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Abstract: Multiband image fusion aims to generate high spatial resolution hyperspectral images by
combining hyperspectral, multispectral or panchromatic images. However, fusing multiband images
remains a challenge due to the identifiability and tracking of the underlying subspace across varying
modalities and resolutions. In this paper, an efficient multiband image fusion model is proposed
to investigate the latent structures and intrinsic physical properties of a multiband image, which is
characterized by the Riemannian submanifold regularization method, nonnegativity and sum-to-one
constraints. An alternating minimization scheme is proposed to recover the latent structures of the
subspace via the manifold alternating direction method of multipliers (MADMM). The subproblem
with Riemannian submanifold regularization is tackled by the projected Riemannian trust-region
method with guaranteed convergence. The effectiveness of the proposed method is demonstrated
on two multiband image fusion problems: (1) hyperspectral and panchromatic image fusion and
(2) hyperspectral, multispectral and panchromatic image fusion. The experimental results confirm
that our method demonstrates superior fusion performance with respect to competitive state-of-the-
art fusion methods.

Keywords: image fusion; regularization; manifold optimization

1. Introduction

With the development of Earth observation satellites, multiband images (e.g., hyper-
spectral (HS) images, multispectral (MS) images and panchromatic (PAN) images), can be
obtained. These data are widely applied in various applications [1,2], such as monitoring
land use [3] and ice sheets [4]. However, these images have critical trade-offs between the
spatial resolution and the spectral resolution due to hardware limitations. For example, an
HS image has a high spectral resolution with a reduced spatial resolution. An MS image
offers a moderate spatial resolution with only a few bands. PAN images provide a much
better spatial resolution.

Due to the increasing availability of optical imaging systems, they are of interest to
multiband image fusion, including the fusion of HS and PAN images (HS-PAN image
fusion), hyperspectral and multispectral (HS-MS) image fusion or simultaneous hyper-
spectral, multispectral and panchromatic (HS-MS-PAN) image fusion. Specifically, the
multiband image fusion problem refers to the process of recovering a 3D data cube from
two or three degraded data cubes. Thus, proper modeling of these data plays an essential
role in achieving these goals [5].

There has been a remarkable effort in the community toward multiband image fu-
sion [6–9]. For example, HS-PAN image fusion (also known as hyperspectral pan sharp-
ening) [6,8,9] can be broadly divided into six classes: component substitution (CS), multi-
resolution analysis (MRA), Bayesian, matrix factorization, deep learning and hybrid meth-
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ods. For improvement of the fusion performance, jointly fusing HS, MS and PAN images
has been investigated [10]. However, this method did not take into account the low-
dimensional structure of multiband image, which has recently gained much interest [11,12].
More importantly, it is a common trend to identify and represent the intrinsic structure of a
multiband image.

A promising method for multiband imaging is subspace representation [12–16], which
assumes the latent subspace to be of a low rank. A first successful attempt was presented
in [13,14] by exploiting the local low-rank subspace of the spectral signatures in each
patch. In the work of Zhang et al. [15], a similar local geometry represented by the
group spectral embedding regularization method was proposed for HS-MS image fusion.
Furthermore, Kanatsoulis et al. [16] exploited the multi-dimensional structure of HS
imaging and approximated the spectral images via canonical polyadic decomposition. It
has been demonstrated that these methods give competitive fusion performance. However,
there are several challenges to identifying and tracking the underlying subspace across
varying modalities. It is difficult to assert the uniqueness of the latent subspace to preserve
the significant structure in the data, which is sensitive to the existence of outliers.

To address the aforementioned issues, a Riemannian submanifold regularization
method is proposed to identify and capture the local geometry of the estimated HS im-
age by exploiting the geometry structure in an abundance matrix [14]. Specifically, this
regularization method is implicitly imposed on the linear spectral mixture model (i.e.,
abundance matrix). The advantages of the Riemannian submanifold regularization method
are that it can represent the abundance correlation and recover the subspace embedded in
the HS image. These advancements motivated us to investigate the smooth structure of the
underlying subspace for integrating the spatial and spectral information.

1.1. Scope and Contributions

In this work, this paper proposes an efficient multiband image fusion method with
Riemannian submanifold regularization and additional constraints. The key idea is to
establish a new multiband image fusion model to estimate the endmember and the abun-
dance simultaneously. It overcomes the two problems in the following ways. First, the
problem related to the identifiability of the latent subspace is addressed by the Riemannian
submanifold regularization method, nonnegativity and sum-to-one constraints. Second,
the subproblem of tracking the underlying subspace is reformulated as an optimization
problem on a Riemannian submanifold.

The contributions can be summarized as follows:

1. An efficient multiband image fusion model utilizing the Riemannian submanifold
regularization method is proposed. This model is characterized by rank equality
constraints with matrix manifold, nonnegativity and sum-to-one constraints. This
is a new problem formulation for investigating the latent structures across varying
modalities and resolutions.

2. An alternating minimization scheme is proposed to recover the latent structures of
the subspace using the framework of the manifold alternating direction method of
multipliers. An efficient projected Riemannian trust region method with guaranteed
convergence is adopted to track the latent subspace.

3. The proposed method is validated in two applications: (1) hyperspectral and panchro-
matic image fusion and (2) the fusion of hyperspectral, multispectral and panchro-
matic images. The experimental results show that the proposed method is more
effective than the competitive state-of-the-art fusion methods.

1.2. Related Work
1.2.1. HS-PAN Image Fusion

HS-PAN image fusion aims to perform pan sharpening with HS imaging [6]. It is
a special case of HS-MS image fusion [17]. The early HS-PAN image fusion methods
involve combining an MS image with a PAN one. Traditional pan sharpening methods
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are extended for HS-PAN image fusion. Two representative methods include CS and
MRA. Some well-known CS methods are principal components analysis (PCA) [18], Brovey
transform (BT) [19] and the intensity-hue-saturation (IHS) method [20]. MRA methods
are characterized by a multi-resolution decomposition, such as wavelet transform meth-
ods [21,22], intensity modulation with a smoothing filter [23] and the generalized Laplacian
pyramid [24]. Recently, many MS-PAN image fusion methods have been extended to
fusing HS images with PAN ones. Vivone et al. [25] extended and investigated MRA-
and CS-based methods for fusing HS images. A guided filter in the PCA domain was
proposed [18] for sharpening HS images, and it provided good performance. Recently, deep
learning methods within the framework of a convolutional neural network [8,26] (CNN)
were investigated. These methods showed promising fusion performance because of the
ability to extract high-level features. However, deep learning methods require extremely
large datasets for training.

1.2.2. HS-MS Image Fusion

HS-MS image fusion has attracted increasing interest in recent years [7,27]. Among
the existing state-of-the-art HS-MS image fusion methods, three dominant frameworks
are matrix factorization (MF) approaches, tensor factorization (TF) approaches and deep
learning approaches.

The key idea of MF approaches is to factorize the HS image into the spectral basis
and the corresponding coefficients. The advantages of MF methods derive from the
spectral signature represented by sparse representation [28,29] or a low rank [5,13,30].
The sparse representation methods model the HS image via sparse dictionary learning.
Recently, Dong et al. [31] promoted the nonlocal self-similarities in an HS image via the
promising alternative framework of nonlocal sparse representation. The low-rank methods
regard the spectral signatures represented by a low-dimensional subspace. For example,
Simoẽs et al. [30] made use of the total variation regularization method to promote sparsity
in the gradient domain. However, these methods rely on accurate estimation of the sensor
parameters, such as the spectral response function.

TF approaches have been an active topic. These methods view an HS image dat-
acube as a three-dimensional tensor, where the HS image is factored into different low-
dimensional subspaces. Dian et al. [32] proposed a sparse tensor factorization-based fusion
model by utilizing the properties of nonlocal self-similarity in the spatial domain and
global correlation of an HS image in the spectral domain. Coupling the sparse tensor
factorization method with a core tensor regularizer [11] was proposed for the fusion of HS
and MS images, which provides promising fusion performance. Furthermore, the fusion
framework with the spatial spectral graph-regularized low-rank tensor decomposition
method was developed for HS-MS image fusion [33]. In the work of Dian et al. [12], the
prior low tensor train rank of the grouped 4D tensors was exploited. However, the TF
methods involve the operation of singular value decomposition (SVD), which may lead to
high computational cost.

Deep learning approaches have been successfully applied to this task [34–36]. For
example, Yang et al. [34] developed a deep two-branche convolutional neural network for
image fusion, which takes the spectral correlation of HS and MS images into consideration.
Huang et al. [35] proposed a deep hyperspectral image fusion network (DHIF-Net) via
an iterative spatio-spectral regularization scheme. Specifically, they exploited the spatio-
spectral regularization and physical imaging models simultaneously. Recently, Xie et al. [36]
introduced an interpretable deep network, utilizing the low-rank knowledge of an HS
image and the imaging models of HS and MS images. However, deep learning-based
approaches still have some challenges, such as estimating the architecture and complexity
of the deep network and the high inference cost.

