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Abstract: To obtain more building surface information with fewer images, an unmanned aerial
vehicle (UAV) path planning method utilizing an opposition-based learning artificial bee colony
(OABC) algorithm is proposed. To evaluate the obtained information, a target information entropy
ratio model based on observation angles is proposed, considering the observation angle constraints
under two conditions: whether there is an obstacle around the target or not. To efficiently find the
optimal observation angles, half of the population that is lower-quality generates bit points through
opposition-based learning. The algorithm searches for better individuals near the bit points when gen-
erating new solutions. Furthermore, to prevent individuals from observing targets repeatedly from
similar angles, the concept of individual abandonment probability is proposed. The algorithm can
adaptively abandon similar solutions based on the relative position between the individual and the
population. To verify the effectiveness of the proposed method, information acquisition experiments
were conducted on real residential buildings, and the results of 3D reconstruction were analyzed. The
experiment results show that while model accuracy is comparable to that of the comparison method,
the number of images obtained is reduced to one-fourth of the comparison method. The operation
time is significantly reduced, and 3D reconstruction efficiency is remarkably improved.

Keywords: UAV; artificial bee colony; opposition-based learning; information acquisition; path planning

1. Introduction

Unmanned aerial vehicles (UAVs) possess various advantages such as high flexibil-
ity and maneuverability, and have gradually become an important emerging equipment
for earth observation [1–4]. The absence of planned flight paths may result in low field
work efficiency and poor performance. Therefore, it is necessary to perform UAV path
planning when utilizing UAVs to obtain surface information of target buildings. Tradi-
tional UAV path planning methods mainly focus on applications such as searching or
tracking of ground targets [5–7], and shortest path planning under certain conditions [8,9],
while there is a lack of research on how to efficiently obtain the surface information of
targets. Efficient information acquisition can obtain a variety of attribute information of the
target building, such as appearance texture, geographical location, and height; addition-
ally, it is considerably beneficial to obtain surface information for 3D reconstruction and
object detection.

To collect information from the surface of target buildings as much as possible with
fewer images, a UAV path planning method utilizing an opposition-based learning artificial
bee colony algorithm is proposed.

Firstly, we discuss the observation angle constraints of UAV flight. Then, a target
information entropy ratio model based on observation angles is established to evaluate
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images captured by UAVs. To optimize the UAV flight route, heuristic algorithms, which
are widely used in UAV path planning [10–13], are considered. Among those heuristic
algorithms [14–18], the artificial bee colony (ABC) algorithm is characterized by simple
parameter settings and a strong global search ability, making it particularly suitable for
UAV path planning [19–23]. However, the ABC algorithm has certain drawbacks, such
as susceptibility to local optima, and extremely simple scout bee activation mechanism.
Researchers have made many improvements to the ABC algorithm. Li introduced a
balanced evolution strategy (BES) that utilized convergence information in the iterative
process to improve the algorithm’s search accuracy [24]. Li et al. introduced inertia weight
and acceleration coefficients based on particle swarm optimization, which improved the
convergence speed of the algorithm [25]. Chang Lu et al. combined bidirectional planning
mechanisms, random search algorithms, and swarm intelligence algorithms to achieve
coordinated path planning for UAVs, shortening the search time [26]. Zhu and Kwong [27]
proposed a globally guided ABC algorithm inspired by the particle swarm optimization
(PSO) algorithm. The algorithm incorporates global best solution information into the
search equation to improve convergence performance and development efficiency. Hu
and Deng [28] presented an optimal local-guided solution search strategy to balance
exploration and exploitation during the search process of the new algorithm. Meanwhile,
the global local search replaces the original random method with the scout bee phase to
preserve performance. Guo and Cheng [29] introduced a globally artificial bee colony
search algorithm that improves convergence performance and solution quality by merging
the position information of the historical optimal food sources of all employed bees into
the search equation of the solution. Xiang and Meng [30] introduced Newton’s universal
law of gravitation into the selection and search equations of onlooker bees to compensate
for the insufficient exploitation ability. Zhao et al. [31] proposed a chaotic search algorithm
that combines taboo search and the artificial bee colony algorithm.

