
Citation: Chen, J.; Su, Q.; Niu, Y.;

Zhang, Z.; Liu, J. A Handheld

LiDAR-Based Semantic Automatic

Segmentation Method for Complex

Railroad Line Model Reconstruction.

Remote Sens. 2023, 15, 4504. https://

doi.org/10.3390/rs15184504

Academic Editors: Fabio Tosti,

Andrea Benedetto and

Deodato Tapete

Received: 2 August 2023

Revised: 4 September 2023

Accepted: 8 September 2023

Published: 13 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Handheld LiDAR-Based Semantic Automatic Segmentation
Method for Complex Railroad Line Model Reconstruction
Junjie Chen 1, Qian Su 1,2,*, Yunbin Niu 1, Zongyu Zhang 1 and Jinghao Liu 3

1 College of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
cjj@my.swjtu.edu.cn (J.C.); yunbinniu@my.swjtu.edu.cn (Y.N.); 2017117214@my.swjtu.edu.cn (Z.Z.)

2 Key Laboratory of Highway and Railway Engineering, Ministry of Education, Chengdu 610031, China
3 Sichuan Highway Planning, Survey, Design and Research Institute Co., Ltd., Chengdu 610041, China;

neymarjh@my.swjtu.edu.cn
* Correspondence: suqian@126.com

Abstract: To ensure efficient railroad operation and maintenance management, the accurate recon-
struction of railroad BIM models is a crucial step. This paper proposes a workflow for automated
segmentation and reconstruction of railroad structures using point cloud data, without relying on
intensity or trajectory information. The workflow consists of four main components: point cloud
adaptive denoising, scene segmentation, structure segmentation combined with deep learning, and
model reconstruction. The proposed workflow was validated using two datasets with significant
differences in railroad line point cloud data. The results demonstrated significant improvements in
both efficiency and accuracy compared to existing methods. The techniques enable direct automated
processing from raw data to segmentation results, providing data support for parameterized model-
ing and greatly reducing manual processing time. The proposed algorithms achieved an intersection
over union (IoU) of over 0.9 for various structures in a 450-m-long railroad line. Furthermore, for
single-track railroads, the automated segmentation time was within 1 min per kilometer, with an
average mean intersection over union (MIoU) and accuracy of 0.9518 and 1.0000, respectively.

Keywords: LiDAR; point cloud semantic segmentation; cloth simulation; deep learning; railroad
model reconstruction; BIM

1. Introduction

Railroad systems have long been recognized as vital components of transportation
networks, playing a crucial role in driving economic growth and facilitating social devel-
opment [1–3]. However, the operation of railroads is susceptible to various factors such
as geological changes, line degradation, and train-induced vibrations, which pose risks to
their safe operation [4–6]. To ensure the stability and safety of railroads, it is essential to
establish a real-time monitoring and maintenance system that replaces the conventional
manual inspection methods, known for being inefficient and time-consuming [7].

The foundation of such a system lies in the railroad model, which serves as a platform
for displaying diverse data. However, the complexity of railroad infrastructure, extensive
track networks, and intricate structures make the reconstruction of accurate railroad models
challenging and labor-intensive [8,9]. Therefore, there is a pressing need for digital con-
struction techniques to efficiently capture and represent engineering structures. Moreover,
as the demand for modifications and expansions continues to rise, exploring more efficient
and precise management approaches becomes increasingly critical.

Digital construction not only facilitates subsequent maintenance and transformation
processes by providing comprehensive data sources but also significantly enhances the
efficiency of maintenance tasks while streamlining data collection and decision-making
procedures [10–12].
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With the advancement of technology, the combination of Building Information Model-
ing (BIM) and point cloud technology has found extensive applications in railroad mainte-
nance and operations within the transportation sector [13–15]. By utilizing laser scanners
to capture surface information of railroad infrastructure, a vast amount of precise three-
dimensional point cloud data with coordinates and intensity information are obtained,
facilitating the rapid and accurate reconstruction of large-scale BIM models [16–18]. This
integration addresses various issues in railroad projects, such as incomplete drawing preser-
vation, inaccuracies in construction descriptions, and variations during operational phases,
which would otherwise hinder the precise establishment of BIM models [19–21]. Conse-
quently, these issues lead to increased operational difficulties, rising costs, and reduced
efficiency in information dissemination and scheduling [22,23].

The integration of BIM and point cloud technology provides the railroad engineering
domain with digital twin systems that accelerate information sharing, enhance mainte-
nance effectiveness, simulate scenarios, acquire health status information, and offer other
advantages [24–26].

In the railroad domain, point cloud data collection is commonly achieved through the
utilization of inspection vehicles mounted on the tracks [27,28]. However, such equipment
is often associated with substantial costs and operational complexities as it necessitates
running on the steel rails and requires obtaining approval for a “Skylight Period” from
railroad operators. This approval process adds considerable difficulty to the scanning
operation and results in significant maintenance expenses for railroad authorities.

