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Abstract: Speckle noise is an inherent problem of synthetic aperture radar (SAR) images, which not
only seriously affects the acquisition of SAR image information, but also greatly reduces the efficiency
of image segmentation and feature classification. Therefore, research on how to effectively suppress
speckle noise while preserving SAR image content information as much as possible has received
increasing attention. Based on the non-local idea of SAR image block-matching three-dimensional
(SAR-BM3D) algorithm and the concept of sparse representation, a novel SAR image despeckling
algorithm is proposed. The new algorithm uses K-means singular value decomposition (K-SVD) to
learn the dictionary to distinguish valid information and speckle noise and constructs a block filter
based on K-SVD for despeckling, so as to avoid strong point diffusion problem in SAR-BM3D and
achieve better speckle noise suppression with stronger adaptability. The experimental results on real
SAR images show that the proposed algorithm achieves better comprehensive effect of speckle noise
suppression in terms of evaluation indicators and information preservation of SAR images compared
with several existing algorithms.

Keywords: synthetic aperture radar; image despeckling; non-local; dictionary learning;
sparse representation

1. Introduction

According to the roughness of the image, synthetic aperture radar (SAR) images can
be divided into three regions: homogeneous region, heterogeneous region, and extreme
heterogeneous region. The scattering in homogeneous regions is relatively balanced,
such as grassland and sea surface. Heterogeneous regions contain features such as edges
and textures, while extreme heterogeneous regions often contain targets such as strong
scatterers. Due to the randomness of the scatterer in spatial distribution and backscattering
characteristics, the amplitude and phase of the echoes of the resolution unit also have
randomness. Even in homogeneous regions where the backscattering characteristics of the
scatterers are basically the same, the intensity of the echoes from different resolving units
may be different, which leads to the fluctuation of the intensity of the imaging results and
the formation of coherent speckle noise [1]. The coherent speckle noise causes the signal
intensity between adjacent pixels to change, which visually manifests as granular noise,
i.e., speckle noise. Speckle noise seriously affects the acquisition and application of SAR
image information. Therefore, speckle noise suppression has been a hot spot in the field of
SAR image processing research.

Early traditional filtering algorithms, such as space-domain filtering [2–6], transform-
domain filtering [7,8], and partial differential equation filtering (PDE) [9–11], are well
developed. All these methods estimate the local statistics of the image with convenient pro-
cess and high real-time performance. However, there are certain limitations in maintaining
detailed texture. Since then, the non-local mean (NLM) filtering algorithm [12,13] has made

Remote Sens. 2023, 15, 4485. https://doi.org/10.3390/rs15184485 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15184485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8273-3387
https://doi.org/10.3390/rs15184485
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15184485?type=check_update&version=1


Remote Sens. 2023, 15, 4485 2 of 20

great progress. The basic idea is to select a search window centered on the filtered pixel,
calculate the similar weights of the pixels in the search window and the filtered pixel, and
then weigh the sum of all pixels in the window and their corresponding similar weights to
obtain the filtered pixel’s filtering result. Compared with the traditional filter, the non-local
mean filter makes full use of the similarity of image pixels, has stronger adaptivity, and
can effectively avoid the generation of artifacts. Therefore, the non-local mean filter is
currently the most widely used in the field of speckle noise suppression and has the best
comprehensive effect.

In 2007, Dabov et al. proposed the block-matching three-dimensional (BM3D) algo-
rithm by combining the ideas of non-local mean filtering and joint filtering [14]. BM3D
shows excellent denoising ability on optical images. Later, Sara Parrilli et al. changed
the similarity calculation method in BM3D to the similarity weight calculation method
in the Probabilistic patch-based (PPB) algorithm and the joint filtering method to linear
minimum mean square error filtering on wavelet domain and proposed the SAR-BM3D
despeckling algorithm applicable to SAR images [15]. The SAR image block-matching
three-dimensional algorithm (SAR-BM3D) shows good speckle noise suppression perfor-
mance and edge retention ability and is currently recognized as one of the best methods for
SAR image despeckling. Generally speaking, denoising means noise removal of optical
images, and despeckling means the speckle noise suppression of SAR images. However,
when the speckle noise intensity is too large, the calculation accuracy of similar weights in
the non-local similar block-matching process will be affected and strong point diffusion
phenomenon will be generated.