Furthermore, most existing MF-based methods for HS-MS image fusion share two
common limitations: (1) identifiability of the underlying subspace across modalities and
(2) tracking the underlying subspace due to the non-uniqueness of SVD. Although, these
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methods construct the subspace representation for a pair of multiband images with varied
modalities or resolutions [30], few studies established the relationship between the identifi-
ability and the tracking of the latent subspace for HS-MS image fusion. Furthermore, fusing
multiband images more than two times is still an open issue. Meanwhile, the HS image
is assumed to be of a low rank [30,37], which indicates that it lies in a common subspace
across modalities. This motivated us to propose a new multiband image fusion model for
recovering and tracking the latent subspace. It provides an alternative way to investigate
the underlying structure of these high-dimensional datasets.

This paper is organized as follows. In Section 2, some preliminaries about the manifold
optimization method are presented. In Section 3, the fusion model and the notations are
presented. In Section 4, the details of the proposed alternating minimization scheme are
presented. In Section 5, the experimental results are illustrated. A detailed discussion is
presented in Section 6. At last, the conclusion is provided in Section 7.

2. Preliminaries for Riemannian Manifold Optimization

In this section, some ingredients of Riemannian manifold optimization are provided
for finding the optimal solution to the problem [38,39]. The Riemannian manifold is referred
to as a manifold due to its tangent spaces endowed with a smoothly varying metric. This
paper focuses on the manifold of low-rank matrices of rank r embedded in Rn×m (i.e.,Mr),
where r < m, n. Embedded manifolds have many inherited properties from Rn×m.

We focus on the optimization of functions f defined on Riemannian manfolds (Mr, g):

min
x

f (x) s.t. x ∈ Mr,

where g is a Riemannian metric defined by an inner product on the tangent spaces. However,
there exists a challenge in this problem.

Recently, a class of operations called retractions was introduced to deal with this
problem [38]. In the context of Euclidean optimization, a gradient step update xt −∇ f (xt)
takes the model problem outside of the manifoldMr at every step t of the optimization
algorithm. Thus, it has to be pulled back onto the manifold. An ideal operation is called
exponential mapping, which maps the tangent vector to a point along a geodesic curve.
Unfortunately, it may be computationally expensive to calculate the geodesic curve.

2.1. Riemannian Gradient and Tangent Space

A Riemannian optimization algorithm typically conducts a line search or solves a
model problem in a tangent space [38]. Therefore, the gradient and the Hessian of an
objective function on a Riemannian manifold are two basic concepts.

Let it be given thatM is a smooth submanifold of a Euclidean space, and let x ∈ M.
The tangent space ofM at x, denoted by TxM, is a group of derivatives of all the smooth
curves passing through x, and TxM = {γ(0)|γ(t)} is a curve inM with γ(0) = x. The
tangent space is a vector space, and its element in TxM corresponds to a linear mapping
from the set of smooth, real-valued functions in the neighborhood from x to R. TxM is
equipped with an inner product (or metric) gx(·, ·) : TxM× TxM→ R.

Consider a smooth function f :M→ R defined on a Riemannian submanifold. The
Riemannian gradient of f at x (i.e., grad f (x)) is the unique tangent vector

gx(grad f (x), ξx) = D f (x)[ξx], ∀ξx ∈ TxM,

where D f (x)[ξx] is the directional derivative of f along the direction ξx, specifically when
Mr is a Riemannian submanifold embedded in Rm×n. A useful property of embedded
manifolds is that their Riemannian gradients are defined as the orthogonal projection on
the tangent space of the gradient of f ; in other words, we have

grad f (x) = PTxM(∇ f (x)), ξx ∈ TxM,
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where ∇ f (x) is the Euclidean gradient of f at x. It should be noted that PTxM is viewed as
a retraction [38,40].

The Hessian of f at x (i.e., Hess f (x)) is a mapping from TxM to TxM. Furthermore,
whenM is a Riemannian submanifold of a Euclidean space Rm×n, the Riemannian Hessian
of f is expressed as follows:

Hess f (x)[ξx] = PTxM(Dgrad f (x)[ξx]), ξx ∈ TxM,

where Dgrad f (x)[ξx] denotes a classical directional derivative of grad f (x) along the direc-
tion ξx. Similarly, an orthogonal projection is performed.

2.2. Retractions

Retractions can find a point on the manifold that is in the direction of the gradient.
They can approximate the geodesic gradient flow on the manifold [38]. In other words,
retractions allow us to move on a manifold (i.e., moving in the direction of a tangent vector)
while staying on the manifold. It provides an alternative to exponential mapping when
designing optimization algorithms on manifolds. For the manifold Mr, a retraction is
defined as follows:

xt+1 = Rxt(xt + ξ) = P(xt + α).

Mathematically, the retractions are defined as a mapping, where Rx is a smooth
mapping from TxM toM such that Rx(0) = x. The corresponding differential of retraction
at zero is an identity mapping (i.e., d

dt Rx(tξ)|t=0 = ξ, ∀ξ ∈ TxM), which is referred to as
the local rigidity condition [38].

3. Problem Formulation
3.1. Degradation Model for Multiband Imaging

Let P ∈ Rns×n denote the matricization of the latent multiband image. We denote ns
to be the number of spectral bands, while n = nx × ny is the vectorization of the HS image
at the band nx. The goal is to recover an HS image of the high spatial resolution P from
K observations (i.e., Yk ∈ Rnsk×nk , k = 1, · · · , K, where nsk and nk represent the number of
bands and pixels, respectively). Moreover, we assume that nsk ≤ ns, and nk = n/d2

k . dk
denotes the scale factor.

Usually, the responses of the imaging sensors are treated as a number of linear transfor-
mations. The corresponding spectral and spatial degradations are denoted as the operators.
The input multiband images are assumed to be geometrically registered. The degradation
model can be expressed as

Yk = RkPBkSk + Nk, (1)

where Rk ∈ Rnk×ns is the spectral response of the imaging sensor, Bk denotes the point
spread function of the kth imaging sensor, Sk represents a downsampling operator for
the spatial dimensions subject to ST

k Sk = Ink and Nk indicates a spectral independent
perturbation matrix. In particular, Yk involves some preprocessing steps [41], such as
radiometric calibration and geometric correction.

One commonly used approach for the spectral representation of an observed multi-
band image is the linear mixture model [42] (LMM), which reveals the relationship between
mixtures and endmembers. This model assumes that every pixel of an HS image can be
decomposed into a convex combination of a small number m � ns of endmembers [43].
This indicates that the number of endmembers is usually sparse (i.e., the number of nonzero
entries is very small compared with the size of the abundances). The latent multiband
image is the product of an endmember matrix E and the abundance matrix X. Thus, the
LMM model can be expressed as follows:

P = EX + N, (2)
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where E ∈ Rns×m represents the spectral signatures matrix with respect to the endmembers,
X ∈ Rm×n is the matrix of endmember abundances stored in columns and N ∈ Rns×n

denotes the measurement noise or model error [42]. It can be seen that each row of the
matrix P consists of all the pixels in a given spectral band.

By substituting Equation (2) into Equation (1), we can obtain a multiple multiband
image formation model:

Yk = RkEXBkSk + N̂k, (3)

where N̂k denotes the kth multiband image’s additive perturbation matrix, which can be is
expressed as follows:

N̂k = Nk + Rk NBkSk.

Given the observation Yk and its corresponding endmember matrix E, the measure-
ment P can be recovered from the the abundance matrix X. However, additional constraints
on E or X should be used to improve the quality of the solutions. Thus, additional informa-
tion is introduced (i.e., the Riemannian submanifold regularization method, nonnegativity
and sum-to-one constraints).

3.2. Proposed Fusion Model

For the multi-source information modeling, naturally, the prior information about X is
required. To reconstruct P, the proposed fusion model can be formulated as an optimization
problem:

minX∈Mr
1
2 ∑K

k=1 ‖Yk − RkEXBkSk‖2
F +

α
2‖X‖2

F + IΩ(X), (4)

where Mr = {X ∈ M|rank(X) = r} represents the rank equality constraints with the
matrix manifold, the symbol rank(·) denotes the rank of the matrix, r is a positive integer,
the term α

2‖X‖2
F is the Riemannian submanifold regularization (i.e., the constraint set

Mr), α is a positive regularization parameter, IΩ(·) denotes an indicator function and the
expression Ω = {X|X ≥ 0, 1T

mX = 1T
n} indicates that all the elements of X are greater than

or equal to zero and sum to one. The proposed framework for multiple multiband image
fusion is presented in Figure 1.

