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Abstract: The quantification of soil organic matter (SOM) has increased over the years, especially in
the Brazilian Cerrado region, one of the most important areas for grain production in the country. In
this area, SOM content tends to be low, which directly impacts the physical, chemical and biological
quality of soils. Thus, the use of spectroradiometry has been widely evaluated to investigate whether
it can be used as a faster, more reliable and cheaper solution to meet the SOM estimation. In this
context, the objective of the present paper was to evaluate the performance of a local spectral model
for SOM prediction generated through the spiking strategy. The research was developed in the
municipality of Passos, Minas Gerais State, located in the Brazilian Cerrado. Soil samples (0–0.2 m
and 0.2–0.4 m depths) were collected in a zigzag pattern and split in calibration of the local models
from a test area (90 soil samples) and recalibration and validation from a target area (46 soil samples).
After this stage, the SOM contents were determined in a laboratory, and the spectral responses
(350–2500 nm) of each soil sample were collected. From the target area, 10, 25 and 50% of soil
spectra were selected for recalibration of the local models generated for the test area. Although
median results were observed in the post-recalibration, due to the type of sample selected and
the relative similarity among the spectral curves of both areas, improvement was observed for all
statistical indices, especially when using 50% (23) of samples for recalibration of the local models,
reaching r2 = 0.43, RMSEP = 2.34 gdm−3 and RPIQ = 4.58. These results are important for the SOM
estimation in the Brazilian Cerrado considering its importance to the food security and socioeconomic
activities. However, considering the lack of similar research in the study area, it is necessary to further
investigate the development of spectral models on a local scale and their contribution to improve the
identification of SOM spatial variability.

Keywords: spiking; soil; organic matter; spectroradiometry; partial least-squares regression

1. Introduction

The measurement of soil organic matter (SOM) content by spectroradiometry has
been widely tested due to its relation to the physical, chemical and biological properties
of soil [1–3]. For years, researchers have studied the relationship between the content of
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organic matter present in the soil and its spectral response and have concluded that this is
one of the attributes that has the greatest influence on soil reflectance [4–6].

Soil organic matter is a primary constituent of soil color, showing a close relationship
with its reflected energy, influencing the shape and albedo of the spectral curve throughout
the entire optical spectrum. In the literature, different spectral intervals are used in algo-
rithms to predict its content in the soil [7]. Analyzes employing the near-infrared region
(NIR) are successful for estimating soil organic carbon due to its sensitivity to functional
groups C-H, O-H and N-H [8] that dominate organic matter. Although SOM is more
frequently estimated by the visible region (Vis) and NIR, the shortwave infrared region
(SWIR) has shown satisfactory results.

SOM content and composition are factors that influence soil spectral reflectance,
having the ability to mask the absorption features of other constituents, as demonstrated
by Heil and Schmidhalter [9]. Evaluating highly weathered soils, Madeira Neto [10] found
alterations in the spectral curves after the removal of SOM. Demattê et al. [11] observed an
increase in reflectance in the spectral range from 350 to 2500 nm (Vis-NIR-SWIR) after the
removal of organic matter from soil samples collected in a Brazilian tropical environment.

The concentration of organic matter is inversely proportional to its spectral response [12,13].
Baumgardner et al. [14] reported that this property influences the spectral response of
the soil when its content is above 2% (20 g kg−1). According to Viscarra Rossel et al. [7],
high levels of organic matter cause an intense decline in reflectance across the spectrum,
masking other soil attributes. On the other hand, when the content is below 20 g kg−1,
other soil constituents, such as 1:1 and 2:1 clay minerals and Fe and Al oxides, become
more influential in the spectral behavior than organic matter.

Mathews et al. [15] observed that there was a significant decrease in reflectance in the
region from 500 to 1150 nm in soil samples with high SOM content (128 g kg−1), but this
behavior was not observed with samples containing“‘ between 20 and 30 g kg−1 of organic
matter. When evaluating the best wavelengths to predict MOS content, Krishnan et al. [16]
concluded that the visible region provided the best correlations, with maximum correlation
coefficients of 0.98 for the 564 and 623 nm bands.