To solve this problem, a new non-local SAR image despeckling method based on
sparse representation is proposed in this paper. The core idea of this new method is
to use sparsity and maximum posterior estimation methods for despeckling, which can
distinguish effective terrain information from unstructured speckle noise in the image. This
can effectively avoid the problem of strong point diffusion in SAR-BM3D. The approximate
process is to follow the first step of coarse filtering of SAR-BM3D. The second step of fine
filtering is to use K-means singular value decomposition (K-SVD) sparse representation
image despeckling [16] instead of minimum linear mean square deviation filtering on
the logarithmic image of the coarse filtered image. As the residual between the original
image and the reconstructed image in the process of dictionary iterative learning and
image reconstruction, the nonstructural information in the image, i.e., speckle noise, can be
discarded during dictionary iterative learning and image reconstruction processes.

The organization of this paper is as follows. In Section 2, the principle of sparse
representation despeckling and the basic idea of the proposed algorithm are introduced
in detail. The specific flow of the proposed algorithm is described in detail in Section 3.
The experimental results of real SAR images are shown in Section 4 to demonstrate the
effectiveness of the proposed algorithm. And the conclusion is given in Section 5.

2. Basic Idea

The basic idea of this article is to integrate sparse representation denoising into non-
local mean filtering in theory and algorithm structure. In this section, the model of speckle
noise in SAR images is first analyzed, followed by an introduction to sparse representation
theory and related image-denoising algorithms. Finally, the motivation of applying sparse
representation theory to non-local filtering in the new algorithm is explained in detail.

2.1. Noise Model Analysis

In optical images, noise usually exists in additive form. In contrast, speckle noise
satisfies the multiplicative model under the assumption of full development. The noise-
free optical image and the image after adding multiplicative noise are shown in Figure 1.
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Assuming that the coherent speckle noise of the SAR image is fully developed, the observed
SAR image I can be represented by the following model [17]:

I = xv, (1)

where x is the true speckle-free SAR image and v is the coherent speckle noise. A Gamma
distribution with mean 1/L and variance 1/L is obeyed, where L is the number of image
views. The common denoising algorithms designed for additive noise cannot be applied
to SAR images directly. As a result, logarithmic conversion of the SAR image is required
before despeckling. The SAR image model is converted to an additive model. The image
model is then transformed into the following model:

∼
I= log(I) = log(x) + log(v) =

∼
X+

∼
V, (2)
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Figure 1. Optical images and speckle noise images. (a) Optical image; (b) Image with speckle noise.

SAR image can be regarded as the superposition of valid information and speckle
noise. The valid information refers to the part of the image that can provide the information
of the observed scene, such as terrain, buildings, maneuvering targets. In SAR-BM3D
algorithm, speckle noise appears in the form of disordered and random high-intensity
pixels in the similar block-matching step. When the intensity of speckle noise in SAR
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images is too high, it is possible to match two randomly similar blocks of noisy pixel blocks
into a similar block group. This actually enhances the noise pixels in the subsequent joint
filtering, resulting in strong point diffusion phenomenon and even false targets. The key
to solving this problem is to enable the algorithm to distinguish whether the pixels in an
image belong to valid information or speckle noise. The valid information in the SAR
image tends to have a certain structure and texture, while the speckle noise is disordered
and random. It is due to the different sparsity of the valid information and speckle noise
that the human eye can distinguish between them in the image. This sparsity is the key to
solving the problem of strong scatterer diffusion.

2.2. Sparse Representation

Transform dictionaries are usually divided into general dictionaries and learning
dictionaries. Common general dictionaries choose the fixed form dictionaries on specific
transform domain, such as Fourier transform (FT) dictionary, discrete cosine transform
(DCT) dictionary, wavelet transform (WT) dictionary, contourlet dictionary, etc. The learn-
ing dictionary is a special dictionary generated by training the image to be processed.
Each column in the dictionary is called an atom, each atom contains the structural features
of the image. Sparse representation theory assumes that signals can be represented by
linear combination of a finite number of atoms in a predefined dictionary. The coefficients
corresponding to these atoms are the combination coefficients. Most of the combination
coefficients are approximately zero. The matrix formed by these combination coefficients is
the coefficient matrix. The coefficient matrix is sparse. After constructing the sparse linear
model using the training samples, the atoms are endowed with the structure features of the
valid information. The valid information in the image can be obtained from a finite number
of atoms in the dictionary. The valid information can be combined linearly by these finite
atoms with the sparse coefficient matrix.