Figure 1. Framework of the proposed multiple multiband image fusion method.

3.3. Riemannian Submanifold Regularization

We observe that multiband image lies on a low-dimensional manifoldM. Specifi-
cally, we take a different approach which exploits the problem structure of rank equality
constraints with a matrix manifold (i.e., the latent structures of the abundance matrix).
More specifically, the structural information of the abundance matrix is captured and
represented by the geometric structure of the matrix manifoldMr. This paper proposes a
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regularization method to extract a common subspace from multiple observations indirectly,
which provides more flexibility to handling data with nonlinear structures. It can be seen
that this regularization process is implemented through rank equality constraints with a
matrix manifold.

Definition 1 (Riemannian submanifold regularization). Let X ∈ Mr be a smooth mani-
fold [38] with the constraint set of matrices of rank being r at most, where r < min(m, n) is a
positive integer. To stabilize the fusion model in Equation (3), additional a priori knowledge about
the abundance matrix X is defined as follows:

α

2
‖X‖2

F, s.t. X ∈ Mr = {X ∈ Rm×n|rank(X) = r}, (5)

whereMr is viewed as a submanifold of a dimension (m + n− r)r embedded in the Euclidean space
Rm×n. Here, the constraint rank(X) = r denotes the rank of matrix X as equal to r, which can be
viewed as a rank equality constraint with a matrix manifold. The Tikhonov regularization term [44]
(i.e., α

2‖X‖2
F) ensures the available solution.

However, it is challenging to deal with the rank equality constraints with a matrix
manifold, where the underlying subspace is spanned by endmembers indirectly. The
corresponding subspace of the target image P lies in a low-dimensional manifold. Moreover,
these constraints are nonconvex, which may be numerically expensive.

In this paper, the manifold geometry [45] of Riemannian submanifold regularization
(i.e., the set of rank equality constraints) is utilized to address this issue. Thus, both the
constraint search space and the geometry of the smooth embedded submanifold should
be considered. Extensive studies of the optimization method on a Riemannian manifold
led to the retraction-based framework using the differential geometry structure of the
underlying manifold.

3.4. Nonnegativity and Sum-to-One Constraints

In addition to the geometric structure given by Riemannian submanifold regular-
ization, it is reasonable to assume that the coefficients should satisfy the following con-
straints [42,43]:

X ≥ 0, 1T
mX = 1T

n ,

where 1T
m means an m× 1 vector with all ones. The combined constraints preserve the

inherent characteristics of the solutions. In other words, it makes a solution more feasible.
The nonnegativity and sum-to-one constraints can be rewritten as follows:

Ω = {X|X ≥ 0, 1T
mX = 1T

n}.

After introducing the indicator function I(X), we can obtain the following formulation:

IΩ(X) =

{
0 X ∈ Ω
+∞ X /∈ Ω.

4. Proposed Method
4.1. Alternating Minimization Scheme

Given the fusion problem in Equation (4), we propose a numerical solution using the
framework of the manifold alternating direction method of multipliers. The constrained
search space is equipped with the Riemannian structure of the submanifold, and the
nonnegativity and sum-to-one constraints are considered. A key challenge of this problem
is the geometry of the underlying manifold.



Remote Sens. 2023, 15, 4370 8 of 22

After applying the variable splitting strategy, we solve the problem in an alternating
minimization way. Several auxiliary variables Λ1,··· ,k, W, Z are introduced. We have the
following the minimization problem:

minX∈Mr ,Λ1,··· ,Λk ,U,V
1
2 ∑K

k=1 ‖Yk − RkEΛkSk‖2
F

+ α
2‖W‖2

F + IΩ(Z),
s.t. Λk = XBk, W = X, Z = X.

(6)

Then, the augmented Lagrangian formulation can be expressed as

L(X, Λ1, · · · , Λk, W, Z, F1, · · · , FK, G, H) =
1
2 ∑K

k=1 ‖Yk − RkEΛkSk‖2
F +

α
2‖W‖2

F + IΩ(Z)
+ µ

2 ∑K
k=1 ‖XBk −Λk − Fk‖2

F +
µ
2 ‖X−W − G‖2

F
+ µ

2 ‖X− Z− H‖2
F,

(7)

where Fk ∈ Rm×n, k = 1, · · · , K, G ∈ Mr, H ∈ Rm×n are Lagrangian multipliers and µ ≥ 0
is a penalty parameter. Then, the problem has the following formulations:

Xn = arg minX L(X, Λn−1
1 , · · · , Λn−1

k , Wn−1,
Zn−1, Fn−1

1 , · · · , Fn−1
K , Gn−1, Hn−1),

(8)

{Λn
1,··· ,K, Un, Vn} = arg minΛ1,··· ,K ,U,V L(Xn, Λ1,
· · · , Λk, W, Z, Fn−1

1 , · · · , Fn−1
K , Gn−1, Hn−1),

(9)

Fn
k = Fn−1

k −
(
XnBk −Λn

k
)
, k = 1, · · · , K, (10)

Gn = Gn−1 − (Xn −Wn), (11)

Hn = Hn−1 − (Xn − Zn). (12)

Thus, the problem (i.e., Equation (7)) breaks down into three subproblems. The details
are summarized in Algorithm 1. The computational complexity of the proposed method is
max(O(r3),O(mn log(mn))), where r < min(m, n):

Λn
k = arg minΛk

1
2‖Yk − RkEΛkSk‖2

F+
µ
2 ‖XnBk −Λk − Fn−1

k ‖2
F, k = 1, · · · , K,

(13)

Wn = arg min
W

α

2
‖W‖2

F +
µ

2
‖Xn −W − Gn−1‖2

F, (14)

Zn = arg min
Z
IΩ(Z) +

µ

2
‖Xn − Z− Hn−1‖2

F. (15)

Note that the subproblem in Equation (14) can be cast as an optimization problem on a
Riemannian submanifold. This problem can be solved by the retraction-based optimization
method on the manifold. In addition, the solution to the subproblem Z has a closed-form
expression. The value of µ is updated at each iteration. The optimization of L with respect
to each of the variables X, Λ is described in Appendix A. For the variables W and Z, the
solutions are described in detail in Appendix B.
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Algorithm 1 Optimization procedures for the problem in Equation (6)

1: Initializing:E = VCA(Yl);// estimate E by the method in [46]
2: X0 = Interpolate(Yl , E); // interpolate the outcome of SUnSAL [47]
3: for k = 1:K do
4: Λ0

k = X0; Fn
k = 0m×n;

5: W0 = X0; Z0 = X0;
6: G0 = 0m×n; H0 = 0m×n;
7: end for
8: for n = 1:N do
9: Computing Xn; // provided in Equation (A2)

10: for k = 1:K do
11: Computing Λn

k ; // provided in Equation (A5)
12: Computing Xn − Gn−1;
13: end for
14: Computing Wn; // refer to Algorithm A1
15: Computing Zn; // refer to Equation (A10) and [48].
16: for k = 1:K do
17: Fn

k = Fn−1
k − (XnBk −Λn

k )

18: Gn = Gn−1 − (Xn −Wn)
19: Hn = Hn−1 − (Xn − Zn)
20: end for
21: end for
22: return X = EXn

4.2. Convergence Analysis

This subsection studies the behavior of the convergence of the proposed method.
Note that the convergence behavior and results of the ADMM were widely studied in [49].
Thus, we analyzed the convergence of Algorithm A1 for the subproblem with Riemannian
submanifold regularization, which makes use of the retraction-based manifold optimization
theory [38]:

Theorem 1. If there exists a global minimizer W∗ to the problem in Equation (A6), then the
first-order necessary optimality condition holds:

〈ζ, (1 +
α

µ
)W∗ − (Xn − Gn−1)〉 ≥ 0, ∀ζ ∈ TWMr,

where TWMr denotes the tangent cone of the constraint setMr at W∗.

Proof. Suppose that Wn ∈ Mr is a sequence generated by Equation (A6); in other words,
we have

lim
n→∞

f n
W(Wn) = inf

W∈M∗r
f n(W).

Since f n is bounded and coercive, it gives

f n(W)→ ∞, if ‖W‖ → ∞,

Thus, this indicates that the sequence Wn is uniformly bounded. Furthermore, all
points belong to the set W, which is compact. Then, it follows that the sequence is bounded.

It is of interest to note that {Wn} has an accumulation point W∗. As the feasible set
Mr is closed, and f n : Mr → R is continuous, therefore, we conclude that W∗ has a
global minimizer.