In a more recent study, Chicati et al. [17], using an imaging sensor (600–1100 nm),
found a correlation coefficient of 0.65 for the prediction of SOM. On the other hand,
Nanni et al. [18] obtained greater responses for the wavelengths of 580, 1401, 1900, 1940,
2180 and 2200 nm, reaching a determination coefficient equal to 0.90 when using a hyper-
spectral imaging sensor to estimate organic matter.

Reis et al. [19], using a hyperspectral imaging sensor, obtained a SOM determination
coefficient equal to 0.75, with greater responses at wavelengths close to 600 and 900 nm.
In contrast, Cezar et al. [20], using a non-imaging sensor associated with chemometrics,
did not obtain satisfactory results for the prediction of organic matter. It should be noted
that these researchers worked with a spectral model that is considered large, but the spatial
variability of the samples was very high, which was not captured by the calibrated model.

In turn, Lazaar et al. [6], using a non-imaging sensor to estimate soil organic matter
from two spectral reading protocols, obtained an average determination coefficient above
0.85. Such researchers found in the study that the wavelengths that most contributed to the
prediction were those present in the near infrared region. The authors concluded that the
use of Vis/NIR/SWIR spectroscopy associated with partial least-squares regression (PLSR)
is a useful tool to analyze and predict soil organic matter.

Guerrero et al. [21], after employing several model calibration strategies, using the
spiking technique, observed a notable improvement in the accuracy of soil organic carbon
prediction, using the SWIR region.

Qiao et al. [22], studying the estimation of soil organic matter using a multispectral
sensor associated with several spectral data pre-processing techniques, concluded that
the applied techniques can significantly improve the quality of prediction models. In this
study, an r2 value equal to 0.98 and a high correlation between organic matter content and
wavelengths located at 417, 1853, 1000 and 2412 nm were observed.
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However, as already highlighted by Liu et al. [8], although there are different results
as well as different algorithms used to estimate soil organic matter from spectroscopy, a
key issue to be evaluated concerns the efficiency in producing global, state (large) and local
(small) models for prediction of this and other chemical and physical attributes of the soil.

Currently, the use of spectral libraries has gained strength in Europe [23], Australia [24]
and Brazil [25,26]. However, its use does not guarantee satisfactory prediction, since
calibrated models using spectral data may not be robust enough to estimate soil attributes
in new areas with samples external to the spectral library—a common condition that may
generate inaccurate or biased results [27].

Adding to this, such libraries are created using thousands of soil samples, which might
be expansive since, in addition to obtaining the spectral curves, laboratory analytical results
(wet chemistry) are necessary for calibrating the models for the spectral prediction of soil
attributes.

In this context of uncertainties, the need to find more economical and operationally
alternatives has become necessary. Developing prediction models on a local and regional
scale seems to be a plausible alternative. However, reducing the number of samples used
in the calibration of prediction models requires attention, as it can lead to a reduction in
accuracy. According to Shi et al. [28], to adequately describe the spatial variability of soil
properties, a sufficient number of samples must be collected for spectroscopic modeling.

Considering that the ideal number of samples is unknown, as it can vary from region
to region due to soil characteristics, use, geology, terrain geomorphology and SOM content,
among others, a way to overcome this limitation would be through the selection and
introduction of some spectral samples obtained from new areas, within local, regional or
global models (Spiking). According to Wetterlind et al. [29] and Guerrero et al. [30], this
process tends to improve the prediction of soil attributes.

In the light of the current limitations, the objective of this research was to evaluate the
performance of a local model for predicting organic matter, recalibrated with soil samples
selected from a target area located in the Brazilian Cerrado. It is expected that the use of
the spiking technique could help expand the prediction potential of the recalibrated local
models, thus allowing the use of smaller models, which would lead to cost reduction and
faster determination of the SOM.

2. Materials and Methods
2.1. Study Area

The two study areas (Figure 1) are located in the municipality of Passos, state of Minas
Gerais, Brazil, and are currently used for agriculture, pasture and forest. The test area has
32 ha and is located at coordinates 20◦46′34.10′′S latitude and 46◦31′46.79′′W longitude,
while the target area has 23 ha and is located at coordinates 20◦46′29.41′′S latitude and
46◦31′50.82′′W longitude, both belonging to datum WGS 84. The climate of the both areas
is classified as Cwa (humid temperate climate with dry winter and hot summer) according
to the Koppen climate classification [31]. The average annual temperature is 21.5 ◦C, and
the rainfall is 1288 mm [32].