In recent years, the adoption of Handheld LiDAR-based 3D point cloud acquisition
methods has gained widespread acceptance and has been extensively validated for accuracy
in various domains, including forestry, tunneling, mining, and urban environments [29,30].
These studies have demonstrated that Handheld LiDAR devices can provide data support
with centimeter-level precision in large-scale scenes, proving instrumental in tasks such as
visual positioning and model reconstruction.

One of the primary advantages of Handheld LiDAR-based devices is their relatively
lower cost, enabling researchers to conduct data collection by walking and significantly
reducing the barriers and expenses associated with scanning operations. However, it is
important to note that, compared to the inspection vehicle-based scanning approach, the
walking method presents challenges in accurately determining the alignment of railroad
tracks based on trajectory information. This can potentially introduce data errors. Addi-
tionally, the intensity information of acquired points is influenced by various factors, such
as scanning angles, target object characteristics, and equipment specifications, making it
difficult to validate and account for errors during data processing in the railroad domain.

Addressing these challenges and advancements in Handheld LiDAR-based point
cloud data acquisition holds promise for improving railroad maintenance and operational
processes while optimizing costs and efficiency.

It is important to note that the vast amount of point cloud data generated by Lidar
laser scanners lacks inherent structure and correlations, making it unsuitable for directly
generating Building Information Modeling (BIM) models. Therefore, specific preprocessing
is required to segment and extract necessary geometric information and feature representa-
tions from the acquired data [15,31]. This processing enables effective model reconstruction
of railroad tracks, overhead lines, tunnels, bridges, and other structures [22,32,33].

Existing segmentation approaches in the railroad domain mostly rely on the trajectory
and intensity information of railroad tracks, utilizing heuristic and hybrid model-fitting
methods for extracting key structures [22,34]. However, these methods demonstrate limited
effectiveness in complex point cloud scenes with significant structural variations, as they
heavily depend on specific point cloud feature calculations for matching, resulting in
reduced robustness. Any changes in the data or the influence of a considerable number
of noise points may lead to deviations in the extracted results, rendering them ineffective,
particularly when using Handheld LiDAR-based scanning devices. Thus, one crucial step
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in promoting the applicability and generalization of these segmentation methods is to
reduce their dependence on specific data types and precision levels.

In recent years, the application of deep learning techniques [35] has gradually ex-
tended to feature extraction [36,37], classification, and segmentation [38–42] tasks for three-
dimensional point cloud data, showcasing remarkable performance. Moreover, frameworks
specifically tailored for point cloud data processing have matured [43–45]. However, there
is currently a lack of publicly available segmentation datasets specifically designed for
railroad scenes. Consequently, the absence of widely adopted segmentation algorithms has
made the creation of railroad three-dimensional point cloud datasets a laborious process.
Hence, there is an urgent need to drive the integration of deep learning with segmentation
algorithms and develop suitable solutions for the automated segmentation of railroad point
clouds. By addressing this challenge, the railroad industry can leverage the full poten-
tial of deep learning to enhance the efficiency and accuracy of point cloud segmentation,
ultimately leading to more streamlined and automated workflows.

Following the segmentation of point cloud data, the data become structured. In subse-
quent project applications, it is advantageous to assign information to the structure first,
facilitating data attachment in the comprehensive management system and establishing
a one-to-one linkage with the model. Additionally, by leveraging parameterized point
cloud data, the BIM model can be rapidly reconstructed, offering benefits such as reduced
storage resource consumption, clear structural representation, and enhanced applicability
compared to other methods [46].

The open image programming software Dynamo© [47], integrated into the Revit
platform, enables programming input of linear structure parameters and direct modeling
of the provided section. In this paper, the reconstruction of the railroad’s point cloud model
primarily focuses on three key structures: tracks, power lines, and catenary posts, while
also reconstructing the ground based on track information. Overall, the emphasis lies
on linear structures and standard structures, aligning with the modeling characteristics
supported by Dynamo©.

Building upon the aforementioned background, this paper presents a significant contri-
bution in proposing an automated process for reconstructing railroad Building Information
Modeling (BIM) models using Handheld LiDAR-based devices. The approach is designed
to adapt to various railroad line Lidar three-dimensional laser point cloud coordinate data,
without relying on trajectory information or intensity data. The key contributions of this
research can be summarized as follows:

(1) We introduce an automatic segmentation process for extracting key railroad structures
from 3D point cloud coordinate data. This segmentation process does not rely on in-
tensity information or scanning device trajectory information, ensuring its robustness
and applicability;

(2) We propose an adaptive filtering process and enhance the Cloth Simulation Filter
(CSF) method to cater specifically to railroad scene point clouds. This enables the
separation of ground and overhead line scenes and facilitates the rough extraction of
rails;

(3) We develop a rail point extraction algorithm that effectively handles noise and further
refines the rail extraction process after the initial rough extraction;

(4) We improve the hybrid machine learning-based power line extraction algorithm to
significantly enhance extraction performance;

(5) We combine deep learning techniques with segmentation algorithms to achieve the
automatic segmentation of corresponding structures. Furthermore, we establish a
BIM model by performing parameterized extraction of the structure.