These algorithms have improved the convergence speed of the algorithm to some
extent, but their solution space is usually independent of observation angles, and the
observation of building surfaces is not considered. Therefore, vague opposition-based
learning is introduced into the ABC algorithm. The population is divided into two groups
according to the quality of the solutions. The group of lower quality generates vague
bit points based on the geometric center of the target, and then the algorithm searches
for better solutions near the bit points. The introduction of the vague opposition-based
learning mechanism extends the search area in multidimensional space, improving the
convergence speed. The algorithm now has more chances to escape from local optima.
Furthermore, in order to prevent the population from observing the target building from
similar angles repeatedly, an adaptive individual abandonment probability is proposed.
The probability evaluates the impact of each individual on population diversity. Instead
of a simple constant, the probability varies according to the relative position between the
individual and the population. With this, the algorithm is able to determine whether to
abandon the individual and search for new individuals adaptively.

The main contributions of this paper are as follows:

1. A target information entropy ratio (IER) model based on observation angles is es-
tablished. Considering the constraints on flight, IER is an index of information loss,
which is a function of observation angles.

2. An opposition-based learning ABC algorithm is proposed. By introducing the concept
of vague opposition-based learning into the ABC algorithm, the algorithm is able to
search a larger solution space with high-quality solutions preserved.

3. The activation mechanism of the scout bees has been upgraded. The novel mechanism
is based on the individual’s relative position to the population, allowing the scout
bees to adaptively abandon the individual.

The rest of this paper is organized as follows: the multi-angle target information
acquisition and analysis model is constructed in Section 2. A detailed description of the
proposed algorithm is presented in Section 3. The comparison and analysis of the results
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with other algorithms are presented in Section 4. Finally, the conclusions are drawn in
Section 5.

2. Problem Definition

In order to obtain information of building surfaces efficiently, several observation
waypoints are utilized to set flight routes. Waypoints can be described by three parameters:
distances from the target, the relative azimuth angles (RAA), and the relative depression
angles (RDA). RAA and RDA are defined in Section 2.1. On the other hand, distance
from the target is less important than RAA and RDA, as the only requirement is that the
waypoints should not be too far or too close to the target building. In other words, the
distance of a waypoint can have a wide range of choices. Therefore, observation angles are
the primary factor to consider.

2.1. Definition of Drone Observation Angles

The definitions of UAV observation angles are as follows: establish a three-dimensional
Cartesian coordinate system with the ground center of the target building as the coordinate
origin, the north direction as the X-axis, the horizontal direction perpendicular to it as the
Y-axis, and the vertical direction as the Z-axis. Assume that the observation direction vector
of the UAV sensor is VS, which points from the imaging center of the sensor to the ground
center of the target all the time. The ground center position of the target can be determined
by previous positioning and detection. Since the ground center position of the target is
known, the position of each waypoint can be determined by RAA and RDA. The definition
and schematic diagram of RAA and RDA are shown in Figure 1.
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Figure 1. Schematic diagram of RAA and RDA. 

  

Figure 1. Schematic diagram of RAA and RDA.

The relative azimuth angle θ is defined as the angle between the projection vector
of VS on the horizontal plane and the positive direction of the X-axis. The value range is
[0, 90] with a unit of degrees (◦). When viewed from the positive half-axis of the Z-axis to
the XOY plane, the angle increases counterclockwise.

The relative depression angle ϕ is defined as the angle between VS and its projection
vector on the horizontal plane. The value range is [0, 90] with a unit of degree (◦). When
viewed from the positive Y-axis of the XOZ plane, the angle increases counterclockwise.

2.2. Analysis of Constraints for UAV Observations
2.2.1. Constraints on RDA

The RDA is a key parameter in the acquisition of information for target buildings.
According to the definition in Section 2.1, an angle of 90◦ is a vertical observation. When
considering the UAV’s RDA, environmental factors also need to be taken into account.
The UAV’s RDA is considered in two cases. They are discussed below and the schematic
diagram of each case is shown in Figure 2.
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(a) When the surroundings of the target building are spacious without other tall
buildings or obstructions, the UAV can perform multi-altitude circumnavigation flights
around the target building. The range of values for RDA is:

ϕmin ≤ ϕ ≤ 90
◦

(1)

For safety reasons, the UAV will not fly too close to the ground. To avoid collisions
with obstacles such as trees on the ground, the minimum value of the RDA ϕmin should be
limited to a small value.