Regarding current use, the test area has been sporadically used for agriculture and
pasture, spending most of the year fallow; on the other hand, the target area has been
used for agriculture. The relief of both properties presents a slope that varies from 0 to
8%. The geology is formed by a predominance of silt-clay metasediments, represented by
shales [33]. The soil of both areas is classified as Ferralsol with medium texture [34]. The
test area has a value of 320 g kg−1 clay, 90 g kg−1 silt and 590 g kg−1 sand at the depths of
0–0.20 m and 0.20–0.40 m. The target area has a value of 310 g kg−1 clay, 210 g kg−1 silt and
480 g kg−1 sand, for 0–0.20 m, and 350 g kg−1 clay, 200 g kg−1 silt and 450 g kg−1 sand, for
0.20–0.40 m depths.
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Figure 1. Location of the test and target areas in the municipality of Passos, State of Minas Gerais,
Brazil.

Both areas are within the Cerrado biome, where arable fields tend to have low levels
of organic matter. This region demands thousands of soil analyses annually, as it has low
natural fertility, which forces farmers to invest in physical and chemical soil analyses for
knowledge and maintenance of the productive potential.

2.2. Soil Samples

Soil samples were collected at 0–0.2 m and 0.2–0.4 m depths, with free walking in a
zigzag pattern. A total of 90 soil samples were collected from 45 points demarcated in the
test area and 46 soil samples from 23 points demarcated in the target area. After collection,
the samples were sent to the foliar and soil analysis laboratory at the State University of
Minas Gerais for the determination of soil organic carbon.

Initially, all samples were dried in an oven at 45 ◦C, crushed and subjected to a
2 mm mesh sieve (TFSA). Organic carbon was determined following the methodology
recommended by the Agronomic Institute of Campinas (IAC) [35]. The organic matter was
obtained by multiplying the total organic carbon by 1.724, since it has been found that in
the average humus composition, carbon participates with 58% [36].

2.3. Obtaining the Spectra of Soil Samples

After separating a small amount of soil from each sample described in the previous
section, these soils were placed in petri dishes measuring 9 cm in diameter by 1.5 cm
in height for later reading. Spectral readings were taken in a controlled environment of
humidity and light using a non-imaging spectroradiometer, ASD Fieldspec 3 JR, which
covers the spectral range from 350 nm to 2500 nm and has a spectral resolution from 3 nm
to 700 nm and 10 nm from 700 nm to 2500 nm. The equipment was programmed to perform
50 readings per sample, thus generating an average spectral curve. To collect radiometric
data, the spectroradiometer was initially optimized to eliminate internal noise. The sensors
were calibrated using a standard white Spectralon plate with 100% reflectance [37] as
performed by Rodrigues et al. [38].

The optical fiber reader was placed in a vertical position 8 cm away from the support
platform for samples, thus generating a reading area of approximately 2 cm2. A 650 W lamp
was used as the light source, with a non-collimated beam for the target plane positioned
35 cm from the platform and at an angle of 30◦ in relation to the horizontal plane [39]. A
summarized scheme of the analyses can be observed in the flowchart (Figure 2).
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2.4. Data Processing and Statistical Analysis

Raw data were pre-processed to improve the stability of the regression models as
described by Milos et al. [40]. Each spectral curve was submitted to correction by the
de-trending method, which removes non-linear trends in spectroscopic data [41].

The recalibrated models were built from multivariate PLSR statistics (partial least-
squares regressions) using Unscrambler version 10.3 software package (CAMO, Inc., Oslo,
Norway). Their performance was evaluated following the methodology described by
Bao et al. [42] (2021), using the coefficient of determination (r2), square root of the mean
prediction error (RMSEP), interquartile performance rate (RPIQ) and systematic error
(BIAS), which were calculated by the following equations:

r2 = 1− ∑n
i=1

(
yi− ŷi

)2

∑n
i=1 (yi− y)2 (1)

RMSE =

√
1
n∑n

i=1

(
yi− ŷi

)2
(2)

RPIQ =
IQ

RMSE
(3)

BIAS =
∑n

i=1

(
ŷre f − yre f

)
n

(4)

where n is the number of samples; yi is the observed organic matter value for sample
I; ŷi is the predicted organic matter for sample I; and y is the mean organic matter for
all samples [42]. The interquartile performance ratio is the difference between the third
and first quartiles (IQ = Q3 − Q1). The predictive power of the models was evaluated
considering strong predictive ability when r2 ≥ 0.75, acceptable ability when 0.5 ≤ r2 < 0.75
and unacceptable ability when r2 < 0.5 [43].