2. Related Work
2.1. Semantic Segmentation of Key Railroad Structures

The segmentation of railroad point cloud data is often challenging due to the large
volume and complex structure of the data, making manual division a time-consuming and
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labor-intensive task. However, the dominant structures in railroads are typically linear,
such as tracks and power lines, which allows for segmentation by leveraging geometric
features and corresponding algorithms.

Existing algorithms primarily rely on heuristic approaches and utilize external con-
tour features and intensity information of rail tracks as the basis for segmentation. For
instance, Sánchez-Rodríguez et al. [28] proposed a heuristic method that successfully seg-
mented various parts of a railroad tunnel by exploiting the geometry features and intensity
information of rail tracks. The method effectively extracted structures like the ground
and tracks.

In a subsequent study, M. Soilán et al. [48] employed a heuristic point cloud processing
step to reliably extract rail track point clouds. They detected linearity through equation
fitting and converted the data into a format compliant with the Industry Foundation Classes
(IFC) standard for BIM modeling. This approach successfully achieved the reconstruction
of a BIM model from point cloud data. However, it should be noted that the effectiveness
of this method decreases when applied to more complex scenes, such as multi-line tracks
and other ground facilities.

The intensity information in point clouds is influenced by numerous factors, and
more importantly, it is relative and can exhibit significant variations across different point
cloud datasets [49]. Hence, it is advisable to minimize the reliance on intensity information
during the point cloud segmentation process. On the other hand, the geometry information
of steel rails remains relatively consistent, making the extraction of geometry information
more stable and easier to verify and evaluate. Consequently, the crucial aspect of extracting
steel rails from diverse point cloud data lies in effectively handling the ground information
in different scenes.

Previous research, such as that conducted by Yun-Jian Cheng [22], successfully ex-
tracted track vertices from relatively flat tunnels using solely the height difference informa-
tion of steel rails. The extracted line form was then employed for track model reconstruction.
However, such methods become ineffective when confronted with more complex ground
information. To the best of the author’s knowledge, there is currently no universal ap-
proach capable of accurately separating railroad tracks from ground surfaces in complex
environments.

Existing ground filtering algorithms, such as morphological operations, normal
differences, and region growing, lack theoretical support when addressing these
challenges [50–52]. In recent years, progressively morphological filters (PMF) [53] and cloth
simulation filters (CSF) [54], which are scale-invariant and terrain-adaptive, have been
widely utilized in combination with irregular triangulated networks (TIN) or differential
digital elevation models (DEM) [55–57] to process digital terrain models (DTM) obtained
from airborne LiDAR. These methods often employ native techniques and integrate them
with other approaches to separate the ground from large-scale scenes and extract structures
like trees, buildings, and power lines. However, they typically have low requirements
for detailed results. When faced with the separation of specific structures, such as rail-
road vegetation filtering and shield tunnel bolt-hole extraction [27,58], a higher level of
detail is required, necessitating adaptive modifications to the CSF method. Despite these
adaptations, these methods still primarily focus on extracting a particular type of outward
protruding structure from the space, which demonstrates the versatility of the approach.
Currently, there are no studies that have employed the CSF method for railroad structure
extraction. Hence, there is value and rationale in enhancing the CSF method to suit the
extraction of railroad structures.

In the segmentation of overhead line-type structures, a common approach is the adop-
tion of a mixed model fitting method. Liang et al. utilized the least squares method (LSM)
to identify power lines and reconstruct them based on the spatial distribution character-
istics of adjacent point clouds [59]. Yadav et al. employed the Hough transform (HT) to
successfully separate power lines from diverse scenes, including urban and rural areas,
achieving an accuracy of 98.84% [60]. Furthermore, by combining principal component
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analysis (PCA) with the RANSAC algorithm, M. Lehtomäki et al. extracted column and
power line data with 93.6% completeness from various complex environments [61]. These
methods have demonstrated their effectiveness in extracting different power line models.
However, their performance may decline in the presence of uneven point cloud distribution
and a significant amount of noise. Therefore, further consideration is necessary to address
these limitations in future work.

Moreover, the existing point cloud segmentation methods heavily rely on the device
trajectory information during the scanning process as the basis for line segmentation [28,48].
However, such devices are subject to certain limitations during the occupation time of
railroad works and track inspection equipment, as well as being relatively expensive. For
the purpose of railroad maintenance and operation, handheld laser scanners have the
advantages of being lightweight, low-cost, and flexible, allowing workers to scan the
railroad structure flexibly during non-occupation periods. The device’s precision is also
sufficient to extract key information about the railroad line. However, there are some
structural occlusion issues during the scanning process, and scanning personnel need to
move left and right along the railroad line to complete the scanning of the railroad structure,
which renders the trajectory information of limited value.

