V3 (g)ResT-Tiny(f)Swin-Tiny(c)U-Net(a) Input (b) Ground truth (h)UCTNet(ours)

SnowCloudBackground

(e)CSDNet

Figure 9. Visualization of segmentation results by different models.

Table 3. Exploration on the effectiveness of the two-branch architecture.

Methods C→ T T→ C Precision (%) Recall (%) F1 (%) ACC (%) mIoU (%)

Only CNN - - 95.47 92.56 93.66 94.21 88.28
Only Trans - - 95.48 93.81 94.51 94.9 89.72

CNN + Trans

95.3 93.06 93.96 94.39 88.76
X 95.71 93.48 94.37 94.83 89.49

X 95.42 93.15 94.05 94.52 88.93
X X 95.94 94.27 94.97 95.37 90.56

Moreover, as shown in the last four lines, we conduct further experiments to evaluate
the necessity of the mutual integration of these two branches. Compared with the dual-flow
structure without feature fusion, the utilization of T→ C and C→ T structure in two-branch
fusion increases the mIoU scores by 0.73% and 0.17% respectively, showing that information
integration is significant for CNN and Transformer branch performance. It is notable that
the results of only using the Transformer branch is even better than these two branches
structure for one-way fusion (T→ C) and no fusion methods. This is because these two
branch outputs in Dec2 and Dec3 need to be fused in the FIFM and AIFH modules to
generate the final prediction map, but the large difference between branch features caused
by no fusion or one-way fusion in the previous CTIM makes it difficult for these two
modules to segment precisely. As a result, we can conclude that the dual-flow structure is
capable of combining CNN and Transformer information for better fusion, and the CTIM
fusion block makes full use of local and global features, effectively improving the final
segmentation accuracy.
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4.3. Exploration on Location Setting of the Complex Ctim

An ablation study is conducted to explore the adequate location of the complex CTIM.
We select different types of CTIM (the simple or the complex one) for seven fusion modules
at the corresponding positions of encoders and decoders to generate features, including
local details and global contexts. For the scores in Table 4, 1©, 2©, and 3© represent Enc1
and Enc2; Enc3 and Enc4; and Dec1, Dec2, and Dec3, respectively. “X” means that the
simple CTIM is replaced by the complex version in this position. The details of a simple
or complex CTIM are introduced in Section 3.3. As presented in the first line of Table 4,
using simple CTIM in all stages to fuse features could not leverage the full advantages
of the CNN and Transformer, which only reaches a score of 89.28% in the mIoU. When
using the complex CTIM to obtain a better integration of information, lines 5, 6, and 8 show
that the performance may not be improved if the complex CTIM is placed in an arbitrary
position, resulting in an even worse result. Compared with the results obtained via the
structure using only simple CTIM in line 1, selecting complex CTIM in 2© could increase
the mIoU by 1.28%, which is also the most suitable settings for CTIM. However, choosing
the complex CTIM in both 2© and 3© leads to a 0.49% decrease in the mIoU score shown in
line 4. The comparisons indicate that using the complex CTIM in the encoder deep stages
(Enc3 and Enc4) is enough for network to make the most use of dual-flow information,
which could also be demonstrated in the results of line 5 and line 7. It shows that the
complex CTIM used in Enc3 and Enc4 and Dec1, Dec2, and Dec3 could not make further
improvements than the complex connection used in Enc3 and Enc4.

Table 4. Ablation study on the location setting of the complex CTIM.

Methods Position of the Complex CTIM Precision (%) Recall (%) F1 (%) ACC (%) mIoU (%)1© 2© 3©

UCTNet

95.46 93.4 94.23 94.75 89.28
X 95.66 93.64 94.46 94.93 89.67

X 95.94 94.27 94.97 95.37 90.56
X X 95.78 93.92 94.69 95.14 90.07

X 95.57 92.92 93.94 94.52 88.79
X X 95.57 93.22 94.15 94.65 89.12
X X 95.54 93.79 94.52 94.94 89.75
X X X 95.36 93.12 94.01 94.53 88.89

4.4. Exploration on Position Encoding of the Transformer Branch

Next, we conduct an ablation experiment to analyze the impact of different positional
encodings (PEs) used for the Transformer branch in CTIM. Four kinds of positional en-
coding strategies are utilized for comparisons, including without PE (w/o PE), absolute
PE, learnable PE, and convolutional PE (using a pixel-wise attention module to encode
positions [38]). The experimental results are shown in Table 5. It can be found that using
CTIM without PE could achieve the best scores of the four evaluation metrics and adding
the absolute PE leads to a slight drop in the results. Meanwhile, it can be observed that there
is a considerable gap in the performance between the networks using two kinds of learnable
PE (learnable PE and convolutional PE) and the network without PE, dropping by 1.23%
and 0.99% mIoU, respectively. In a word, the accuracy of the model is reduced after adding
PE. As a consequence, it is believed that this is because the CNN branch could obtain local
features and position information, making up for PE in the traditional Transformer model.
Therefore, the Transformer branch in our model could discard PE, avoiding the limitation
of fixed input size and achieving a better capability of spatial feature extraction.
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Table 5. Ablation study on different designs for positional encodings of the Transformer branch.