The quality classification of the models considering the RPIQ was adopted following
the criteria defined by Veum et al. [44] and Thomas et al. [45], where RPIQ≥ 2.70 represents
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models with good performance, 2.69 > RPIQ ≥ 1.89 represents models with moderate
performance and RPIQ < 1.88 represents models with low performance. The BIAS was
obtained by calculating the difference between the reference and predicted values through
the spectral curves for the Vis/NIR/SWIR regions [46]. For the RMSE, although there are
no fixed value ranges for its classification since it is a dimensionless metric, low values
indicate good calibration of the predictive models [47].

2.5. Selection of Samples from the Target Area for Recalibration of the Test Area Models

A total of 10%, 25% and 50% of samples from the target area were selected for re-
calibration of the local organic matter prediction models obtained for the test area. The
selection was performed according to Cezar et al. [46], applying the principal component
analysis on the spectral curves at this stage in order to define which would be the most
representative samples and capable of transferring the maximum existing variability in the
target area to the main model. In this step, samples distributed in the center and edges
of the spectral space were selected, considering the first two principal components (PC1
and PC2). As described in Section 2.4, the Unscrambler software was used in the selection
process through the principal component analysis module.

2.6. Evaluation of Local Prediction Models Adjusted for the Test Area

Initially, a local prediction model was generated using the test area dataset (not
recalibrated). This model was fitted with 89 soil samples from this area and validated with
46 soil samples from the target area. At a second stage, a second local prediction model
was generated using the spiking technique, which serves to mark some spectra of samples
of interest from the target area and introduce them into the original calibration matrix of
the test area. This may allow the new recalibrated model to capture most of the existing
variability in the target area, thus enabling better estimates of soil attributes [48–50].

Therefore, 94 (89 + 5), 101 (89 + 12) and 112 (89 + 23) soil samples were used for recali-
bration, while model validation was tested with 41, 34 and 23 samples, respectively, named
independent samples (Figure 3). To assess whether sample selection and recalibration
were efficient in improving the models created on a local scale, statistical parameters were
compared before and after the recalibration process, as presented in Section 2.4.
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3. Results
3.1. Descriptive Statistics

The statistics of soil organic matter content in both study areas point to a higher
average value in the target area (Table 1).

Table 1. Descriptive statistics obtained for soil organic matter in the study areas.

Area Mean Standard
Deviation Minimum Maximum Kurtosis Skewness Swilk W Swilk Prob

g dm−3

Test 19.58 6.20 10 36 −0.23 0.61 0.96 0.006
Target 31.37 7.36 19 47 −0.58 0.33 0.97 0.24

n of test area: 89 soil samples (one sample was withdrawn due to a discrepant value); n of the target area: 46 soil
samples; Swilk prob p-value (0.05).

It was found that the maximum SOM value found for the target area was close to 50 g
dm−3, e.g., 5%, a content considered high for soil patterns in the Brazilian Cerrado. The
histograms demonstrated that only the target area showed normal distribution (Figure 4).
The Shapiro–Wilk test for the target dataset showed W = 0.97 and p = 0.24, that is, p > 0.05.
On the other hand, the test area showed an asymmetrical distribution for the organic matter
attribute, with W = 0.96 and p = 0.006.
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When working with soil attributes, it is common to obtain a non-normal distribution
due to its complexity [51], which is maximized in the study region, given the wide variation
in relief and cultural management adopted by rural producers. Thus, it was decided not
to transform the data, as this would change the real scale of soil organic matter values,
compromising the relationship between with the spectral curves.