As illustrated in Figure 2, given an image X, valid information such as terrain informa-
tion in X can be expressed as the product of a dictionary D and a sparse coefficient matrix α,
i.e., X = Dα. The randomness and unstructured nature of the invalid information prevents
it from being represented sparsely by the dictionary [18]. Therefore, for a noise-containing
image X, which will be reconstructed by the dictionary and the sparse coefficient matrix,
the noise in X will not be sparsely represented. The reconstructed image X = Dα contains
only the valid information in the original image X, and the noise will be discarded as the
residual (X − X). This is the basic principle: that the sparse representation can denoise the
image.

The original representation filtering on specific transform domain sets a threshold
for the coefficient matrix by a specific shrinkage method. The elements of the coefficient
matrix less than the threshold are regarded as zero, and the coefficient items containing
noise are discarded. Denoising is accomplished by exploiting the sparsity of the coefficient
matrix on this specific transform domain. The most classical hard threshold shrinkage is to
set a threshold artificially, and the elements below the threshold are counted as near-zero,
then the coefficient matrix can be regarded as sparse. The original sparse representation
filtering on a specific transform domain extracts a finite number of atom combinations in
the corresponding orthogonal dictionary of this transform domain. Then, the denoised
results are reconstructed by inverse transformation. The coefficient items containing noise
information are discarded as reconstruction residuals in this process. This idea has led to
the creation of the well-known wavelet shrinkage algorithm and several new customized
multi-scale and directional redundant transformation, such as [19,20]. These algorithms
are easy to understand and operate.
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However, the success of such a general dictionary approach in practical denoising
applications depends on whether the filtered signal is sparse in the corresponding transform
domain. Therefore, this kind of method is not sufficiently general. Compared with the
specific transform domain filtering, the sparse despeckling part of the new proposed
algorithm takes the form of solving the maximum a posteriori (MAP) estimation problem.
The dictionary of the new proposed method is a set of learned parameters learned from
the image instead of the set of pre-selected basis functions like curvelet or contourlet. The
DCT dictionary is used as the initial dictionary. In each iteration, the orthogonal matching
pursuit (OMP) [21] method is used to update the sparse coefficient matrix row by row, and
the singular value decomposition is used to update the dictionary matrix column by column.
The optimal solution that meets the constraints is learned from multiple optimizations. The
constraints are usually divided into sparsity constraint and image error constraint. The
sparsity constraint is the maximum sparsity of the coefficient matrix, image error constraint
is the maximum error between the input image and the reconstructed image. Dictionary
learning is an iterative process of optimizing the dictionary column by column using an
update method in each iteration. The sparse representation is the process in which the
reconstructed image is linearly combined by using updated dictionary with updated sparse
coefficient matrix in each optimization process.