Therefore, this paper aims to develop an automatic segmentation algorithm for railroad
point clouds that can adapt to complex scenes and does not rely on intensity or trajectory
information. Compared with various scene segmentation methods mentioned earlier, this
paper mainly focuses on algorithm design in several aspects, such as adapting to complex
ground scenes, noise-resistant point segmentation for rail segmentation, and integrity of
power line structure segmentation. The process mainly adopts a combination of adaptive
filtering algorithm and CSF method to realize the segmentation of three scenes: overhead
lines, ground, and rails. Subsequently, the rail scene is further refined, and the mixed model
fitting method and columnar search method are integrated to achieve a comprehensive
extraction of the power line. Then, two types of point cloud data with significant differences
are used to verify the method, which will be detailed in Section 3.

2.2. Deep Learning

In the past five years, deep learning networks have been extensively employed for pro-
cessing three-dimensional point cloud data, owing to their robust generalization capability
and high classification accuracy. Different deep learning methods have been proposed
based on the specific application domains. In [62], existing methods are categorized
as follows:

Multi-view-based methods: These techniques project the point cloud into multiple
desired views and subsequently process the resulting 2D images using deep learning to
represent the 3D shape of objects. This approach finds wide application in the classification
of 3D objects [63]. However, it faces challenges in handling large-scale scene data, as it
struggles to fully utilize spatial information and address geometric relationships between
structures effectively.

Voxel-based methods: These approaches divide the original point cloud into uni-
formly discrete data using a regular 3D grid, generating corresponding voxel data where
each voxel contains a group of corresponding points. Subsequently, multi-scale convolu-
tions with deep learning are used to extract local features [64] and handle relationships
among voxels for classification and segmentation. Nevertheless, factors such as voxel
grid size selection, potential empty areas in the scene, and varying scales of 3D shapes
greatly impact the processing results, making this method unsuitable for large-scale point
cloud processing.

Point cloud-based methods: These methods directly process the point cloud coordi-
nates, aggregating local and global features of discrete points to achieve classification and
segmentation. It is not limited by structural scales, thus finding extensive application in
large scene segmentation. Two prominent networks, PointNet++ and RandLa-Net [39,41],
have demonstrated excellent performance in point cloud scene segmentation. However,
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based on practical point cloud segmentation in the railroad domain, PointNet++ tends
to lose global information while segmenting the point cloud into local regions, and the
Farthest Point Sampling (FPS) algorithm exhibits lower efficiency in large-scale scenes. On
the other hand, RandLa-Net addresses large-scale point cloud segmentation by employing
random sampling and aggregating local features, resulting in faster processing speed and
more comprehensive global information [65,66], making it more suitable for point cloud
segmentation tasks in railroad environments.

Currently, there have been some achievements in the semantic segmentation of com-
plex railroad scenes [67]. This approach successfully performs key structural segmentation
for various elements such as “Rails, Background, Informative Signs,” and other large-scale
components. However, it is acknowledged that solely relying on deep learning methods for
railroad scene segmentation presents challenges in handling noise issues, and the resulting
model might not be readily applicable to other scenarios. Therefore, to ensure segmentation
quality, deep learning can be used as a semi-automatic segmentation method to replace cer-
tain manual labor, while dedicated segmentation algorithms for specific structures should
also be considered.

In light of this, this study proposes a combination of segmentation algorithms and
deep learning to achieve the partial automation of scene segmentation, with deep learning
taking over some of the manual segmentation tasks. Subsequently, the corresponding scene
data undergo algorithmic segmentation, resulting in a highly accurate and automated
segmentation process that enhances work efficiency. The subsequent section will present a
comparative validation between the aforementioned workflow and the direct application
of deep learning for segmentation, as outlined in Section 4.

3. Methodology of Segmentation Algorithms

This section proposes a workflow and corresponding algorithms for segmenting
complex railroad point cloud key structures. The method aims to adaptively filter noise in
the raw data and provides parameters for initial scene segmentation, enabling the automatic
segmentation of the original scene into different scenes. Subsequently, the corresponding
structures are segmented based on the characteristics of each scene. The workflow is
illustrated in the pre-processing, manual, and algorithmic segmentation sections of Figure 1.

3.1. Data Preprocessing

This section preprocesses the raw point cloud data to achieve adaptive denoising and
scene segmentation.

3.1.1. Adaptive Denoising

As mentioned earlier, it is inevitable to have noise in point clouds, which can mainly
be classified into two types: outliers that clearly deviate from the structure, and noise
that appears on the surface of the structure. In addition, due to factors such as scanning
equipment and methods, the final data density collected can also vary, and the density of
point cloud datasets for almost any railroad scene is different.