(b) When there are other tall buildings or facilities around the target building, the
UAV cannot perform multi-altitude circumnavigation flights. The minimum flight height
of the UAV should not be less than the height of the target building itself or the highest
surrounding buildings. In this case, the range of values for the RDA is: ϕmin ≤ ϕ ≤ 90

◦
.

2.2.2. Constraints on RAA

The constraints on RAA are usually caused by environmental factors. In case a, the
UAV can fly around the target buildings without obstructions, and therefore the range of
values for RAA is: 0◦ ≤ θ ≤ 360◦. In the other case, the RDA is no less than 45◦,which
means that the UAV should fly above the highest building around. In other words, the
range of values for RAA is still: 0◦ ≤ θ ≤ 360◦.

2.3. A Multi-Angle Target Information Acquisition Model

In order to reasonably evaluate the quality of the surface information, assume that the
sensor observes the target A at the angle (θ, ϕ), which can be described by a vector G(θ, ϕ,
TS) composed of all N surfaces (m top surfaces, n side surfaces, N = n + m). G is shown in
the following equation:

G(θ, ϕ) = [IF1(θ, ϕ, TS_1), IF2(θ, ϕ, TS_2), · · · , IFN−1(θ, ϕ, TS_N−1), IFN (θ, ϕ, TS_N)] (2)

where IFi (θ, ϕ, TS_i) (i = 1, 2,. . ., N) represents information acquired of the ith surface by
the sensor. IFi (θ, ϕ, TS_i) is considered as a function of the sensor’s RAA, RDA, and the
orientation of the target face. Based on the analysis of the angle constraints factors in the
previous text, the orientation of the target surface can be represented as (θs_i, ϕs_i), where
θs_i ∈ [0◦, 360◦], ϕs_i ∈ [−90◦, 0◦]. The information acquisition situation of the current
surface can be expressed as follows:

IFi (θ, ϕ, TS_i) =

{
IFi (θ − θS_i, ϕ− ϕS_i), θ − θS_i ∈ (−270

◦
,−90

◦
) ∪ (90

◦
, 270

◦
)

0, otherwise
(3)

The equation means that information can only be obtained when the sensor observes
the target surface within a 180-degree range. Otherwise, no information can be obtained.
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Considering the information acquisition of a single surface from different observation
angles, a statistical model based on the image entropy ratio (IER) is proposed to evaluate
the information quantity. The IER of a certain surface of the target is defined as follows:

IER(α, β) =

∣∣∣∣E(α, β)− Eort

Eort

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
−

k
∑

i=1
Pαβ_i log2(Pαβ_i) +

k
∑

i=1
Port_i log2(Port_i)

−
k
∑

i=1
Port_i log2(Port_i)

∣∣∣∣∣∣∣∣∣ (4)

where α and β respectively refer to the horizontal deviation angle and the vertical devi-
ation angle between the observation direction and the observed surface. α = |θ − θs|,
β = |ϕ − ϕs|. Eort represents the entropy of the frontal view of the observed surface, and
E(α, β) represents the entropy of the tilted view at the corresponding viewing angle. Pαβ_i
and Port_i represent the distribution probabilities of each gray level in the two images. Ob-
viously, IER is a dimensionless ratio that measures the difference between the information
obtained at different viewing angles and the information of the frontal view image. The
value range of IER is [0, 1]. The closer IER is to 0, the less information is lost. When IER = 1,
there is no information acquired. Let IER(α,β) = 1 − IFi (θ, ϕ, TS_i), which can be used to
describe the information loss rate of the observed surface at the viewing angle (θ, ϕ). Due
to the existence of occlusion, only when α is between 90◦ and 270◦, IER(α, β) 6= 1. The
goal function is to find the minimum IER of all surfaces; therefore, all solutions that make
IER = 1 are abandoned in the process of iteration. The trend of IER is that the observation
angle is closer to the front view, the corresponding IER(α, β) value is smaller.