The effect of the maximum a posteriori estimation method is related to the degree of
dictionary quality optimization. In this paper, the degree of sparsity is defined as the ratio
of the number of non-zero elements to the total number of elements in a column of atoms
in the dictionary. As shown in Figures 3 and 4, Figure 3 shows that the dictionary learned
from real SAR images with different number of iterations, (a) is the dictionary learned from
iteratively updating five times, and (b) is the dictionary learned from iteratively updating
ten times. Figure 4 shows the despeckling results learned from real SAR images with
different number of iterations, (a) is the despeckling result learned from iteratively updating
five times, and (b) is the despeckling result learned from iteratively updating ten times.
Obviously, the filtering results (a) in the Figure 4 corresponding to the dictionary learned
from five iterations are fuzzy, the point targets are mixed together, and the experimental
data show that the sparsity degree of the learned sparse coefficient matrix learned from
five iterations is 9/256. Compared with the filtering results after five iterations in Figure 4a,
the filtering results after ten iterations in Figure 4b are significantly more detailed, and the
edge and point targets marked by red rectangles are also clearer. The experimental data
show that the sparsity degree of the sparse coefficient matrix learned from ten iterations is
reduced to 3/256. Therefore, with the increase in the number of iterations, the quality of the
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learned dictionary can be gradually improved. The learned dictionary after more iterations
can not only express more detailed parts of the image, but also reduce the sparsity degree
of the sparse matrix. As a result, it can be seen from Figures 3 and 4 that the dictionary
optimized with a larger number of iterations has the potential to represent the image more
accurately and sparsely.
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Inspired by the above conclusion that the higher the number of iterative updates,
the higher the quality of the learned dictionary, the proposed method uses the sparse
representation filtering based on K-SVD to accomplish the filtering in specific transform
domain. The optimal dictionary and sparse coefficient matrix that satisfy the constraints
are learned, so as to achieve the best combined effect of speckle noise suppression and
image detail representation. K-SVD based on overcomplete dictionary learning is one of the
most representative algorithms in image denoising based on sparse representation. Then,
SAR image filtering based on dictionary learning and sparse representation [22] adds a pre-
processing step of logarithmic conversion of the image before K-SVD image despeckling.
The SAR image-denoising model based on weighted sparse representation [23,24] performs
similar block matching on the logarithmic image of the original SAR image, and then
performs K-SVD image denoising. This SAR image filtering based on dictionary learning
and sparse representation applies the sparse representation filtering idea to SAR image
despeckling, showing good results in speckle noise suppression.

2.3. Motivation

The core idea of K-SVD filtering is to take advantage of the different characteristics
that valid information can be sparsely represented, while noise information cannot be
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sparsely represented. The different characteristics can precisely help to solve the problem
that valid information and noise in the image are difficult to distinguish in amplitude. From
the perspective of algorithm structure, the image denoising based on sparse representation
has some similarity with the method architecture in SAR-BM3D. They both contain the
steps of image block selection, filter processing, and block restoration. So, the block filtering
step of fine filtering in SAR-BM3D can be theoretically replaced by K-SVD despeckling. A
new algorithm of non-local SAR image despeckling based on sparse representation can be
proposed.

The proposed algorithm does not have a serious impact on the filtering results during
the similar block-matching process, even if the similar block matching is affected by the
high-intensity speckle noise. Since the speckle noise of the image is still unstructured and
cannot be represented sparsely by the dictionary, the speckle noise will be discarded during
the reconstruction of the image through the dictionary and sparse coefficient matrix.

The first step of the new algorithm follows the coarse filtering step of SAR-BM3D. The
second step is performed on the logarithmic image of the original image. The logarithmic
image is divided into blocks of the same size to form a three-dimensional dictionary group.
And the dictionary of the corresponding block is selected according to the position of
the current image block in the filtering process. Then, the sparse matrix and learned
dictionary are trained using the OMP method and K-SVD. Finally, the filtered image blocks
are reconstructed. The K-SVD algorithm is flexible and can be used with a variety of pursuit
methods, the classical OMP pursuit method is selected in this paper. After sequentially and
iteratively processing all image blocks, the final image is restored by weight aggregation.
Such an improvement not only inherits the strong adaptivity and good filtering effect of
SAR-BM3D, but also can overcome the drawback of strong point diffusion for strong noise
images and demonstrate the adaptability of the algorithm. The specific method flow will
be described in detail in Section 3.

3. Proposed Algorithm

The overall flowchart of the proposed algorithm is shown in Figure 5. The first part
marked in blue color in Figure 5, follows the architecture of SAR-BM3D, which performs
coarse filtering on the original image I. The coarse filtering process is made up of similar
block matching, undecimated discrete wavelet transform (UDWT) filtering based on local
linear minimum-mean-square-error (LLMMSE) shrinkage, and aggregation.