Therefore, it is extremely difficult to use existing general solutions to achieve noise
reduction for railroad scene point clouds with minimal data loss. However, compared to
surface noise, outliers clearly do not fall within the model range and can have a greater
impact on subsequent point cloud processing and analysis. Therefore, in denoising, the
processing of such points will be given priority. Existing general algorithms require manual
adjustment of various parameters and have poor adaptability. Therefore, a joint filtering
method was designed in this paper to perform adaptive denoising on the data, as shown in
Figure 2.

The principle of statistical filtering (PSF) method is to calculate the average distance
from each point to its specified k-nearest neighbors, and the average distance calculated
for all points in the point cloud should follow a Gaussian distribution. On the other hand,
the radius-based filtering method is an algorithm that has a significant filtering effect on



Remote Sens. 2023, 15, 4504 7 of 40

outliers in point clouds. The two methods have their own emphasis on denoising, with
the former focusing more on using neighborhood information for smoothing, and the
latter focusing more on using neighborhood information to remove obvious outliers while
preserving edge information. Theoretically, their combination can effectively remove a
large number of outlier points, but both methods need to consider the relationship between
the central point and the surrounding points. In practice, it is difficult to directly specify
parameters for such algorithms based on point cloud density, and inappropriate parameters
may cause significant data loss.

Figure 1. Flow chart of reconstruction of key railroad structure model.
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In this work, we use KD-Tree to search for each point as a sampling point pi and
search for k neighboring points. The resulting index relationship is denoted as Pik ={

pi(xij, yij, zij)
∣∣j = 1, 2, 3, . . . , k

}
. Then, we calculate the average Euclidean distance dik

between the sampling point and its k neighboring points, the current overall average
Euclidean distance dk, and the variance of the sampling point and the global variance σ2

k ,
where N represents the total number of points within the point cloud:

dik =

√
∑k

j=1 (xij − xi)
2 + (yij − yi)

2 + (zij − zi)
2

k
(1)

dk =
∑N

i=1 dik
N

(2)

σ2
k =

∑N
i=1 (dik − dk)

2

N
(3)

Starting with k = 3, the abovementioned calculation process is traversed and the
minimum σ2

min and corresponding k dk values are recorded, resulting in a KD-Tree clustering
method that can adapt to the varying point cloud densities of different devices and better
express the structural characteristics.

Using this organization method for radius filtering, the basic principle is to first
randomly select a query point and set the minimum number of points M and the maximum
radius Rmax. Then, search for points within the range and calculate the Euclidean distance
dij between the query point and the searched points, which can be represented as:

dij =
∣∣pi pj

∣∣ = √(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 (4)

where pi and pj are the query point and the point being searched, respectively, and xi,yi,zi
correspond to the coordinates of the point cloud.

Here, we set the minimum number of points M to be the k value, and the maximum
radius Rmax to be dk. After traversing the range of dk around the query point pi and
searching for points within this range, if the number of points in the point cloud Pi is
greater than k, then the query point pi is retained in the point cloud, as shown in Figure 3.
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After the adaptive filtering process, the resulting filtered point cloud is named Pf . This
process is capable of adapting to the different density characteristics of point clouds and
can quickly and simply remove obvious outlier points while preserving the boundaries of
the point cloud.
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3.1.2. Scene Segmentation

The railroad environment can be considered as a scene with significant differences
between the ground and overhead line structures. To achieve segmentation of these
structures, it is necessary to separately consider the two scenes. However, the large amount
of railroad data implies a tremendous manual effort in scene partitioning. Moreover, within
the ground scene, there exists the challenge of separating the actual ground from the
railroad tracks. In complex ground conditions, the height difference between them becomes
ambiguous, making segmentation extremely difficult without intensity information.

To address these issues, we introduce an improved approach based on the CSF method,
adapted for railroad environments, to achieve automated partitioning of the ground and
overhead line scenes. This enables automatic separation of the actual ground from the
railroad tracks in complex ground scenes.

(1) Related Concepts on CSF.

CSF employs a completely different approach from traditional filtering algorithms
that consider slope and elevation changes to distinguish “ground points” and “non-ground
points”. As shown in Figure 4, the algorithm first flips the point cloud model upside down
and assumes a piece of cloth under the influence of gravity is draped over the model,
with the boundary of the point cloud that comes into contact with the cloth representing
the “current terrain”. Due to space constraints, this paper mainly introduces the relevant
principles of railroad scene segmentation and the specific algorithm is not discussed further.
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vectors of the particle and the connected particle, respectively, and
→
n = (0, 0, 1) represents

the normal vector in the vertical direction.
Iterate this process with Rigidness representing the number of iterations. The distance

moved each time is half of the previous one, as shown in Figure 5a. Typically, Rigidness
is set to 1, 2, and 3, and the greater the number of iterations, the greater the stiffness of
the cloth.

Figure 5. Principle of applying the CSF method to rail segmentation. (a) Parameterization of rigidness.
(b) Iterative effect.