Then, the first-order necessary optimality condition of the global minimizer is pre-
sented directly:

〈ζ, (1 +
α

µ
)W∗ − (Xn − Gn−1)〉 ≥ 0, ∀ζ ∈ TWMr,
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It is noticeable that rank(W∗) = r. Thus, TWMr turns into a linear subspace in Rm×n

(i.e., the tangent space at W∗). The inequality condition can be

PTW∗Mr ((1 +
α

µ
)W∗ − (Xn − Gn−1)) = 0,

where PTW∗Mr denotes the orthogonal projection onto the linear subspace TW∗Mr.

Theorem 2. Assume that κ is a positive constant and {εn} is a sequence of nonnegative scalars. If
{Wn} ⊂ Mr is a sequence generated by Algorithm A1, then we have

f n(Wn+1) ≤ f n(Wn)− κ‖Wn+1 −Wn‖2, (16)

〈ξ, (1 +
α

µ
)Wn+1 − (Xn − Gn−1)〉 ≥ −εk‖ξ‖, ∀ξ ∈ TWMr, (17)

If {Wns} is a convergent subsequence of {Wn} with the limit point W∗ ∈ Mr, then
rank(W∗) = r, and lims→∞ εns

= 0. Finally, W∗ satisfies the first-order optimality condition for
the problem in Equation (A6).

Proof. It can be seen that f (Wn+1) ≤ f (Wn), ∀n. Since f is bounded, we have

lim
n→∞

f (Wn+1)− f (Wn) = lim
n→∞

f (Wn+1)− f (Wn+1) = 0,

where the conditions in Equations (16) and (17) indicate that limn→∞ ‖Wn −Wn+1‖ = 0.
If {Wns} is a subsequence that converges to {W∗} with a rank r, then we have

rank(Wns
) = r, ∀s.

SinceMr is a smooth manifold in a neighborhood of W∗, the condition in Equation (17)
indicates that

‖PTWMr ((1 +
α

µ
)Wn+1 − (Xn − Gn−1))‖ ≤ εns

,

for all sufficiently large values of s. The continuity of the smooth mappings (W) ∈ Mr �
PTWMr holds true by passing s→ ∞.

For studying the convergence of Wn+1, we have the following direct lemma (Lemma 1).
In particular, it can be concluded that

lim
n→∞

‖PTWMr ((1 +
α

µ
)Wn+1 − (Xn − Gn−1))‖ = 0.

Lemma 1. Let {Wn} ⊂ Mr be a sequence generated by Algorithm A2. Then, the following
statements hold true:

lim
n→∞

‖Wn −Wn+1‖ = 0.

Proof. It can be seen that the statement is the first part of the proof for Theorem 2.

5. Performance Evaluation
5.1. Experimental Settings

We conducted two experiments to assess the performance of the proposed method:
(1) hyperspectral and panchromatic image fusion and (2) hyperspectral, multispectral and
panchromatic image fusion. All experiments were performed on a laptop with Windows
10 64 bit and implemented and tested in MATLAB 2019b.

For HS-PAN image fusion, the proposed method was compared with 14 related HS-
PAN image fusion methods, including the smoothing filter-based intensity modulation
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(SFIM) method [23], the method of a modulation transfer function-generalized Laplacian
pyramid with high-pass modulation (MT) [50], the MT with high-pass modulation (MT-
HPM) method [25], the Gram–Schmidt (GS) spectral sharpening method [51], the GS
adaptive (GSA) method [52], PCA [53], PCA with a guided filter (PCA-GF) [18], robust
fast (RF) fusion of multiband images [54], coupled nonnegative matrix factorization [5]
(CF), the hyperspectral image super-resolution method with subspace regularization [30]
(HY), MT with regression [55] (MT-R), MT with full-scale regression [56] (MT-FSR), MT
with dual-scale regression [57] (MT-DSR) and the method of context-aware detail injection
fidelity (CDIF) with adaptive coefficient estimation [58].

For HS-MS-PAN image fusion, the proposed method was compared with some state-
of-art methods [5,30,54,59,60]. These methods contain two procedures. First, two popular
methods for pan sharpening were used separately (i.e., the MT method and band-dependent
spatial detail (BD)) [59]. Second, RF-, CF- and HY-based methods were used for HS-PAN
image fusion. In addition, the endmembers presented in the HS image were extracted with
a vertex component analysis (VCA) algorithm [46]. Meanwhile, sparse unmixing with the
variable splitting and augmented Lagrangian (SUnSAL) method was utilized to extract the
abundance matrix [47].

5.2. Datasets and Quality Measures

Four real-world datasets were used [61]: the Botswana, Washington DC Mall, Indian
Pines and Kennedy Space Center datasets. The tests in our experiments were performed
in a semi-synthetic way. The intensities of these images were arranged from 0 to 1. The
observed three input images (PAN, MS and HS images) from the referred HS image (ground
truth) were generated according to Wald’s protocol [62]. Gaussian white noise with zero
mean was added to each band of the three images such that the band-specific signal-to-
noise ratio (SNR) was 30 dB for the MS and HS images and 35 dB for the PAN image. The
bands related to the noisy measurements were removed from the reference image. A brief
description of the datasets is provided:

1. Botswana dataset: The HS image was collected by a Hyperion sensor over Okavango
Delta, Botswana in 2001–2004. The number of bands in our experiment was 145.
The spatial resolution is 400× 240. The observed scene contains the land cover type
information.

2. Indian Pines dataset: The imaging sensor is the airborne visible infrared image
spectrometer (AVIRS) airborne hyperspectral instrument. Images were captured
over northern and western Indiana in the USA. The number of bands was 200. The
dimensions of the HS images are 400× 400. The scenery of this dataset includes
housing, built structures, and forests.

3. Kennedy Space Center dataset: This dataset was captured at Kennedy Space Center in
Florida, United States by an AVIRIS. This dataset comprises 176 bands with an image
size of 500× 400. The content of the HS image contains various land cover types.

4. Washington DC Mall dataset: This was collected by the hyperspectral digital image
collection experiment (HYDICE) over the Washington DC Mall in the United States.
A portion of the original data was used. The resolution of the HS image is 400× 300.
The number of spectral bands was 191.

Four widely used quality measures [27] were used in our experiments. These measures
included the relative dimensionless global error in synthesis (ERGAS), spectral angle
mapper (SAM) and universal image quality index (UIQI).

5.3. Results
5.3.1. Hyperspectral and Panchromatic Image Fusion

Given an HS image, the goal of HS-PAN image fusion is to fuse a PAN image with
the same spectral information while keeping some innovative content. All the methods
were applied to the three datasets (i.e., Botswana, Indian Pines and Washington DC Mall).
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The blurring kernel was Gaussian with a size of 3× 3 and standard deviation of 0.8. The
scaling factor was four.

Table 1 gives a quantitative evaluation of all the competing methods. The best fusion
results are marked in bold. We can see that the proposed method delivered better ERGAS,
SAM and UIQI scores than its competitors in most cases. Meanwhile, the SFIM- and
MT-HPM-based methods introduced significant spectral distortions. Remarkably, the
proposed method performed relatively satisfactory on all three datasets, demonstrating the
effectiveness of the proposed method.

The visual comparison results are illustrated in Figure 2. The ground truth image is
provided in Figure 2a. The visual results of the referred fusion methods are demonstrated.
The selected part is enlarged and provided in the bottom right corner. The PCA-GF method
seems to be insufficient because the fused image lost some local details. The visual result of
the proposed method is presented in Figure 2p. As can be seen from Figure 2, the proposed
method gave better fused images than the other methods in terms of smooth areas and
texture regions. In other words, the proposed method provided the fused results closest to
the ground truth in Figure 2a.

Table 1. Numerical results of hyperspectral and panchromatic image fusion for three datasets.