Since the original K-SVD denoising is suitable to deal with additive noise and the
speckle noise is the multiplicative model, the original image needs to be log-transformed
before the second part begins. In the second part marked in red color in Figure 5, similar
block matching is performed again on the coarse filtered output image. As shown in
Figure 6, the similar blocks in the corresponding position in the logarithmic image Ilog are
converted into one-dimensional column data. As shown in Figure 7, the reference block
marked in yellow color is the image block at the current filtering position. In a certain
selection region marked in blue color centered on the reference block, the similarity between
the reference block and each image block in this selection region is calculated. The image
blocks with large similarity are the similar blocks of the reference block, which is marked
in red color. All the blocks similar to the same reference block form a similar block group.
Each image block in a similar block group is converted into one-dimensional column data,
which are stacked into a two-dimensional matrix YG by column. After the DCT dictionary
is determined as the initial dictionary, the OMP tracking method and K-SVD are used to
update and learn the three-dimensional dictionary group and sparse coefficient matrix.
The iterative update was performed until the sparse matrix met the set sparse depth range
and the image met the set error range. The reconstructed image of the last iteration is
the logarithmic image block after sparse representation despeckling. Then, the filtered
logarithmic image blocks are aggregated and restored according to the weight. The final
despeckling image is obtained by exponentiating the aggregated logarithmic image.
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blue is the selection region.

3.1. Three-Dimensional Dictionary Group

After completing the first step of coarse filtering on the original image, similar block
matching needs to be performed again on the coarse filtered image. Since SAR images
are generally too large, the learning dictionary far away from the selection region of refer-
ence block is not structurally representative for the reference block. Moreover, dictionary
learning is very time-consuming. However, if a selection region is randomly selected for
dictionary learning, it is easy to miss the region near the reference block, which makes the
learned dictionary invalid for the reference block.

Therefore, in the dictionary training step, the proposed algorithm makes some im-
provements. Different from the original K-SVD denoising algorithm, the logarithmic image
of the coarse filtering result is divided into image blocks of the same size: each image block
is transformed separately to obtain the initial dictionary, so as to obtain a three-dimensional
dictionary group. When the dictionary needs to be trained or used, the corresponding
dictionary is selected according to the position of the reference block for updating or recon-
struction. In this way, the dictionary set obtained by training can be more representative of
the local structure for the reference block, which can effectively reduce the generation of
reconstructed image artifacts. As the commonly used dictionary [25,26], the DCT dictionary
is selected as the initialization dictionary in this proposed method.

3.2. Sparse Representation Despeckling

The image despeckling part, based on sparse representation of the new algorithm,
updates the dictionary and the sparse matrix iteratively by using the K-SVD method and
the pursuit method. The K-SVD method has very strong applicability and can be combined
with a variety of pursuit methods, and the classical OMP pursuit method is used in this
paper, so as to solve the equation:

α̂j = argmin‖ α ‖0, s.t.‖ Xj − Djαj ‖2
F < ncε, (3)

Dj is the dictionary corresponding to the current reference block in the three-dimensional
dictionary group. α̂j is the sparsity coefficient matrix corresponding to the dictionary Dj. The
first term ‖ α ‖0 is the sparsity constraint, the second term ‖ Xj − Djαj ‖2

F is the error between

the two-dimensional matrix YG and the reconstructed two-dimensional matrix ŶG, nc is the
number of columns of the two-dimensional matrix YG, and ε is the maximum allowed value
of the reconstruction error. When the sparsity and image error constraints are satisfied or the
maximum number of iterations was reached, the reconstructed image of the last iteration was
output.
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The above operation is the filtering process of one reference block and its similar
block group. For the filtering of the whole image, this process needs to be carried out by
traversing all image blocks in turn. ŶG is the filtered value of the two-dimensional matrix
YG after sparse representation despeckling. ŶG is restored as ŷpatch, ŷpatch is reconstructed
image block of the reference block or its similar blocks. ypatch is the reference block or its
similar blocks. Then, all the ŷpatch are aggregated and restored to the original position with
a certain weight.

For the whole image, the filtering values of the same pixel in different similar block
groups are aggregated by the weight summation in the SAR-BM3D algorithm. x̂G(s) is the
value of pixel s in a group of estimates values. wG is the weight of this group of estimate
values in the aggregation restoration process. The pixel value x(s) of the final result is:

x(s) =
∑s∈YG

wG x̂G(s)
∑s∈YG

wG
, (4)

The weights wG are obtained by the following formula:

wG ∝
1

E(n2)
≈ 1

E
[(

ypatch − ŷpatch

)2
] , (5)

where E[·] denotes statistical expectation, n2 is the variance between the ypatch and its

reconstructed image block ŷpatch. E
[(

ypatch − ŷpatch

)2
]

is the variance expectation of all

image blocks in a similar block group. The larger the variance, the smaller the weight of
these filtering values. The process is repeated to traverse the whole image in turn, and the
final despeckled image is obtained by exponentiating the whole image.