Furthermore, if a multi-angle observation method based on K points is used to observe
the target, the information acquired of each observation point can be represented by a
matrix PK×N:

P =


GRS1 (θ1, ϕ1, TS_i)
GRS2 (θ2, ϕ2, TS_i)

...
GRSK−1 (θK−1, ϕK−1, TS_i)

GRSK (θK , ϕK , TS_i)

 =


IS1 (θ1, ϕ1, TS_1), IS2 (θ1, ϕ1, TS_2), . . . , ISN−1 (θ1, ϕ1, TS_N−1), ISN (θ1, ϕ1, TS_N)
IS1 (θ2, ϕ2, TS_1), IS2 (θ2, ϕ2, TS_2), . . . , ISN−1 (θ2, ϕ2, TS_N−1), ISN (θ2, ϕ2, TS_N)

...
IS1 (θK−1, ϕK−1, TS_1), IS2 (θK−1, ϕK−1, TS_2), . . . , ISN−1 (θK−1, ϕK−1, TS_N−1), ISN (θK−1, ϕK−1, TS_N)

IS1 (θK , ϕK , TS_1), IS2 (θK , ϕK , TS_2), . . . , ISN−1 (θK , ϕK , TS_N−1), ISN (θK , ϕK , TS_N)

 (5)

Normally, multiple points may simultaneously observe a certain surface, and the
IFi (θ, ϕ, TS_i) quality of each observation point corresponding to that surface may not be
the same. Therefore, the minimum IER is selected to evaluate the information loss. The
information loss ∆ of the target observed by the K observation point method is:

∆ = ∑ minIER(α, β) =
N

∑
i=1

min[1− IFi (θ − θS_i, ϕ− ϕS_i)] (6)

which is the Adequacy Evaluation Model for Multi-angle-based Stereo Information Acqui-
sition (AE-MSIA model).

To obtain IER, a UAV remote sensing observation target simulation system is built.
Firstly, images of the simulation target at different angles are obtained. The resolution of
the simulation image is 0.5 m/pixel. In the simulation system, RAA θ is sampled every
3◦ within 1◦~360◦ (124 angles), and RDA ϕ is sampled every 3◦ within 0◦~90◦ (30 angles).
The images at 3720 angles are obtained. The IER values of the corresponding angles are
calculated, and then we use polynomial curve fitting to acquire the relationship between
IER and RAA and RDA. The mean square error of fitting is 0.01. Figure 3 gives examples
of simulated images at four different viewing angles. As the figure shows, there are five
surfaces of a target. At different viewing angles, the surfaces that can be seen are different,
and the IER obtained is different.
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3. Proposed Method
3.1. Artificial Bee Colony Algorithm

The ABC algorithm is an algorithm that simulates the foraging behavior of bees, which
was proposed by Dervis Karaboga et al. in 2005 [32]. When performing the foraging
task, bee colonies are divided into three roles: employed bee, onlooker bee, and scout
bee (abbreviated as E-bee, O-bee, and S-bee). E-bees are mainly responsible for global
optimization; O-bees are mainly responsible for fine-grained local search in the neighbor-
hood of the various solutions found by E-bees; and S-bees are used for initialization and to
generate new solutions to prevent the algorithm from getting stuck in local optima after
an individual has not been updated for multiple iterations. While the bee colony seeks to
obtain the maximum amount of nectar, the ABC algorithm searches for the variable vector
corresponding to the minimum value of the objective function.

3.2. Opposition-Based Learning Artificial Bee Colony Algorithm

The ABC algorithm excels due to its simple parameter settings and fast convergence
speed. However, it is still easy for the algorithm to fall into local optimal solutions. In
order to solve this problem, this paper proposes an improved ABC algorithm utilizing an
opposition-based learning mechanism.

3.2.1. Opposition-Based Learning Mechanism

Rahnamayan and colleagues [33] first proposed the concept of opposition-based
learning; here are some of the basic concepts:

For a given x ∈ [a, b], its bit point x′ is defined as:

x′ = a + b− x (7)

Similarly, there are bit points for points in multidimensional spaces as well:
Assume X = (x1, x2, · · · , xD) is a point in a D-dimensional space, where xi ∈ [ai, bi];

then, for the bit point X′ = (x′1, x′2, · · · , x′D), its components are x′i = ai + bi − xi.
Assume X = (x1, x2, · · · , xD) is a point in a D-dimensional space, where xi ∈ [ai, bi];

then, for the vague bit point X′v = (x′v1, x′v2, · · · , x′vD), its components are x′vi = rand(0, 1)
(ai + bi)− xi.