Datasets Botswana Indian Pines Washington DC Mall

Fusion Methods ERGAS↓ SAM↓ UIQI (%)↑ ERGAS↓ SAM↓ UIQI (%)↑ ERGAS↓ SAM↓ UIQI (%)↑
SFIM 24.9670 2.6758 86.49 0.9583 1.2023 87.81 3.9752 2.6530 94.11
MT 3.0794 2.5482 90.02 0.9249 1.1800 88.83 3.3584 2.8864 95.76
MT-HPM 47.0230 2.6108 87.52 0.9722 1.2086 88.48 3.4854 2.5888 95.51
GS 2.8263 2.4166 91.25 1.3886 1.4620 81.38 5.7251 5.2996 84.39
GSA 3.1798 2.5806 90.06 0.8252 1.0897 89.76 3.5158 2.9546 95.87
PCA 2.9592 2.5074 90.42 1.8095 1.9336 76.61 3.8862 3.4006 91.50
PCA-GF 3.1833 3.1687 77.98 1.1607 1.6353 79.49 5.6117 2.8216 79.55
RF 1.8364 2.4047 94.65 1.0243 0.9509 91.41 3.5888 3.6285 93.21
CF 1.2706 2.5176 93.89 0.9441 1.7088 83.50 1.8495 3.5331 96.14
HY 1.7612 2.1741 91.97 1.0495 0.9555 90.94 2.7327 3.0719 96.33
MT-R 2.7732 3.1392 91.81 1.5811 1.4481 90.24 4.7134 2.1903 92.02
MT-FSR 2.7487 3.1581 91.90 1.5811 1.4594 90.21 4.7096 2.4774 91.85
MT-DSR 2.7728 3.1394 91.80 1.5822 1.4480 90.19 4.7108 2.1918 92.04
CDIF 2.2615 2.5503 93.15 1.2430 1.0518 93.88 4.0160 1.8530 95.85
Proposed Method 1.4321 1.9561 95.64 0.8025 0.9487 95.67 1.4122 2.3475 98.81

5.3.2. Hyperspectral, Multispectral and Panchromatic Image Fusion

We conducted the experiments to jointly fuse HS, MS and PAN images. In our
experiments, these images were fused in four ways: PAN + HS, (MS + HS) + PAN, (PAN
+ MS) + HS and PAN + MS + HS. We compared the proposed method with two state-
of-art fusion methods: the RF method [54], and HY method [30]. The experiments were
performed under the same experimental setting with 100 iterations.

The quantitative results of all the referred methods are presented in Table 2. The best
results are indicated in bold. The referenced fusion methods were combined for fusing HS,
MS and PAN images. Note that the proposed approach outperformed the other methods in
almost all the quality measures. Table 2 also presents the computational time of the fusion
methods across the complete datasets. We can see that the proposed method generally
demonstrated competitive performance. These results suggest that our method could
recover the detailed structures of the underlying HS image well.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Visual fusion results of hyperspectral sharpening on Washington DC Mall dataset with color
image composites of the bands (30, 21 and 10): (a) ground truth; (b) SFIM method; (c) MT method;
(d) MT-HPM method; (e) GS method; (f) GSA method; (g) PCA method; (h) PCA-GF method; (i) RF
method; (j) CF method; (k) HY method; (l) MT-R method; (m) MT-FSR method; (n) MT-DSR method;
(o) CDIF method and (p) Proposed method.
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The visual fusion results are illustrated in Figures 3 and 4. Examples of two datasets
(i.e., the Indian Pines and Washington DC Mall datasets) are shown separately in
Figures 3a and 4a, respectively. The visual fusion results of our method are presented
individually in Figures 3b and 4b. The reconstructed images of the HY method are pre-
sented in Figures 3c and 4c one by one. In Figures 3d and 4d, the per pixel residuals of
these two datasets are presented visually, where all the pixels of each dataset were sorted
by magnitude and plotted. We can observe that our method was better than the other
methods in terms of the normalized root mean square error (NRMSE).

The reconstruction errors of the referred methods with respect to the original data
are illustrated in Figure 3e and Figure 3f for the Indian Pines dataset and Figure 4e and
Figure 4f for the Washington DC Mall dataset, respectively. These figures indicate that our
method can achieve better fusion performance compared with the competing methods,
which supports the effectiveness of the proposed method.

Table 2. Quantitative evaluation of fusing hyperspectral, multispectral and panchromatic images on
four datasets.

Images Fusion Methods Botswana Indian Pines

ERGAS↓ SAM↓ UIQI (%)↑ Time (s)↓ ERGAS↓ SAM↓ UIQI (%)↑ Time (s)↓
PAN + HS HY 1.8450 2.4035 94.49 48.34 0.8234 1.0494 87.17 86.45

RF 1.8364 2.4047 94.65 49.18 0.8191 1.0529 87.12 90.37
(PAN + MS) + HS BD + HY 3.0323 3.5445 93.61 49.17 0.7491 1.0801 87.16 86.26

BD + RF 3.0192 3.5324 93.69 51.54 0.7434 1.0846 87.20 86.40
MT + HY 2.9706 3.5923 93.88 51.83 0.9252 1.1439 84.86 84.92
MT + RF 2.9573 3.5786 93.95 51.06 0.9170 1.1519 84.89 86.25

CF 1.8310 2.7891 89.96 38.93 0.9213 1.7485 86.83 73.48
PAN + (MS + HS) HY + HY 2.0442 2.1535 93.52 49.51 0.7789 0.9373 85.24 86.71

RF + RF 2.9769 3.6799 93.57 51.77 0.8110 0.9481 84.66 90.99
PAN + MS + HS Our Method 1.6317 1.6408 98.52 38.01 0.5812 0.8850 95.18 65.51

Images Fusion Methods Washington DC Mall Kennedy Space Center

ERGAS↓ SAM↓ UIQI (%) ↑ Time (s)↓ ERGAS↓ SAM↓ UIQI (%)↑ Time (s)↓
PAN + HS HY 3.9132 4.6076 92.63 83.29 3.9600 4.5045 94.55 111.47

RF 3.9207 4.6075 92.64 84.08 3.8971 4.2528 94.94 127.33
(PAN + MS) + HS BD + HY 4.0388 4.7666 92.32 83.91 3.6127 4.7748 95.42 110.40

BD + RF 4.1409 4.7867 92.06 87.09 3.4127 4.5649 95.94 110.49
MT + HY 4.2401 4.8087 91.63 83.42 8.3050 5.3050 86.94 128.82
MT + RF 4.3543 4.8267 91.29 84.47 8.2069 5.2489 87.24 121.36

CF 4.0730 5.2249 82.12 57.11 3.6472 5.3522 86.37 88.72
PAN + (MS + HS) HY + HY 3.0955 3.6234 95.28 94.44 2.8052 5.6430 96.67 111.39

RF + RF 3.6510 3.8968 94.26 88.87 3.6730 6.1409 95.80 116.21
PAN + MS + HS Our Method 2.5503 2.8112 97.77 62.39 2.5044 4.2221 97.23 82.49

We have shown that the underlying subspace was captured and tracked by the pro-
posed method effectively. The numerical experiments show that the proposed fusion model
with hybrid constraints can reconstruct more local details in comparison with the referred
fusion methods. The outcomes of the proposed method (e.g., the quality measures in
Tables 1 and 2 and visual comparisons from Figures 2–4 provide evidence that the involve-
ment of a Riemannian submanifold regularization method led to the improvement in fusion
performance. The fusion experiments indicate that the use of a modeling strategy and the
alternating minimization scheme is critical for the success of the proposed method.
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(a) (b) (c)

(d) (e) (f)

Figure 3. Visual fusion results of different algorithms on Indian Pines dataset with color image
composites of the bands (30, 24 and 5): (a) ground truth; (b) proposed method and (c) HY method.
(d) NRMSE curves from Indian Pines dataset. (e) Reconstruction errors of our method. (f) Recon-
struction errors of HY method.

(a) (b) (c)

Figure 4. Cont.
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(d) (e) (f)

Figure 4. Visual fusion results for different algorithms on Washington DC Mall dataset and color
image composites of the bands (30, 24 and 5): (a) ground truth; (b) the proposed method and
(c) HY method. (d) NRMSE curves from Washington DC Mall dataset. (e) Reconstruction errors of
our method. (f) Reconstruction errors of HY method.

6. Discussion

We showed that the proposed fusion model and its alternating minimization scheme
can track the underlying subspace effectively. This difference might be related to the method
used. It is possible that the geometric representation of the latent subspace across modalities
provides an efficient way to describe the geometry of the subspace. One limitation of the
proposed method is that the input multiband images should be registered spatially.

In summary, the proposed method with the Riemannian submanifold regularization
method is useful for estimating high-fidelity hyperspectral images from multiband images.
Although the local structure of the abundance matrix was selectively exploited, the geome-
try of the constraint manifold provided a more intuitive understanding of the geometric
structure of the underlying subspace. The proposed framework provides new insights into
existing multiband image fusion methods.

7. Conclusions

In this paper, an efficient multiband image fusion method was proposed to obtain a
high-fidelity fused image using Riemannian submanifold regularization, nonnegativity
and sum-to-one constraints. Furthermore, the identifiability and tracking of the underlying
subspace was completed by an alternating minimization scheme. To exploit the internal
structures of the abundance matrix, the constrained search subspace was reformulated as
an optimization problem on a smooth Riemannian submanifold. An efficient projected
Riemannian trust region method was developed. The experiments for two multiband
image fusion problems showed that the proposed method outperformed the state-of-the-art
competing fusion methods. It should be noted that there also remains room for further
study. For example, some developed image fusion models account for spectral variability.
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Appendix A

In this section, we present the optimization of the objective function L in Equation (7)
with respect to each of the variables (i.e., X and Λ).