3.2. Description of Spectral Curves

The spectral curves obtained for the test area showed a relatively similar pattern in
terms of absorption bands for depths from 0 to 0.20 m and from 0.20 to 0.40 m (Figure 5).

In the spectral region from 450 to 480 nm, a characteristic peak of the presence of
goethite was observed. From 850 to 900 nm, absorption characteristics of the presence
of hematite and goethite iron oxides were detected, while at 1400 nm and 1900 nm, the
absorption occurred due to the presence of water and OH− ions [52]. According to Ten
Caten et al. [53], when the absorption bands occur at the same time at 1400 nm and 1900 nm
as detected in this research, this characterizes the presence of water bound to the soil matrix.
On the other hand, if they occur only at 1400 nm, this indicates the presence of hydroxyl
present in minerals of soil.
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Figure 5. Spectral curves of soil samples collected in the test area, at 0 to 0.20 m and from 0.20 m to
0.40 m depths.

In the regions centered at 2200 nm and 2265 nm, absorption characteristics of the
presence of Kaolinite and Gibbsite, respectively, were observed, as discussed by Demattê
et al. [54], Poppiel et al. [55] and Rodrigues et al. [56]. Similar results for absorption bands
and points of greatest reflectance were observed for the spectral curves of the target area
(Figure 6). Likewise, the reflectance factor intensities were concentrated between 0.20 and
0.50, with the higher values associated with 0.20–0.40 m depth.
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3.3. Statistical Indices of Predictive Models to Organic Matter

The results obtained during the calibration, cross-validation and prediction phase are
shown below in Table 2.

The results evidenced the highest accuracies when 112 samples were used for cali-
bration and cross-validation. In all cases, the increase in the number of samples in the
recalibrated set reflected in a reduction in error (RMSEC, RMSECV, RMSEP) as well as in
BIAS (Table 2) when compared to the model without recalibration (89 samples). In turn,
the RPIQ values followed the opposite trend, reaching a maximum value of 4.58 for the
model generated with 112 soil samples.
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Table 2. Statistical indices obtained during the generation phase of the recalibrated and non-
recalibrated models.

Description N r2 RMSEC
(g dm−3)

RMSECV
(g dm−3)

RMSEP
(g dm−3) BIAS * RPIQ *

Calibration 89 0.95 4.56 - - −0.31 1.97
Cross-validation 89 0.94 - 4.96 - −0.27 1.81
Prediction 46 0.31 - - 3.50 0.77 3.14
Recalibration 94 0.95 4.45 - - −0.30 2.02
Cross-validation 94 0.94 - 4.93 - −0.24 1.82
Prediction 41 0.31 - - 3.31 0.63 3.32
Recalibration 101 0.96 4.05 - - −0.27 2.22
Cross-validation 101 0.95 - 4.50 - −0.24 2.00
Prediction 34 0.34 - - 2.92 0.91 3.76
Recalibration 112 0.96 3.88 - - −0.26 2.31
Cross-validation 112 0.95 - 4.20 - −0.22 2.62
Prediction 23 0.43 - - 2.34 −0.27 4.58

* Dimensionless.

4. Discussion
4.1. Analysis of Spectral Curves

The relatively similar pattern in terms of absorption bands for the test areas at 0–0.20 m
and 0.20–0.40 m depths (Figure 5) occurred due to the fact that the soil in the study area
was formed by silt-clay metasediments which tend to present mineralogy and texture with
little variation along the profile (see Section 2.1).

Regarding the reflectance intensity, it was observed that most of the time, the highest re-
sponses occurred for the spectral curves belonging to the samples collected at a 0.20–0.40 m
depth. In this layer, it was found that the average contents of organic matter (16.33 g dm−3)
at 0–0.20 m depth (22.56 g dm−3) were lower, promoting a greater overlap of spectral
response (and higher reflectance) of the sand fraction, with a concentration of 590 g kg−1,
in agreement with Demattê et al. [52], Nanni et. al. [39] and Heil and Schmidhalter [9].

The similarities observed in the intensity of certain spectral curves between different
depths were associated with the soil tillage in the area, which was sporadically used to
control weeds and loosen soil compaction. In this case, a change in the concentration
of organic matter was detected between the superficial and subsurface layers due to
remobilization.