In principle, due to the relative continuity of the ground in the railroad environment,
there will be obvious gaps in the point cloud at the bottom of the rail, as shown in Figure 4.
Considering the displacement module under internal force can prevent particles from
falling into the rail area, the ground and non-ground areas can be segmented even if
the ground is uneven. Therefore, this method can achieve scene pre-segmentation in the
absence of information such as height thresholds, and the effect is shown in Figure 5b.

(2) CSF Adaptive Method for Rail Structure Extraction

In [54], the algorithm mentions three adjustable parameters related to the purpose
of this paper: grid resolution (GR), Rigidness, and time step length (dT). The effect of
the Rigidness has been detailed above and set to 3. dT determines the gravitational
displacement of particles, and its value should be slightly less than H/Rigidness (where H
is the height of the rail), to avoid misjudgment of some rail structures.

GR represents the horizontal distance between two adjacent cloth particles and is a
crucial parameter for obtaining surface features of the railroad structure. However, setting
this parameter manually can result in either large distances between cloth particles, causing
difficulty in fitting the ground and leading to misidentification of rails as ground, or small
distances, causing excessive computational burden. Adjusting this parameter poses a
significant challenge for industry practitioners.
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Moreover, the original method did not take into account the potential impact of
noise on the positioning determination of cloth particles, resulting in unsatisfactory results
when dealing with tasks that require high segmentation details. Considering the adaptive
denoising process mentioned above, this paper introduces a pre-judgment step prior to
the algorithm to address this issue, setting the GR as rmax adaptively obtained during the
denoising process. Then, the point closest to the center within the grid and able to form
K neighboring points within the grid is selected as the position of the cloth particle in the
grid. If the number of points in the grid is insufficient, no particle placement is set to avoid
the impact of remaining noise on the computation. Otherwise, an erroneous distribution,
as shown in Figure 6b, would be generated. In practice, discarding some positioned cloth
particles due to internal forces does not lead to significant errors in ground detection.
Following the particle placement principles illustrated in Figure 6a, a distribution pattern
like Figure 6c is formed.
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The aforementioned approach involves placing cloth particles in relatively dense
regions to avoid the influence of noise, resulting in a more accurate fitting of the particles
to the ground and a more detailed representation of surface variations. Additionally, when
dealing with railroad scenes, leveraging the structural characteristics of the rail tracks and
the ground enables a more convenient segmentation process. Industry practitioners can
simply set the rail height based on different rail types to configure the parameters, greatly
reducing the complexity of use and enabling adaptation to railroad environments. The
detailed algorithmic workflow of the CSF method will not be further elaborated here.

(3) Railroad Scene Segmentation Scheme

Processing of point cloud data Pf was performed according to the workflow shown
in Figure 7. Firstly, the native CSF algorithm was directly applied to Pf the point cloud
to achieve segmentation of ground with rails and overhead lines. Then, the ground data
with rails is segmented again using the proposed method in this paper, and the resulting
segmented regions of overhead lines, ground, and rails were labeled as Pf−OL, Pf−ground,
Pf−rail , respectively, for ease of identification of the processing steps and point cloud scenes.
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Due to the relatively high Rigidness, the segmented rails may contain irrelevant points
caused by protruding areas of the original ground. Therefore, further refinement of the
rails area is necessary.

3.2. Rail Segmentation

Pf−rail have been extracted previously, and in this section, the rail structure is seg-
mented based on factors such as the rail structure and size. Due to various reasons, there
may be certain differences between point cloud data of rails at different locations, making
it difficult to segment them using a holistic method. In this paper, the model is sliced in the
forward direction and processed in segments, with each segment slice represented as Ci, as
follows:

First, the algorithm selects either side of the rail cross-section Ci for analysis, and
then, in descending order of elevation values, a certain number of points are chosen (three
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points are shown in the figure for illustrative purposes, typically 10 or more points can be
selected). Then, the algorithm calculates the curvature at each of these points by estimating
the normal vectors with respect to the adjacent points within the same cross-section, as
illustrated in Figure 8a–c.

Figure 8. Segmentation of rail points. (a) Origin point data, (b) possible vertex points, (c) curvature
calculation result, (d) obtaining the vertex from another rail, and (e) extracted results.

Subsequently, the algorithm identifies the highest point with relatively stable curvature
as the vertex ph1, denoted by the red point in Figure 8c.

Next, as depicted in Figure 8d, the algorithm draws a circle based on the track gauge
information. It then repeats the same process as in Step 1 for the other side of the rail
section, within the coordinate range defined by Rmax and Rmin (the specific values of Rmax
and Rmin depends on the track gauge). The algorithm determines a set of candidate points
ph0 and calculates the vector

→
ph0 ph1 between ph0 and ph1. The algorithm then evaluates

the angles between this vector and the ground for each ph0 and selects the candidate point
with the smallest angle as the other vertex ph2.