Appendix A.1. Updating X

Based on the objective functional in Equation (7), we have the following expression:

Xn = arg minX ∑K
k=1 ‖XBk −Λn−1

k − Fn−1
k ‖2

F
+‖X−Wn−1 − Gn−1‖2

F + ‖X− Zn−1 − Hn−1‖2
F,

(A1)

The gradient of Equation (A1) can be obtained as follows:

Xn = [∑K
k=1(Λ

n−1
k + Fn−1

k )BT
k + Wn−1

+Gn−1 + Zn−1 + Hn−1]×(
∑K

k=1 BkBT
k + In + In

)−1
,

(A2)

where the expression
(

∑K
k=1 BkBT

k + In + In

)−1
can be calculated by a fast Fourier transform

(FFT). In denotes the identity matrix n× n.

Appendix A.2. Updating Λ

The objective functional with respect to Λ is defined as follows:

ET RT
k RkEΛn

k SkST
k + µΛn

k = ET RT
k YkST

k +

µ
(

AnBk − Fn−1
k

)
.

(A3)

For simplicity, we introduce the auxiliary variable Mk = SkST
k and its complement

IN −Mk. Then, Equation (A3) can be rewritten as follows:

Λn
k Mk =

(
ET RT

k RkE + µIn
)−1 × [ET RT

k YkST
k

+µ
(

AnBk − Fn−1
k

)
Mk],

(A4)

and
Λn

k (IN −Mk) =
(

AnBk − Fn−1
k

)
(In −Mk).

Lastly, for k = 1, · · · , K, the solution to Equation (A3) is provided as follows:

Λn
k = Λn

k Mk + Λn
k (In −Mk)

= (ET RT
k RkE)−1[ET RT

k YkST
k + µ(AnBk

−Fn−1
k )Mk +

(
AnBk − Fn−1

k

)
(In −Mk)].

(A5)

Appendix B

In this section, we describe the optimization of the objective function L in Equation (7)
with respect to each of the variables W and Z.

Appendix B.1. Updating W

The subproblem W can be viewed as a proximal term over the manifold, which will be
resolved inexactly within the retraction-based optimization framework on the Riemannian
submanifold [39]. Based on the geometry of low-rank matrix manifolds [63], a projected
Riemannian trust region method is proposed in Algorithm A1 for the subproblem W. For
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a comprehensive introduction to the Riemannian manifold optimization, the reader is
referred to [38]. For simplicity, the subproblem in Equation (14) is rewritten as follows:

Wn = arg minW∈Mr f n
W(W) = arg minW∈Mr

α
2µ‖W‖2

F
+ 1

2‖W − (Xn − Gn−1)‖2
F.

(A6)

This problem has a closed-form solution. It can be viewed as the projection of
1

α+µ (Xn − Gn−1) onto manifold Mr. The tangent space is denoted by TWMr, which
contains all tangent vectors toMr at W. The Riemannian gradient of f n

W(W) at W onMr
is denoted by grad f n

W(W). Every point W ∈ Mr corresponds to a tangent space TMr . An
element ξ ∈ TWMr is a tangent vector at W. Each tangent space is associated with an inner
product, which we denote by 〈·, ·〉, and the corresponding norm, denoted by ‖ · ‖. For a
tangent vector in the tangent space TWMr, we have

〈grad f n
W(W), ξ〉 = D f n

W [ξ], ∀∆ ∈ TWMr,

where D f n
W [ξ] denotes the directional derivative of f n

W at W along the direction ξ. The
Riemannian gradient with respect to W is derived as follows:

grad f n
W(W) = PTWMr (∇ f n

W(W))
= PTWMr ((1 +

α
µ )W + Gn−1 − Xn).

Based on the definitions of the tangent vector ξ and tangent space TWMr, the Hessian
of f n

W at W ∈ Mr is denoted by Hess f n
W(W), which is a linear operator from TWMr to

TWMr, and Hess f n
W [ξ] = ∇ξgrad f n

W(W), ∀ξ ∈ TWMr. After considering a factorization-
based second-order retraction, the Riemannian Hessian of f n

W(W) with respect to W is
derived as follows:

Hess f n
W [ξ] = (1 + α

µ )ξ + (I −UUT)∇ f n
W(W)(I −VVT)

ξTUΣ−1VT + UΣ−1VTξT(I−
UUT)∇ f n

W(W)(I −VVT)
= (1 + α

µ )ξ + (I −UUT)(Gn−1 − Xn)

(I −VVT)ξTUΣ−1VT + UΣ−1VTξT(I−
UUT)(Gn−1 − Xn)(I −VVT),

where W = UΣVT represents the compact SVD of V, consisting of a diagonal matrix
Σ ∈ Rr×r and two orthogonal matrices U ∈ Rm×r and V ∈ Rn×r. In this paper, we assume
that grad f n

W(Wn) 6= 0.
Inspired by the Riemannian trust region method [64,65], a quadratic function

minξk∈TWMr mWn(ξk) = f n
W(Wn) + 〈grad f n

W(Wn), ξk〉
+ 1

2 〈Hess f n
W [ξk], ξk〉 s.t.‖ξk‖ ≤ ∆k,

(A7)

is defined for approximating f n
W around Wn in the tangent space TWMr. For some ∆k ≥ 0

in each iteration k, it is very important to obtain a search direction ξk. To evaluate how
well the model (Equation (A7)) approximates in the neighborhood of 0Wn . This can be
calculated by

ρk =
f̂ (0Wn)− f̂ (ξk)

mWn(0Wn)−mWn(ξk)
. (A8)

Meanwhile, a predefined bound is defined (i.e., ∆̄ > 0). Moreover, there are different
ways to solve the trust region subproblem in Equation (A7). One solution to this subproblem
is the truncated conjugate gradient method of Steihaug and Toint [65].
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Algorithm A1 Projected Riemannian trust region method for Equation (A6)

1: Input: Xn − Gn−1; Initial iterate: Wn ∈ Mr, Z0; parameters ∆̄ > 0,∆0 ∈ (0, ∆̄),ρ
′ ∈

(0, 1
4 ).

2: for k = 0 do
3: Computing ξk by solving Equation (A7)
4: Convergence test
5: Evaluating ρk from Equation (A8)
6: if ρk <

1
4 then

7: ∆k+1 = 1
4∆k

8: else if ρk >
3
4 and ‖ξk‖ = ∆k then

9: ∆k+1 = min(2∆k, ∆̄)
10: else
11: ∆k+1 = ∆k
12: end if
13: if ρk > ρ

′
then

14: Zk+1 = PMr (W
n + ξk)

15: else
16: Zk+1 = Zk
17: end if
18: end for
19: return Wn+1 = Zk+1

Algorithm A2 Retraction with projection

1: Initializing: W = UΣVT , ξ ∈ TWMr and 0 < εs ≤ 1;
2: Computing M = UTξV, Up = ξV −UM, Vp = ξTU −VMT ;
3: Performing QR factorization on Up and Vp, i.e., Up = QuRu and Vp = QvRv. Two

orthonormal matrices are represented by Qu ∈ Rm×r, Qv ∈ Rn×r. Two upper triangular
matrices are denoted by Ru, Rv ∈ Rr×r.

4: Performing the SVD for the following equation:[
Σ + M RT

v
Ru 0

]
= ŨΣ̃ṼT ,

where Σ̃ = diag({σ̃j}2r
j=1) ∈ R2r×2r is a diagonal matrix. Ũ, Ṽ ∈ R2r×2r denote the

corresponding orthogonal matrices.
5: Denoting Σ̃ = diag({max(σ̃j, εs)}r

j=1) ∈ Rr×r, Û = [U Qu][{Ũj}r
j=1] ∈ Rm×r and

V̂ = [V Qv][{Ṽj}r
j=1] ∈ Rn×r, where Ũj and Ṽj represent the jth columns of Ũ and Ṽ,

respectively.
6: return PMr (W + ξ) = ÛΣ̂V̂T

To obtain the next iteration from the update step in the tangent space at Wn, we need
to perform the projection PMr : Rm×n →Mr as a retraction operation in each iteration. The
retraction operation provides a smooth mapping locally around Wn, which is expressed as
follows:

PMr (Q) = arg min
W∈Mr

‖W −Q‖, (A9)

which can be viewed as a generalized approximation of the exponential mapping. Given
W ∈ Mr and ξ ∈ TWMr, the expression PMr (W + ξ) can be calculated by reduced SVD on
a 2r-by-2r matrix due to unitary invariance. The detailed implementation of the projection
operation is presented in Algorithm A2. The projection PMr in Equation (A9) satisfies the
conditions of a retraction [38].
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Appendix B.2. Updating Z

In this subsection, the solution to Equation (15) is derived. Note that the proximity
operator of the indicator function ιS (Z) is aimed to project onto the set S . Hence, we have
the following expression:

Zn = arg minX∈S ‖Xn − Z− Hn−1‖2
F

= ∏S{Xn − Hn−1}, (A10)

where ∏S{·} represents the projection onto S . The projection is calculated as shown in [48].