4. Experimental Result

In order to verify the effectiveness of the proposed algorithm, experiments based on
real SAR images in TerraSAR-X measured data and simulation images are performed in
this section. In this experiment, the real SAR images are filtered by various classical speckle
noise suppression methods and the proposed method. The equivalent number of looks
(ENL), the edge preservation indicator (EPI) and the ratio of the original image and the
despeckled image R are used to evaluate and compare the filtering effect in homogeneous
region, edge preservation effect, and overall information preservation ability of the image.

4.1. Parameter Setting

For all the algorithms performed in the experiments, the parameters are set as sug-
gested in the references if not stated otherwise. In the coarse filtering step of the proposed
algorithm, the size of the similar block group is fixed as 8 × 8 × 16, and the size of search
window is 39 × 39, which is the same as in SAR-BM3D. In the despeckling based on sparse
representation, the number of image blocks in a similar block group is set to 32, and the
size of two-dimensional matrix is set to 64 × 32. The SAR image is divided into blocks of
size 128 × 128 for three-dimensional dictionary training, and the size of each dictionary is
set to 64 × 256. Same as the original K-SVD denoising algorithm, the maximum iteration
number of the proposed algorithm is set to 10.

The system parameters have been detailed in the Table 1 as follows.
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Table 1. The system parameters.

System Parameter Value

Pulse repetition frequency 8300 Hz

Ground range resolution 1.18 m

Azimuth resolution 1.10 m

Signal Bandwidth 300 MHz

4.2. Evaluation Indicators and Despeckling Results

In the experiment, ENL was used to evaluate the ability of despeckling in homo-
geneous regions. The larger the ENL, the stronger the ability to suppress speckle noise.
ENL is meaningful only for homogeneous regions, so it is necessary to manually select a
homogeneous region in the image to calculate the ENL of this region. In this experiment,
four homogeneous regions of equal size were selected on the image to be evaluated; after
calculating their ENL respectively, the average value was taken. The ENL is calculated
as shown in Equation (6). µ is the mean value of the pixel intensity in the selected homo-
geneous region, and σ2 is the variance of the pixel intensity in the selected homogeneous
region.

ENL =
µ2

σ2 , (6)

At the same time, EPI is used to evaluate the edge preservation ability. The closer
the EPI is to 1, the stronger the edge preservation ability is. EPI is calculated as shown in
Equation (7), which is the gradient ratio between the despeckled image and the original
image. EPI is calculated on the image patches selected from the edge regions. The i is the
horizontal coordinate of the pixel in the selected edge image block, and j is the vertical
coordinate of the pixel in the selected edge image block. X is the pixel value of the current
coordinate of the original image, and X̂ is the pixel value of the current coordinate of the
despeckled image.

EPI =
∑i,j |X̂(i, j)− X̂(i, j + 1)|+ |X̂(i, j)− X̂(i + 1, j)|
∑i,j |X(i, j)− X(i, j + 1)|+|X(i, j)− X(i + 1, j)| , (7)

The ratio of the original image and the despeckled image R, is very useful in both
homogeneous regions and heterogeneous regions. Generally, the mean and variance of
R are used as evaluation indicators. According to the ideal situation, R should obey the
gamma distribution, the average of R should be 1, and the variance of R should be 1/L. The
mean value of R is closer to the ideal situation, indicating that the ability of the despeckling
algorithm to retain the radiation information in the original image is better, the image
deviation before and after despeckling is smaller, and the probability of generating false
targets is lower. The closer the variance of R is to the ideal situation, the stronger the overall
speckle noise suppression ability of the image is.

In this paper, the despeckling effects of various methods on real SAR images are
evaluated.