Methods Precision (%) Recall (%) F1 (%) ACC (%) mIoU

absolute PE 95.84 94.21 94.9 95.32 90.44
learnable PE 95.49 93.43 94.27 94.75 89.33

convolutional PE 95.66 93.56 94.41 94.88 89.57
w/o PE 95.94 94.27 94.97 95.37 90.56

4.5. Exploration on the Effectiveness of AIFH

In this paper, we additionally proposed AIFM to integrate the dual-branch outputs
of Dec2, improving the feature integration and feature modeling capabilities of UCTNet.
As seen in Table 6, with the help of AIFH, our model could increase the Precision, Recall,
F1, ACC, and mIoU scores by 0.05%, 0.19%, 0.14%, 0.14%, and 0.25% respectively, showing
that the application of the auxiliary head to the two-branch architecture could improve the
performance to some extent.

Table 6. Ablation study on the effectiveness of AIFH.

Methods AIFH Precision (%) Recall (%) F1 (%) ACC (%) mIoU

UCTNet 95.89 94.08 94.83 95.25 90.31
X 95.94 94.27 94.97 95.37 90.56

5. Discussion

The dual-flow UCTNet presented in Section 3 show better performance than previous
methods in terms of Precision, Recall, F1 score, ACC, and mIoU on the collected snow/cloud
dataset. Taking mIoU as the main evaluation criterion, the proposed UCTNet increases
by 2.30% and 1.70% compared with CNN-based networks (i.e., U-Net and DeepLab-
V3). Moreover, our method is 2.54% and 1.51% higher than previous Transformer-based
approaches (i.e., ResT-Tiny and Swin-Tiny). By leveraging the local and global feature
modeling ability of CNNs and Transformers, our UCTNet also increases the mIoU by 1.24%
than the specially designed snow and cloud detection method (i.e., CSD-Net). In addition,
extensive ablation experiments are conducted on the two-branch architecture, local–global
fusion approach, position encoding for the Transformer branch, and the well-designed
AIFH, further verifying the superiority of the proposed method.

There are still some issues worthy of investigation when the proposed method is
utilized in practical scenarios. For example, the spatial resolution of the Sentinel-2 satellite
is approximately 10 m. Therefore, certain pixels (especially those at the boundaries of
different classes) actually constitute mixed spectral information of several surface classes.
Furthermore, extremely small proportions of clouds and snow coverage within pixels
cannot be effectively identified. Consequently, the classification performance concerning
the aforementioned issues yields unsatisfactory outcomes. Our method can solve these
problems when training on datasets with elevated spatial resolution.

6. Conclusions and Future Work

This paper investigates the challenging task of snow/cloud classification, which is
important for land-cover classification and precision agriculture. A dual-flow U-shaped
framework named UCTNet is proposed to integrate CNNs and Transformers in discrim-
inating snow and clouds. In particular, the CTIM module is designed to integrate the
CNN branch and Transformer branch to take advantage of local features and global repre-
sentations concurrently; FIFM is proposed to fuse CNN and Transformer branch outputs
and obtain the final segmentation results. Moreover, the AIFH module is designed ad-
ditionally for enhancing feature representations of stage Dec2. All of the methods are
validated on a real dataset collected via Sentinel-2 satellite for snow/cloud classification.
For performance evaluation, the proposed algorithm is compared to various CNN- and
Transformer-based methods, yielding the best segmentation performance in terms of ac-
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curacy (95.72%) and mIoU score (91.21%) while with the smallest model size (3.93 M).
In addition, these different modules are also verified in the ablation study to explore which
kind of combination/module is the best for our particular problem.

Although the results in this study are quite promising, there is still room for further
development. First, the dataset limits the performance of the proposed model. An entire
dataset with more labeled samples and more diverse textures of snow and clouds could
be established for a highly accurate evaluation. Meanwhile, a strong feature integration
module is expected to be designed for better fusion in this proposed architecture.
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