As Figure 4 shows, the traditional opposition-based learning mechanism generates bit
point X′, which can be seen as a point symmetrical about the geometric center of the space
in a multidimensional space. Instead of a certain location, vague opposition-based learning
introduces randomness. The new vague bit point is generated within a random range (the
shaded part of Figure 4). The advantage of the new mechanism is expanding the selection
range in the multidimensional space.
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Introducing vague bit points to the ABC algorithm optimizes the E-bees’ search for
new solutions. In the traditional ABC algorithm, after completing the current iteration,
the offspring bees conduct a local search to generate new solutions. After introducing the
opposition-based learning mechanism, the algorithm evaluates the quality of all individuals
in the current population—which means all solutions found in the current search—in terms
of their profits. It selects SN/2 individuals with lower profits to perform vague bit point
operations and calculates their profits. The algorithm selects the next generation with
higher quality. The introduction of bit points improves the quality of the initial solutions in
the next generation, and only half of the population with lower profits undergoes bit point
operations. This retains the algorithm’s complexity with higher-quality solutions, without
requiring more resources. The opposition-based learning generally used to generate bit
points is:

x′vij = minj + maxj − xvij + rand(−R, R)(minj + maxj) (8)

where xij represents the jth dimension of the ith individual in the population, and minj
and maxj represent the minimum and maximum values of the search range for the jth
dimension. R is a parameter used to control the range of vague opposition-based learning.
To keep the individual within the search area as much as possible, R = 0.125.

3.2.2. Improved S-Bee Search Mechanism

During the S-bee search phase, it is meant to discard a solution after it has remained
unchanged for a predetermined constant limited number of consecutive generations. This
is to enhance the algorithm’s global search capabilities to ensure that the algorithm does
not prematurely converge to a local optimum. However, setting the limit as a constant can
lead to many drawbacks:

(1) It is difficult to find a unified standard for the parameter limit for different op-
timization problems. An improper setting of the limit may affect the algorithm’s global
search capabilities.

(2) Discarding solutions directly may also discard some high-quality solutions.
Therefore, it is unreasonable to only consider the number of times a solution has not

been updated without considering its fitness value. Based on these reasons, the following
improved method is used for the search and judgment of the S-bee:

For a population of N individuals, each individual is represented by a D-dimensional
vector: xij =

{
xi1, xi2, · · · · · · , xij, · · · · · · xiD

}
, j = 1, 2, · · · · · · , D, i = 1, 2, · · · · · · , N.

In order to measure population diversity, the center of the jth dimension of the solu-
tions is defined as:

xj =
1
N

N

∑
i=1

xij (9)
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The individual abandonment criterion is defined as follows:

Espi =
triali
disi

(10)

where triali represents the number of unchanged times of individual Xi, and disi rep-
resents the impact of the individual on population diversity, and is calculated by the
following equation:

disi =
1
D

D

∑
j=1

∥∥xij − xj
∥∥ (11)

As the equation shows, disi measures the individual’s impact on population diversity.
The larger disi is, the larger the distance that the individual is from the center of the

population, and the more unique the individual is. On the other hand, Espi takes both the
number of times a solution has not been updated and the individual’s impact on population
diversity into account. A larger Espi means a higher probability that the individual will
be discarded.

The individual abandonment probability (IAP) is defined as follows:

Pi =
Espi −Min(Espi)

Max(Espi)−Min(Espi)
(12)

When abandoning solutions, a comparison is made between Pi and rand (0, 1). If Pi is
greater, it means that the solution should be abandoned and the S-bees will search for a new
solution. Through the individual abandonment probability, individuals that contribute
highly to the diversity of the population are preserved, enhancing the population diversity.
With it, individuals do not gather in large numbers on some particular locations. In other
words, it can prevent a large number of waypoints from observing the target from similar
angles. This also makes the activation mechanism of the scout bees adaptive.

The process of OABC is shown in Figure 5.
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4. Experiment
4.1. Controlled Experiment
4.1.1. Experiment Design

Given the significant difference in the range of RDAs in the presence and absence
of obstructions around the target buildings, the controlled experiment was divided into
two scenes for discussion.