As shown in Table 2, compared with the PDE method, the newly proposed algorithm
is stronger than the PDE in terms of despeckling in homogeneous regions, as well as in
terms of overall image despeckling and information preservation, and the edge texture
preservation is also comparable. Compared with the PPB method, the new algorithm
shows superiority in homogeneous region despeckling, edge preservation, overall image
information preservation and overall speckle noise suppression. Compared with the SAR-
BM3D algorithm, the edge preservation ability is effectively improved while maintaining
the despeckling effect in homogeneous regions.
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Table 2. Comparison of various evaluation indicators.

Algorithm ENL EPI Average of the Ratio of Noisy
Image to Despeckled Image

Variance of the Ratio of Noisy
Image to Despeckled Image

Noisy image 0.99 1 - -
PDE 7.9 0.86 1.05 0.53
PPB 10.12 0.76 0.83 0.57

SAR-BM3D 36.33 0.68 0.94 1.07
Proposed algorithm 38.61 0.87 0.92 0.99

Figures 8 and 9 are experimental results on real SAR images, Figure 10 is experimental
results on simulated images. As shown in Figures 8 and 9, observing the despeckling
images of different speckle noise suppression algorithms, it can be concluded that the
proposed algorithm achieves a good balance between edge preservation, homogeneous
region despeckling, overall image despeckling and preservation of the overall image
radiation information, and the image is clean and the target is clear.
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Figure 10. SAR simulation images processed by different methods. (a,b) Speckle SAR images;
(c,d) Simulation image generated by speckle SAR image and gamma distributed random noise matrix
with a view number is 1; (e,f) Simulation results of the SAR-BM3D; (g,h) Simulation results of the
proposed method.
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As shown in the Figure 10 and Table 3, in the speckle SAR image simulation exper-
iment, the edge preserving ability of the proposed algorithm is comparable to that of
SAR-BM3D, and the speckle noise suppression ability in homogeneous region is better than
that of SAR-BM3D.

Table 3. Evaluation indicators of the simulation experiments.

Algorithm Figure EPI ENL

Noisy image
(c) 1 0.99

(d) 1 0.95

SAR-BM3D
(e) 0.30 3.66

(f) 0.34 2.64

Proposed method
(g) 0.28 5.02

(h) 0.37 3.98

The despeckling experiments of speckle SAR images added in noise with different SNR
have also been carried out. The resulting images are shown in Figure 11 and Table 4. As
shown in Figure 11 and Table 4, just like SAR-BM3D, when the noise with SNR = 10 dB is
added, the speckle noise suppression ability in homogeneous region and edge preservation
ability of the proposed method are both weakened. When the noise with SNR = 20 dB is
added, the speckle noise suppression ability in homogeneous region is slightly enhanced,
but the edge preservation ability is slightly weakened. In general, the speckle noise
suppression ability in the homogeneous region of this proposed method is comparable to
that of SAR-BM3D and the edge preservation ability of this proposed method is better than
that of SAR-BM3D when different decibels of noise are added.

Table 4. Evaluation indicators of SAR images with different SNR.

Algorithm Figure EPI ENL

Noisy image
(a) original 1 1.38

(b) SNR = 10 dB 1 1.30

(c) SNR = 20 dB 1 1.32

SAR-BM3D

(d) original 0.43 10.13

(e) SNR = 10 dB 0.26 8.49

(f) SNR = 20 dB 0.30 15.61

Proposed method
(g) original 0.79 16.77

(h) SNR = 10 dB 0.38 7.52

(i) SNR = 20 dB 0.41 19.35

As shown in Table 5, compared with the non-local method, the proposed method takes
a little longer time but has better speckle noise suppression ability. Taking SAR-BM3D, a
recognized effective algorithm in non-local ideas, as an example, the proposed method
takes 3.5 s longer than SAR-BM3D. However, while maintaining the ENL and retention
ability of radiation information, EPI is improved from 0.68 to 0.87, the edge preservation
ability has been improved, so it is worthwhile.
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Figure 11. Despeckling results of SAR images added in noise with different SNR. (a) Original speckle
SAR image; (b) Speckle SAR image with Gaussian white noise of SNR = 10 dB; (c) Speckle SAR
image with Gaussian white noise of SNR = 20 dB; (d) Despeckling result of image (a) by the proposed
method; (e) Despeckling result of image (b) by the proposed method; (f) Despeckling result of image
(c) by the proposed method; (g) Despeckling result of image (a) by SAR-BM3D; (h) Despeckling result
of image (b) by SAR-BM3D; (i) Despeckling result of image (c) by SAR-BM3D.