After the ph1 and ph2 are determined, the range of the planes of the two rails is
determined based on the size information, and all points below the plane are taken as rail
points in Ci. Finally, the entire process is iterated for all slices, as shown in Figure 8e, to
achieve rail segmentation for the entire section and obtain the final rail point cloud Pf−rail .

3.3. Power Line and Catenary Post Segmentation

This section focuses on the segmentation of three types of structures in Pf−OL:
messenger-wire, double-chain suspension line, and catenary post. The term “double-
chain suspension lines” here refers to power lines that include conductors, messengers, and
suspension cables. Power lines are prone to low data density or discontinuities during the
scanning process, and there may be poor segmentation results at the connection between
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power lines and catenary posts. In order to optimize the segmentation of power lines
and catenary posts, this paper improves the existing commonly used mixed model fitting
method (including PCA and RANSAC algorithm) [61,68] by integrating columnar search
method, to achieve accurate segmentation and noise reduction of power lines, and to extract
catenary posts by taking the difference set. The overall process can be summarized in
Figure 9. To facilitate the intuitive display of the effect, this section will use a power line in
contact with a catenary post as a data example.
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3.3.1. Candidate Points for Power Line Rough Extraction

Although power lines are distributed in three-dimensional space, they typically exhibit
good linear characteristics when projected onto the XY plane. Taking advantage of this
feature, the PCA algorithm is used for the coarse extraction of power line candidates. As
this algorithm is widely applied, the detailed process is not elaborated here.
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The core parameter of this algorithm is the use of the linear measure α = λ1/∑3
i=1 λi [69]

for classification. Here, λ refers to the eigenvalues extracted from the covariance matrix
decomposition of the local plane established during the PCA calculation. The detailed
calculation process is not described here. If α is greater than the set threshold, it is clas-
sified as a candidate point. When dealing with curved line segments, this value can be
appropriately relaxed. For the example data processing, the extracted candidate points are
shown in Figure 10a.
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Figure 10. Segmentation of the line. (a) The result of the PCA method processing, (b) the result of
the processing after adding RANSAC, (c) the result of the processing after adding columnar search,
(d) the result of the extraction of the double chain suspension line, and (e) the result of the extraction
of catenary post.

The RANSAC algorithm can accurately fit the parameterized equation of a model and
achieve some level of denoising when dealing with data containing irrelevant structures [70].
The key parameter is the allowable distance D between points and the parameterized
equation, which is usually considered as 0.1 m, meeting the requirement for extracting
power lines. The optimization result is shown in Figure 10b. However, this method still
filters points from a two-dimensional perspective, making it difficult to completely remove
irrelevant points in space while preserving the integrity of power lines.

3.3.2. Precise Extraction Method Based on Columnar Search

Due to the linear geometric structure of power lines in space, this paper proposes a
columnar search method to achieve precise extraction. The process is shown in Figure 11.
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Using the same slicing method as in Section 3.2 for rail segmentation, each segment
is defined as Ki, and the radius Ri of Ki is obtained by calculating the average height
difference between all points in Ki and the centroid.

Ri =
1
n∑n

j=1

∣∣zj − z
∣∣ (6)

where Ri and n represent the fitting radius and number of points in the Ki slice, and zi and
z represent the z coordinate of the point j in the slice and the average z coordinate of all
points, respectively.
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Next, based on all the Ri, the average value R of the entire segment is calculated, and
any Ri greater than R is removed. Then, a second average value R is calculated as the final
value. Afterward, only the points within distance R from the centroid are retained in each
slice Ki, thus achieving the extraction of a relatively complete, low noise and intact power
line point cloud with intact junctions, as shown in Figure 10c.

3.3.3. Precise Extraction Method for Composite Model of Double-Chain Suspension Line

First, the same slicing method is used to obtain the slice Ki, and then the average
height z of the points in Ki is calculated. Based on this value, the model is divided into
upper and lower parts, and the processing flow of Section 3.3.2 is performed on each part
to extract the conductor and messenger wire parts of the model. Then, the middle line
between the two wire parts in Ki is extracted to obtain the suspension cable part of the
model. The process is illustrated in Figure 12, and the overall extraction effect is shown in
Figure 10d.
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Finally, for the two types of power lines extracted from Pf−OL, the complete catenary
post model can be obtained by taking the difference set and performing minimum clustering.
The extraction results are shown in Figure 10e.