Scene 1: There are obstructions around the target building.
The RDA range for flight is: 30

◦ ≤ ϕ ≤ 90
◦

Scene 2: There are no obstructions around the target building.
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The RDA range for flight is: 5
◦ ≤ ϕ ≤ 90

◦

To demonstrate the superior performance of the OABC algorithm, it was compared
with the ABC algorithm, ant colony optimization (ACO) algorithm, evolutionary algorithm
(EA), and two enhanced ABC algorithms. The first one is from reference [28], abbrevi-
ated as ABC1, and the second one is from reference [34], abbreviated as ABC2. These
two algorithms are relatively new and have been proven to have good performance. The
algorithms were tested in two scenes with the same population size, run for 1000 itera-
tions each, and repeated 50 times. The mean, standard deviation, and average runtime of
iteration results were calculated for each algorithm.

4.1.2. Experiment Results

Scene 1: There are obstructions around the target building.
In a certain iteration, 25 waypoints were generated, and the route set by them is shown

in the following Figure 6. The statistical results of 50 experiments are shown in Table 1.
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Table 1. Comparison of algorithms performance as the population size varied in Scene 1.

Population Size Algorithm Mean Std Time (s)

10

EA 3.6854 0.1352 56.17
ACO 1.9787 0.0368 53.18
ABC 1.5870 0.0358 51.33
ABC1 1.3406 0.0271 53.01
ABC2 1.2696 0.0289 48.62
OABC 1.2313 0.0154 46.98

20

EA 3.425 0.1277 87.59
ACO 1.8390 0.0423 71.63
ABC 1.4135 0.0312 73.88
ABC1 1.3048 0.0229 73.94
ABC2 1.2501 0.0247 79.16
OABC 1.2309 0.0124 66.51

30

EA 3.1183 0.1049 123.88
ACO 1.7581 0.0364 121.68
ABC 1.3537 0.0291 127.80
ABC1 1.2425 0.0119 126.36
ABC2 1.2310 0.0202 124.97
OABC 1.2309 0.0103 104.32
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Table 1. Cont.

Population Size Algorithm Mean Std Time (s)

50

EA 2.8609 0.1124 348.98
ACO 1.6872 0.0387 215.08
ABC 1.3431 0.0272 226.95
ABC1 1.2356 0.0119 209.64
ABC2 1.2309 0.0182 199.02
OABC 1.2310 0.0112 175.94

100

EA 2.5439 0.0847 580.61
ACO 1.4598 0.0301 422.50
ABC 1.2315 0.0243 450.13
ABC1 1.2310 0.0089 426.98
ABC2 1.2309 0.0104 412.52
OABC 1.2308 0.0092 384.39

Bold numbers represent the best result in the corresponding section. So are the rest of the tables.

As can be seen from Figure 7, when the population size was small (less than 20), the
OABC algorithm outperformed the other algorithms. The mean and standard deviation
of OABC were lower than any other algorithm. The mean of ABC2 was very close to that
of OABC, which was only 0.7% higher. However, the standard deviation of ABC2 was
40% larger than that of OABC. It is demonstrated that OABC algorithm can converge to
the optimal solution stably with less sources. When the population size was large, the
performances of OABC, ABC1, and ABC2 were very similar. However, OABC algorithm
took 7% less time than ABC2 and 11% less time than ABC1. In conclusion, the OABC
algorithm is able to converge to the optimal solution more quickly and stably than the
other algorithms.
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Scene 2: There are no obstructions around the target building.
In a certain iteration, 23 waypoints were generated, and their distribution is shown in

Figure 8. The statistical results of 50 experiments are shown in Table 2.
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Table 2. Comparison of different algorithms as the population size varied in Scene 2.

Population Size Algorithm Mean Std Time (s)

10

EA 2.1192 0.1488 59.64
ACO 0.9463 0.0618 53.49
ABC 0.7732 0.0472 52.97
ABC1 0.7763 0.0366 49.32
ABC2 0.6289 0.0291 47.40
OABC 0.6051 0.0209 47.96

20

EA 1.8970 0.1358 89.84
ACO 0.9234 0.0589 81.06
ABC 0.7156 0.0433 82.58
ABC1 0.6949 0.0315 77.20
ABC2 0.6593 0.0256 75.98
OABC 0.6050 0.0182 73.44

30

EA 1.2312 0.1586 178.48
ACO 0.8865 0.0378 137.29
ABC 0.6954 0.0395 142.65
ABC1 0.6617 0.0292 126.89
ABC2 0.6201 0.0226 102.76
OABC 0.6049 0.0136 102.88