Table 5. Comparison of time consumption for different methods.

Algorithm Refined Lee PPB SAR-BM3D Ours

Running time (s) 4.58 7.49 14.67 18.20

5. Discussion

In this paper, a non-local speckle noise suppression algorithm based on sparse rep-
resentation is proposed to improve the overall performance of the existing algorithm
SAR-BM3D in speckle noise suppression. The proposed algorithm mainly changes the
similar block-matching process and filtering method after coarse filtering in SAR-BM3D.
The similar block matching after the coarse filtering of original SAR-BM3D is to stack the



Remote Sens. 2023, 15, 4485 18 of 20

reference block and the similar blocks with the largest similarity to the reference block into
a three-dimensional block matrix according to the similarity from large to small. Then,
filter the three-dimensional block matrix. The proposed algorithm reshapes each reference
blocks and similar blocks into one-dimensional column data, concatenates them into a
two-dimensional matrix column by column, and performs K-SVD despeckling on the
two-dimensional matrix. In this way, the non-local means idea and sparse representation
despeckling are combined into one algorithm.

The experimental results on real SAR images show that the proposed algorithm has
significantly improved the ability to suppress speckle noise and retain image radiation
information in homogeneous regions compared with several classical filtering methods,
the edge preservation ability is comparable to that of PDE. Compared with SAR-BM3D,
the edge preservation ability of the proposed algorithm is improved while maintaining the
despeckling ability of homogeneous regions and the preservation ability of image radiation
information.

The reason why the original SAR-BM3D suffers from the strong point diffusion prob-
lem is that the computational accuracy in the similar block-matching process is calculated
according to the image magnitude. However, the effective information and noise in the
image are indistinct in magnitude. The denoising algorithm based on K-SVD dictionary
learning is introduced into SAR-BM3D. By using the different properties of effective in-
formation and noise in sparsity, the two items are distinguished, and the noise items are
discarded in the process of reconstructing the image.

6. Conclusions

In this paper, a novel and effective SAR image despeckling algorithm is proposed.
The main innovation lies in the combination of the non-local idea in SAR-BM3D and
sparse representation denoising, which makes it fully adaptable to the particularity of
the multiplicative model of speckle noise. The experimental results on real SAR images
show that the new algorithm is superior to SAR-BM3D in terms of visual effect and edge-
preserving ability. From the perspective of image visual effect and evaluation indicators, the
results are satisfactory, which indicates that the new algorithm has excellent performance
in SAR image speckle reduction.

Of course, the algorithm still has the possibility of further improvement.

• Firstly, the proposed algorithm is based on the structure of SAR-BM3D. Although
it is indeed improved, and the comprehensive ability is better than the comparison
methods, the upgrade of the structure needs to be further studied.

• Secondly, the sparse representation algorithms run on logarithmic domain at present,
but the logarithmic domain may not be optimal. In future studies, the projection
process can also be included in dictionary learning to explore the space for further
improvement.

• Finally, the non-local idea of the proposed algorithm requires a large number of similar-
ity calculations between image blocks on the whole image, so it is still a very complex
and time-consuming algorithm. It may be possible to reduce the time consumption of
the algorithm by improving the calculation rules of similarity accuracy between image
blocks, changing the size of image blocks or the size of the selection region centered
on the reference block.
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Abbreviations
The following abbreviations are used in this manuscript:

SAR SAR Synthetic Aperture Radar
SAR-BM3D SAR Image Block-Matching Three-Dimensional
K-SVD K-means Singular Value Decomposition
NLM Non-Local Mean
BM3D Block-Matching Three-Dimensional
PPB Probabilistic Patch-Based
FT Fourier Transform
DCT Discrete Cosine Transform
WT Wavelet Transform
MAP Maximum A Posteriori
OMP Orthogonal Matching Pursuit
UDWT Undecimated Discrete Wavelet Transform
LLMMSE Local Linear Minimum-Mean-Square-Error
PDE Partial Differential Equation
ENL Equivalent Number of Looks
EPI Edge Preservation Indicator
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