The target area had similar spectral behavior to the test area. It was found that the
average levels of soil organic matter (15.65 g dm−3) at 0.20–0.40 m depth were lower than
those found at 0–0.20 m (21.06 g dm−3). The similarity between the spectral curves of both
areas was associated with the source material, which was the same texture, which was
variable but not much (see Section 2.1), as well as to the organic matter contents, which,
despite having distant average values, presented intervals (minimum and maximum values)
with about 1% difference (Table 1).

4.2. Local Soil Organic Matter Prediction Models

The recalibrated prediction models (using the spiking technique) for the test area,
containing 94, 101 and 112 soil samples, showed slightly better results when compared
with the non-recalibrated model from 89 samples (Table 2). The relative improvement of
most statistical indices after the recalibration of the models is linked to the increase in the
number of samples used in the recalibration process, as highlighted by Hong et al. [50].

However, despite this improvement, from the r2 results obtained, the recalibrated
models from 10, 25 and 50% of the selected samples were classified as having low predictive
capacity [43], even though the values of RPIQ demonstrate that the models fall into the
good performance class [44].

It was expected that the use of 50% of samples from the selected target area for
recalibration of the local model would be enough to significantly improve its accuracy,
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as discussed by Guerrero et al. [49], leading to higher-quality SOM prediction models;
however, this did not happen since the samples selected from the target area were not able
to transmit all of the existing variability in the soil to the local models, as highlighted by
Guerrero et al. [21]. A similar result was obtained by Cezar et al. [46] during the evaluation
of strategies for estimating organic matter using the spiking technique, a condition that
leads us to believe that the type of sample selected, as well as the selection strategy,
significantly influences the recalibration of the local model, agreeing with Nawar and
Mouazen [57].

The aforementioned statement can be ratified through analysis of the regression
coefficients (β) of the SOM prediction models (Figure 7), demonstrating the influence of
each spectral band on the PLSR models [38]. Similar patterns of PLSR models can be seen
for all datasets, indicating the same structure even after recalibration.
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The non-recalibrated local model (89 soil samples) and the models recalibrated using
the spiking methodology (94, 101 and 112 soil samples) were similar in terms of the
intensity and spectral location of significant bands or intervals. The most important bands
in all situations were those centered in the range of 552, 760, 1064, 1408, 1718, 2193 and
2268 nm, in agreement with Milos et al. [40]. This behavior is related to the overtones and
combinations of fundamental vibrations and reflects the stretching and bending of chemical
bonds, such as O–H, C–H, and N–H [8,58], present in the structures of organic matter.

Another explanation for why the post-calibration results were lower than expected is
that, although the selected samples from the target area had different chemical and physical
properties\from those of the test area, they did not have a marked spectral variation. Thus,
both sets of data occupied the same spectral space, as observed by Nawar and Mouazen [57],
which led the recalibration to lack a significant effect, agreeing with Cezar et al. [20].

The principal component analysis demonstrated large similarity between the spectral
set of the target and test areas (Figure 8), except for three samples. There, three samples
were held out of the ellipse, generated by the test of Hotelling’s T2 at 1% probability, which
evidences the presence of outliers [59].

These results indicate that the recalibration of models on a local scale, using the spiking
technique, will have a greater effect when the samples selected from the target area have a
significant level of spectral difference and spatial variability in relation to the data set from
the test area. Thus, the predictive capacity of the recalibrated models might be enhanced
when applied to new areas since the range of soil attributes has a larger possibility to meet



Remote Sens. 2023, 15, 4397 11 of 16

the ranges found for the samples used in the recalibration, as pointed out by Nawar and
Mouazen [60].
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Since the taxonomic classification for the soil class of both areas was similar, as well as
their geology, with variances in only the granulometric aspects and soil use, low spectral
variability was observed (Figures 5 and 6). According to Ramirez Lopes et al. [61], spectral
similarities may reflect similarity in soil composition. Therefore, it is also considered that
the average SOM content was below 2% for the test area and close to 3% for the target area
(Table 1), without a significant overlap of the effects of organic matter on the other soil
attributes or large spectral variability [11,14].