50

EA 0.9873 0.0973 354.36
ACO 0.7839 0.0423 229.10
ABC 0.6723 0.0250 262.16
ABC1 0.6130 0.0217 218.22
ABC2 0.6050 0.0127 194.61
OABC 0.6049 0.0129 173.20

100

EA 0.9857 0.0925 572.65
ACO 0.6982 0.0247 461.60
ABC 0.6154 0.0187 484.73
ABC1 0.6050 0.0151 462.53
ABC2 0.6049 0.0130 377.52
OABC 0.6048 0.0127 343.85
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The situation in Scene 2 has many similarities to Scene 1. When the population size
was small, the mean and standard deviation of OABC were lower than any other algorithm,
which is indicated in Figure 9a,b. As Figure 9c shows, although OABC and ABC2 consumed
almost the same amount of time, the mean of ABC2 was 9.8% higher than that of OABC,
and the standard deviation was 40.6% higher. When the population size was large, all
enhanced ABC algorithms could converge to the optimal solution, but OABC was still
10% faster than the fastest algorithm of the others. In conclusion, in both Scene 1 and
Scene 2, the OABC algorithm was able to converge to the optimal solution more quickly
and stably than the other algorithms.
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4.2. 3D Reconstruction Experiment
4.2.1. Experiment Design

To demonstrate that the OABC algorithm obtains more comprehensive building target
information for path planning, 3D reconstruction was carried out on images obtained
from actual buildings and the results were compared. We compared the performances of
OABC, ABC, ABC1, ABC2, and five-direction flight. The five-direction flight is a built-
in algorithm that is commonly used for oblique photography. The drone observes the
target from five directions: front, back, left, right, and orthophoto photography of the
building. A schematic diagram of five-direction flight is shown in Figure 10. Referring to
reference [35], we set the parameters of five-direction flight. The forward overlap was 90%,
the side overlap was 85%, and the oblique photogrammetry relative altitude was 140 m.
The distance from the side of the building to the UAV camera was about 50 m according to
the actual flight conditions.
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Figure 10. Schematic diagram of five-direction flight.

During field work, it was found that the majority of buildings belonged to Scene 1,
which means there are other high obstructions around them, so only Scene 1 was com-
pared. It is worth mentioning that in order to meet the requirement of overlap for 3D
reconstruction, all waypoints of the OABC and ABC algorithms were checked after being
generated. If the requirement was not met, new waypoints were inserted equidistantly
between adjacent waypoints until the overlap requirement was satisfied.

Drone platform: DJI M300 RTK
Sensor: Zenmuse P1
3D reconstruction platform: Context Capture

4.2.2. Visual Comparison of Models

Table 3 shows that all data acquisition methods reconstructed the target’s 3D model
with complete models and basically correct spatial topology relationships between objects.
The building’s important elements, such as roofs and eaves, are complete, which have
some degree of detailed representation. Meanwhile, the comparison shows that the 3D
model captured by five-direction flight has the best performance, with the fewest surface
irregularities and protrusions. It is followed by the 3D model captured by the OABC
algorithm. It has a few burrs and protrusions, which is slightly inferior to that of five-
direction flight. The models captured by ABC1 and ABC2 have some distortions at the
edges of the building, especially on the top of surface 2. The model from ABC2 has more
serious distortions than that of ABC1. The model from ABC performs the worst, and its
surface 2 is almost completely distorted. In conclusion, the order of visual comparison from
best to worst is: five-directional flight, OABC, ABC1, ABC2, ABC. Additionally, the UAV
working efficiency and 3D reconstruction efficiency of different algorithms are shown in
Table 4. It is indicated that although the performance of five-direction flight surpassed the
others, it took much more time. OABC had similar performance and took the least time for
both drone operations and 3D reconstruction. That is the result of the visual comparison;
quantitative comparison is as follows.
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Table 3. Comparison of 3D reconstruction models captured by different algorithms.

Surface 1 Surface 2 Surface 3 Surface 4
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Table 4. Number of images and time consumption of UAV working and 3D reconstruction.