References
1. Leung, H.; Mukhopadhyay, S.C. Intelligent Environmental Sensing; Springer: Berlin/Heidelberg, Germany, 2015; Volume 13.
2. Feng, X.; He, L.; Cheng, Q.; Long, X.; Yuan, Y. Hyperspectral and Multispectral Remote Sensing Image Fusion Based on

Endmember Spatial Information. Remote Sens. 2020, 12, 1009. [CrossRef]
3. Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Decision Fusion for the Classification of Urban Remote Sensing Images. IEEE Trans.

Geosci. Remote Sens. 2006, 44, 2828–2838. [CrossRef]
4. Onana, V.D.P.; Koenig, L.S.; Ruth, J.; Studinger, M.; Harbeck, J.P. A Semiautomated Multilayer Picking Algorithm for Ice-Sheet

Radar Echograms Applied to Ground-Based Near-Surface Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 51–69. [CrossRef]
5. Yokoya, N.; Yairi, T.; Iwasaki, A. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data

Fusion. IEEE Trans. Geosci. Remote Sens. 2012, 50, 528–537. [CrossRef]
6. Loncan, L.; de Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.;

Simões, M.; et al. Hyperspectral Pansharpening: A Review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [CrossRef]
7. Zhao, Y.; Yan, H.; Liu, S. Hyperspectral and Multispectral Image Fusion: From Model-Driven to Data-Driven. In Proceedings of the

2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 1256–1259.
8. Xie, W.; Cui, Y.; Li, Y.; Lei, J.; Du, Q.; Li, J. HPGAN: Hyperspectral Pansharpening Using 3-D Generative Adversarial Networks.

IEEE Trans. Geosci. Remote Sens. 2020, 59, 463–477. [CrossRef]
9. Guan, P.; Lam, E.Y. Multistage Dual-Attention Guided Fusion Network for Hyperspectral Pansharpening. IEEE Trans. Geosci.

Remote Sens. 2022, 60, 5515214. [CrossRef]
10. Arablouei, R. Fusing Multiple Multiband Images. J. Imaging 2018, 4, 118. [CrossRef]
11. Li, S.; Dian, R.; Fang, L.; Bioucas-Dias, J.M. Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor

Factorization. IEEE Trans. Image Process. 2018, 27, 4118–4130. [CrossRef]
12. Dian, R.; Li, S.; Fang, L. Learning a Low Tensor-Train Rank Representation for Hyperspectral Image Super-Resolution. IEEE

Trans. Neural Netw. Learn. Syst. 2019, 30, 2672–2683. [CrossRef]
13. Veganzones, M.A.; Simões, M.; Licciardi, G.; Yokoya, N.; Bioucas-Dias, J.M.; Chanussot, J. Hyperspectral Super-Resolution of

Locally Low Rank Images From Complementary Multisource Data. IEEE Trans. Image Process. 2016, 25, 274–288. [CrossRef]
[PubMed]

14. Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.; Chen, M.; Godsill, S. Multiband Image Fusion Based on Spectral Unmixing.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 7236–7249. [CrossRef]

15. Zhang, K.; Wang, M.; Yang, S. Multispectral and Hyperspectral Image Fusion Based on Group Spectral Embedding and Low-Rank
Factorization. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1363–1371. [CrossRef]

16. Kanatsoulis, C.I.; Fu, X.; Sidiropoulos, N.D.; Ma, W. Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach.
IEEE Trans. Signal Process. 2018, 66, 6503–6517. [CrossRef]

17. Chen, Z.; Pu, H.; Wang, B.; Jiang, G.M. Fusion of Hyperspectral and Multispectral Images: A Novel Framework Based on
Generalization of Pan-Sharpening Methods. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1418–1422. [CrossRef]

18. Liao, W.; Huang, X.; Van Coillie, F.; Gautama, S.; Pižurica, A.; Philips, W.; Liu, H.; Zhu, T.; Shimoni, M.; Moser, G.; et al. Processing
of Multiresolution Thermal Hyperspectral and Digital Color Data: Outcome of the 2014 IEEE GRSS Data Fusion Contest. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2984–2996. [CrossRef]

19. Yun, Z. Problems in the Fusion of Commercial High-Resolution Satellites Images as well as LANDSAT 7 Images and Initial
Solutions. Geospat. Theory Process. Appl. 2002, 34, 587–592.

20. Tu, T.M.; Su, S.C.; Shyu, H.C.; Huang, P.S. A new look at IHS-like image fusion methods. Inf. Fusion 2001, 2, 177–186. [CrossRef]
21. Otazu, X.; Gonzalez-Audicana, M.; Fors, O.; Nunez, J. Introduction of sensor spectral response into image fusion methods.

Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2376–2385. [CrossRef]
22. Amolins, K.; Zhang, Y.; Dare, P. Wavelet based image fusion techniques: An introduction, review and comparison. Isprs J.

Photogramm. Remote Sens. 2007, 62, 249–263. [CrossRef]
23. Liu, J. Smoothing Filter-based Intensity Modulation: A spectral preserve image fusion technique for improving spatial details.

Int. J. Remote Sens. 2000, 21, 3461–3472. [CrossRef]
24. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on

oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [CrossRef]

http://doi.org/10.3390/rs12061009
http://dx.doi.org/10.1109/TGRS.2006.876708
http://dx.doi.org/10.1109/TGRS.2014.2318208
http://dx.doi.org/10.1109/TGRS.2011.2161320
http://dx.doi.org/10.1109/MGRS.2015.2440094
http://dx.doi.org/10.1109/TGRS.2020.2994238
http://dx.doi.org/10.1109/TGRS.2021.3114552
http://dx.doi.org/10.3390/jimaging4100118
http://dx.doi.org/10.1109/TIP.2018.2836307
http://dx.doi.org/10.1109/TNNLS.2018.2885616
http://dx.doi.org/10.1109/TIP.2015.2496263
http://www.ncbi.nlm.nih.gov/pubmed/26540685
http://dx.doi.org/10.1109/TGRS.2016.2598784
http://dx.doi.org/10.1109/TGRS.2016.2623626
http://dx.doi.org/10.1109/TSP.2018.2876362
http://dx.doi.org/10.1109/LGRS.2013.2294476
http://dx.doi.org/10.1109/JSTARS.2015.2420582
http://dx.doi.org/10.1016/S1566-2535(01)00036-7
http://dx.doi.org/10.1109/TGRS.2005.856106
http://dx.doi.org/10.1016/j.isprsjprs.2007.05.009
http://dx.doi.org/10.1080/014311600750037499
http://dx.doi.org/10.1109/TGRS.2002.803623


Remote Sens. 2023, 15, 4370 21 of 22

25. Vivone, G.; Restaino, R.; Dalla Mura, M.; Licciardi, G.; Chanussot, J. Contrast and Error-Based Fusion Schemes for Multispectral
Image Pansharpening. IEEE Geosci. Remote Sens. Lett. 2014, 11, 930–934. [CrossRef]

26. Xie, W.; Lei, J.; Cui, Y.; Li, Y.; Du, Q. Hyperspectral Pansharpening With Deep Priors. IEEE Trans. Neural Netw. Learn. Syst. 2020,
31, 1529–1543. [CrossRef]

27. Yokoya, N.; Grohnfeldt, C.; Chanussot, J. Hyperspectral and Multispectral Data Fusion: A comparative review of the recent
literature. IEEE Geosci. Remote Sens. Mag. 2017, 5, 29–56. [CrossRef]

28. Huang, B.; Song, H.; Cui, H.; Peng, J.; Xu, Z. Spatial and Spectral Image Fusion Using Sparse Matrix Factorization. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 1693–1704. [CrossRef]

29. Akhtar, N.; Shafait, F.; Mian, A. Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution. In Proceedings
of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer International Publishing:
Berlin/Heidelberg, Germany, 2014; pp. 63–78.

30. Simões, M.; Bioucas-Dias, J.; Almeida, L.B.; Chanussot, J. A convex formulation for hyperspectral image superresolution via
subspace-based regularization. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3373–3388. [CrossRef]

31. Dong, W.; Fu, F.; Shi, G.; Cao, X.; Wu, J.; Li, G.; Li, X. Hyperspectral Image Super-Resolution via Non-Negative Structured Sparse
Representation. IEEE Trans. Image Process. 2016, 25, 2337–2352. [CrossRef]

32. Dian, R.; Fang, L.; Li, S. Hyperspectral Image Super-Resolution via Non-local Sparse Tensor Factorization. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3862–3871.