Although the areas have been managed differently over the years, it should be noted
that, as they are located in a tropical region, the accumulation and maintenance of SOM
is very slow, requiring more than 10 years to achieve significant increments in its concen-
tration [62]. Thus, large variations in terms of the concentration of this attribute are not
expected for agricultural soils distributed in the Brazilian Cerrado, except for places where
a mix of crop types, associated with crop rotation for long years, is adopted, which does
not occur in the study area.

Despite what was observed, it should be noted that when compared to work carried
out by other researchers in other countries (but mainly in Brazil), the results obtained here
are encouraging for estimating organic matter in the Cerrado environment by remote sens-
ing; however, many challenges must be overcome. Nanni et al. [39], using this technique to
estimate organic matter in Paranaense soils (not Cerrado), obtained an r2 value equal to
0.31, an RMSEP equal to 6.88 g dm−3 and a Bias equal to 4.26, while our research obtained
an r2 value equal to 0.43, an RMSEP equal to 2.34 g dm−3 and Bias equal to −0.27. Cezar
et al. [20], when employing the use of remote sensing associated with the spiking technique
to estimate soil organic matter in a subtropical environment in Brazil (not Cerrado), reached
r2, RMSEP and Bias values equal to 0.41, 4.6 g dm−3 and 0.49, respectively.

On the other hand, Reis et al. [19], using an Aisafenix hyperspectral sensor (Specim,
Finland) in estimating soil organic matter in a subtropical environment, obtained superior
results, with r2, RMSEP and BIAS values equal to 0.75, 3.44 g dm−3 and 0.58, respectively.
In this case, the positive result may be linked to the sensor, which has a higher resolution
and the ability to capture small variations in soil organic matter content, allowing for more
effective modeling. Using the same AisaFenix imager (Specim, Finland), Nanni et al. [18]
achieved superior results when compared to our study for the prediction of organic matter,
reaching an r2 value equal to 0.67, an RMSEP equal to 2.16 g dm−3 and BIAS equal to
−0.22. Paz-Kagan et al. [63], also using the Aisafenix hyperspectral sensor to estimate soil
attributes in Israel and Germany, achieved good results for organic matter, reaching an r2

value equal to 0.61 for the estimation in Israel and 0.95 in Germany.
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In all these cases where the results were superior, the authors used a new hyper-
spectral sensor, which may indicate that is also necessary to change the sensor to test the
possibility of having more robust data modeling in the Cerrado biome. Figure 9 presents
the scatterplots between the predicted and reference values of SOM, corroborating the
aforementioned statements. The correlation found between the predicted and reference
values demonstrates that they are far from the regression line. However, the estimated
values are within the upper and lower limits of the confidence interval set at the 95%
probability level.
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model tested with 23 samples. Regression line (solid line); confidence interval (red line).

Finally, it should be noted that by adopting 50% of samples from the target area for
recalibration of the Vis/NIR/SWIR spectral models, the results were superior in relation to
the other models (Table 2), agreeing with Shi et al. [28]. This demonstrates that the selection
and insertion of some samples from the target area in the spectral prediction model are
important to improve the estimation, which has also been highlighted by Wetterlind
et al. [29], Guerrero et al. [30] and Guy et al. [48].

These results are important for the SOM estimation in the Brazilian Cerrado since de-
mand has grown over the years, requiring a faster and cleaner methodology for estimating
these important soil attributes linked to physical, fertility and grain productivity in a region
naturally formed by poor soils. However, considering the lack of similar research in the
study area, it is necessary to further investigate the development of spectral models on a
local scale and their contribution to improve the identification of SOM spatial variability.
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5. Conclusions

The use of the spiking technique improved the predictive capacity of the recalibrated
spectral models for the Cerrado by 12% compared to the non-recalibrated model. The use
of local models for predicting organic matter for the Brazilian Cerrado showed potential
for use when associated with the spiking technique without using spectral libraries. The
development of local spectral models for estimating SOM is a potential alternative for areas
in Cerrado, since the use of a model that is considered small will contribute to reduced
costs in relation to models generated with large amounts of soil samples. Complementary
studies should be carried out, taking into account new areas, uses and vegetation cover, as
well as variations in the type and quantity of samples selected for recalibration of spectral
models for estimating SOM in the Brazilian Cerrado.
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