Number of Images Time Consumption of UAV
Working

Time Consumption of 3D
Reconstruction

OABC 25 2 min 10 s 25 min 46 s
ABC 52 10 min 13 s 50 min 20 s

ABC1 30 3 min 21 s 34 min 02 s
ABC2 28 2 min 43 s 30 min 27 s

Five-Directional Flight 89 25 min 46 s 3 h 48 min

4.2.3. Quantitative Comparison

To further evaluate the accuracy of the algorithms for 3D building reconstruction, the
geometric accuracy of the 3D models is compared below. The geometric accuracy of the
model includes two measurements: planar accuracy and height accuracy. Planar accuracy
can be obtained by calculating the root mean square error (RMSE) in the X direction and
Y direction. Height accuracy is obtained by calculating the RMSE in the Z direction. The
calculation method for RMSE is to capture the coordinates of ground feature points as the
true values, and then measure the coordinates of the corresponding check points on the
model. Finally, the RMSE is calculated [35–37].

In total, 30 points were measured on the target building for each algorithm, including
but not limited to the corners and protrusions of the building’s roof. The results of geometric
accuracy are shown in Table 5.
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Table 5. Geometric accuracy of all models.

3D Models X-Direction
RMSE

Y-Direction
RMSE Planar RMSE Height RMSE

From OABC 0.0515 0.0898 0.1036 0.1470
From ABC 0.0683 0.1023 0.1230 0.1522

From ABC1 0.0576 0.0917 0.1083 0.1497
From ABC2 0.0618 0.0984 0.1162 0.1633

From Five-Directional Flight 0.0521 0.0835 0.0984 0.1395

Figure 11 shows that the 3D reconstruction results from images captured by the
OABC method are better than those captured by ABC1 and ABC2, with a reduction of
at least 4.5% in the planar RMSE and at least 2% in the height RMSE. Figure 12 shows
that although the planar and height RMSE were slightly higher than those captured by
the five-directional flight, which are about 5% higher, the drone work efficiency and 3D
reconstruction efficiency were greatly improved. This proves that the OABC algorithm
optimizes UAV path planning by obtaining basically the same amount of information in a
much shorter time.
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5. Conclusions

This paper proposes an opposition-based learning ABC algorithm for UAV informa-
tion acquisition. By introducing an opposition-based learning mechanism, the E-bees can
search a wider area in a single iteration, which enhances the global search capability and
increases the convergence speed. Moreover, the S-bees activation mechanism is improved
by proposing a new mechanism that can adaptively adjust the individual abandon prob-
ability based on both the number of times an individual has not been updated and the
relative position of the population. The diversity of the population and the robustness of
the algorithm are enhanced. In Section 4, the proposed OABC algorithm is compared with
other path planning algorithms. The experiment results show that when the population
size is small (≤20), while the OABC algorithm can converge to the optimal solution, other
algorithms cannot. The mean of OABC is lower than any other algorithm, and the standard
deviation is at least 40% lower, proving that the algorithm is more stable and can escape
from local optima. When the population size is large (100), other enhanced ABC algorithms
can converge to the optimal solution too, but they take 7% more time. This proves that the
OABC algorithm can find the optima more quickly and stably with fewer resources.

To verify the performance of the algorithm, actual target building images were ob-
tained through UAV for 3D reconstruction. The proposed method was compared with
other methods in terms of the accuracy of the 3D models, the time required, and the UAV
operation time. The results show that the proposed method can greatly improve the effi-
ciency of UAV operations and accelerate the speed of 3D reconstruction while ensuring the
accuracy of 3D reconstruction. The planar error of the proposed method is 4.5% smaller
than those of the other ABC algorithms, and the height error is 2% smaller. Although the
error is increased by about 5% compared with the five-directional flight algorithm, UAV
operation time and 3D reconstruction time are significantly reduced. This proves that the
proposed method can obtain more information in less time, which is of great contribution
for subsequent processing.

In the end, we would like to discuss a problem affecting the application of drones: they
lack suitable security mechanisms that protect them from various attacks. A drone’s flight
controller and ground control station both have security vulnerabilities that could lead to
cyber or physical attacks [38]. Reference [39] shows that a vulnerability has been discovered
in the DJI UAVs that an attacker is able to exploit to gain user account information, which
then leads to UAV hijacking. Considering that UAVs are increasingly used in urban
situations, it is a growing challenge for UAV manufacturers and researchers to improve the
security of UAV communication.
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