33. Zhang, K.; Wang, M.; Yang, S.; Jiao, L. Spatial–Spectral-Graph-Regularized Low-Rank Tensor Decomposition for Multispectral
and Hyperspectral Image Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1030–1040. [CrossRef]

34. Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Hyperspectral and Multispectral Image Fusion via Deep Two-Branches Convolutional Neural
Network. Remote Sens. 2018, 10, 800. [CrossRef]

35. Huang, T.; Dong, W.; Wu, J.; Li, L.; Li, X.; Shi, G. Deep Hyperspectral Image Fusion Network With Iterative Spatio-Spectral
Regularization. IEEE Trans. Comput. Imaging 2022, 8, 201–214. [CrossRef]

36. Xie, Q.; Zhou, M.; Zhao, Q.; Xu, Z.; Meng, D. MHF-Net: An Interpretable Deep Network for Multispectral and Hyperspectral
Image Fusion. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1457–1473. [CrossRef] [PubMed]

37. Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral and Multispectral Image Fusion Based on a Sparse
Representation. IEEE Trans. Geosci. Remote Sens. 2014, 53, 3658–3668. [CrossRef]

38. Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,
USA, 2008; p. xvi+224.

39. Boumal, N. An Introduction to Optimization on Smooth Manifolds; Cambridge University Press: Cambridge, UK, 2023.
40. Absil, P.A.; Malick, J. Projection-like Retractions on Matrix Manifolds. Siam J. Optim. 2012, 22, 135–158. [CrossRef]
41. Gao, B.C.; Montes, M.J.; Davis, C.O.; Goetz, A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of

land and ocean. Remote Sens. Environ. 2009, 113, S17–S24. [CrossRef]
42. Bioucasdias, J.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview:

Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379.
[CrossRef]

43. Keshava, N.; Mustard, J.F. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [CrossRef]
44. Vogel, C.R. Computational Methods for Inverse Problems; Society for Industrial and Applied Mathematics: Philadelphia, PA,

USA, 2002.
45. Mishra, B.; Meyer, G.; Bonnabel, S.; Sepulchre, R. Fixed-rank matrix factorizations and Riemannian low-rank optimization.

Comput. Stat. 2014, 29, 591–621. [CrossRef]
46. Nascimento, J.M.; Dias, J.M. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote

Sens. 2005, 43, 898–910. [CrossRef]
47. Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression: Application to hyper-

spectral unmixing. In Proceedings of the 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4.

48. Condat, L. Fast projection onto the simplex and the `1 ball. Math. Program. 2016, 158, 575–585. [CrossRef]
49. Nishihara, R.; Lessard, L.; Recht, B.; Packard, A.; Jordan, M.I. A General Analysis of the Convergence of ADMM. In Proceedings

of the 32Nd International Conference on International Conference on Machine Learning, Lille, France, 7–9 July 2015; Volume 37,
pp. 343–352.

50. Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M. MTF-tailored multiscale fusion of high-resolution MS and Pan imagery.
Photogramm. Eng. Remote Sens. 2006, 72, 591–596. [CrossRef]

51. Laben, C.; Brower, B. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent
6011,875, 4 January 2000.

52. Aiazzi, B.; Baronti, S.; Selva, M. Improving Component Substitution Pansharpening Through Multivariate Regression of MS
+Pan Data. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3230–3239. [CrossRef]

53. Psjr, C.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data:
Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 265–303.

http://dx.doi.org/10.1109/LGRS.2013.2281996
http://dx.doi.org/10.1109/TNNLS.2019.2920857
http://dx.doi.org/10.1109/MGRS.2016.2637824
http://dx.doi.org/10.1109/TGRS.2013.2253612
http://dx.doi.org/10.1109/TGRS.2014.2375320
http://dx.doi.org/10.1109/TIP.2016.2542360
http://dx.doi.org/10.1109/JSTARS.2017.2785411
http://dx.doi.org/10.3390/rs10050800
http://dx.doi.org/10.1109/TCI.2022.3152700
http://dx.doi.org/10.1109/TPAMI.2020.3015691
http://www.ncbi.nlm.nih.gov/pubmed/32780695
http://dx.doi.org/10.1109/TGRS.2014.2381272
http://dx.doi.org/10.1137/100802529
http://dx.doi.org/10.1016/j.rse.2007.12.015
http://dx.doi.org/10.1109/JSTARS.2012.2194696
http://dx.doi.org/10.1109/79.974727
http://dx.doi.org/10.1007/s00180-013-0464-z
http://dx.doi.org/10.1109/TGRS.2005.844293
http://dx.doi.org/10.1007/s10107-015-0946-6
http://dx.doi.org/10.14358/PERS.72.5.591
http://dx.doi.org/10.1109/TGRS.2007.901007


Remote Sens. 2023, 15, 4370 22 of 22

54. Wei, Q.; Dobigeon, N.; Tourneret, J.; Bioucas-Dias, J.; Godsill, S. R-FUSE: Robust Fast Fusion of Multiband Images Based on
Solving a Sylvester Equation. IEEE Signal Process. Lett. 2016, 23, 1632–1636. [CrossRef]

55. Vivone, G.; Restaino, R.; Chanussot, J. A Regression-Based High-Pass Modulation Pansharpening Approach. IEEE Trans. Geosci.
Remote Sens. 2018, 56, 984–996. [CrossRef]

56. Vivone, G.; Restaino, R.; Chanussot, J. Full Scale Regression-Based Injection Coefficients for Panchromatic Sharpening. IEEE
Trans. Image Process. 2018, 27, 3418–3431. [CrossRef]

57. Wang, P.; Yao, H.; Li, C.; Zhang, G.; Leung, H. Multiresolution Analysis Based on Dual-Scale Regression for Pansharpening. IEEE
Trans. Geosci. Remote Sens. 2022, 60, 5406319. [CrossRef]

58. Xiao, J.L.; Huang, T.Z.; Deng, L.J.; Wu, Z.C.; Vivone, G. A New Context-Aware Details Injection Fidelity With Adaptive
Coefficients Estimation for Variational Pansharpening. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5408015. [CrossRef]

59. Garzelli, A.; Nencini, F.; Capobianco, L. Optimal MMSE Pan Sharpening of Very High Resolution Multispectral Images. IEEE
Trans. Geosci. Remote Sens. 2008, 46, 228–236. [CrossRef]

60. Lee, J.; Lee, C. Fast and Efficient Panchromatic Sharpening. IEEE Trans. Geosci. Remote Sens. 2010, 48, 155–163.
61. Remote Sensing Datasets. Available online: https://rslab.ut.ac.ir/data (accessed on 28 July 2023).
62. Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting

images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699.
63. Vandereycken, B. Low-Rank Matrix Completion by Riemannian Optimization. Siam J. Optim. 2013, 23, 1214–1236. [CrossRef]
64. Absil, P.A.; Baker, C.G.; Gallivan, K.A. Trust-Region Methods on Riemannian Manifolds. Found. Comput. Math. 2007, 7, 303–330.

[CrossRef]
65. Jorge, N.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LSP.2016.2608858
http://dx.doi.org/10.1109/TGRS.2017.2757508
http://dx.doi.org/10.1109/TIP.2018.2819501
http://dx.doi.org/10.1109/TGRS.2021.3131477
http://dx.doi.org/10.1109/TGRS.2022.3154480
http://dx.doi.org/10.1109/TGRS.2007.907604
https://rslab.ut.ac.ir/data
http://dx.doi.org/10.1137/110845768
http://dx.doi.org/10.1007/s10208-005-0179-9

	Introduction
	Scope and Contributions
	Related Work
	HS-PAN Image Fusion
	HS-MS Image Fusion


	Preliminaries for Riemannian Manifold Optimization
	Riemannian Gradient and Tangent Space
	Retractions

	Problem Formulation
	Degradation Model for Multiband Imaging
	Proposed Fusion Model
	Riemannian Submanifold Regularization
	Nonnegativity and Sum-to-One Constraints

	Proposed Method
	Alternating Minimization Scheme
	Convergence Analysis

	Performance Evaluation
	Experimental Settings
	Datasets and Quality Measures
	Results
	Hyperspectral and Panchromatic Image Fusion
	Hyperspectral, Multispectral and Panchromatic Image Fusion


	Discussion
	Conclusions
	Appendix A
	Updating  X 
	Updating  

	Appendix B
	Updating  W 
	Updating  Z 

	References 