3.4. Performance Validation

The advantages of the proposed segmentation algorithm in this paper are mainly
reflected in two aspects: the segmentation of ground and steel rails in complex railroad
environments without relying on the intensity information and line direction information,
and the preservation of the completeness of power lines. Therefore, two scenes were tested,
which contain different railroad data and most importantly, completely different ground
styles for comparison. The power lines also have a lot of interference, including the problem
of contact between lines and supports, as well as noise. Additionally, these data come
from different scanning methods, different regions, different point cloud densities, and
different structural compositions, which can provide a test for the algorithm’s adaptability.
Finally, CloudCompare software [71] was used to display the point cloud, and all other
algorithms were implemented by programming. The input data here are a set of point
clouds P = {p1, p2, p3 . . . pn} containing Euclidean coordinates and RGB color information,
and any point can be described as pi = (xi, yi, zi, ri, gi, bi), 1 ≤ i ≤ n.
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3.4.1. Case of Study

The first scene (referred to as Scene A), was obtained by scanning with a LiGrip H120
handheld laser scanner at the site, as shown in Figure 13a,b. The device has a maximum
measurement range of 120 m, a scan field of view of 280◦ × 360◦, and a scanning frequency
of 320,000 pts/s. The scanning trajectory of the device is shown in Figure 13a, and the
scanning process is shown in Figure 13c. The resulting scene shown in Figure 14a consists
of approximately 2 km of ballasted railroad. To facilitate the validation of the segmentation
algorithm in this section, it was divided into a point cloud of approximately 450 m in length,
which is the same length as the second scene, and the remaining point cloud was used for
deep learning validation in the next section. During the scanning process, the track was
undergoing major repairs, and the ground was extremely uneven, with no fixed pattern
of protrusions or depressions. Some parts of the ground even rose higher than the track.
Furthermore, due to the handheld scanning, the trajectory information collected by the
device had no practical value and required significant adjustment for segmentation work.
The specific information on the total number of points, density, and accuracy of the scene is
shown in Table 1, where the accuracy is derived from the scanning device.
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Table 1. Case studies’ data.

Scene Length (m) Total Points
(Million)

Point Density
(Points/m2) Range Precision

A 2000 137.28 297.54 ±3 cm
B 450 29.73 3366 —

The second scene (referred to as Scene B), was obtained from the publicly available
WHU-TLS dataset [72] Railroad module. This scene contains four ballastless tracks, as
well as rail and ground data, with an effective length of approximately 450 m, as shown
in Figure 14b. The ground data in this scene is relatively flat, making the segmentation of
ground and steel rail easier and more suitable for comparison with the first scene. However,
this scene has multiple tracks and a complex distribution of power lines, which presents
some challenges for the automation of segmentation algorithms. The total number of
points and density information for this scene is presented in Table 1, while the accuracy
information is not publicly available.

3.4.2. Evaluation Method

To compare with the proposed improved CSF method in this paper, we also processed
the data using the PMF method, with its parameters including the local minimum surface
resolution (Rs), the maximum expected slope of the ground (MaxS), the maximum window
radius (MaxW), the elevation threshold for point classification (Et), and the elevation scaling
factor for the scaled elevation threshold (Es). The optimal values of these key parameters
were selected as the experimental basis [51], and the data was processed following the
railroad scene segmentation scheme proposed in this paper.

The subsequent steel rail segmentation and power line segmentation are for further
optimization or fine segmentation of the divided scenes, and the experimental data under
the optimization method proposed in this paper is directly presented for performance
evaluation.

Meanwhile, in order to evaluate the effectiveness and efficiency of each method, we
introduce the concept of Intersection over Union (IoU). It considers the model-predicted
segmentation result as one set and the true segmentation result as another set and calculates
the intersection and union of the two sets to obtain a value, which measures the degree of
overlap between the model-predicted segmentation result and the true segmentation result
and can express the segmentation accuracy. The formula can be written as

IoU =
TP

TP + FP + FN
(7)

where TP, FP, and FN represent true positive, false positive, and false negative, respec-
tively.



Remote Sens. 2023, 15, 4504 21 of 40

3.4.3. Results and Analysis

After being processed by the adaptive denoising algorithm, for quantitative demon-
stration of the denoising effect, we conducted further manual processing based on the
results obtained from a specific scene. The specific details of the adaptive algorithm and
the denoising results are shown in Table 2 and Figure 15, respectively.

Table 2. Adaptive denoising data.

Scene dk σ2
min K Detail Scene

Outlier Points
Recognized by

Manual Operation

Outlier Points
Recognized by

Algorithm

Denoising
Rate (%)

A 0.1295 0.0137 141
Ground 371,955 347,034 93.3

Over Line 16,609 14,881 89.6

B 0.1273 0.0499 17
Ground 734,654 702,329 95.6

Over Line 65,413 60,899 93.1

Figure 15. Adaptive denoising effect: (a) Scene A; (b) Scene B.

In Scene A, the noise points primarily originate from the walking trajectory of the
operators using handheld scanning devices and surface noise from certain overhead line
structures. In Scene B, the noise mainly comes from surface point drift and void areas
of the overhead line structures, resulting in a higher number of noise points and longer
offset distances. However, overall, the evident noise points in both scenes have been
removed, indicating that the proposed adaptive denoising method can adaptively establish
a KD-Tree based on different input datasets, overcoming the characteristics and types of
various data. It achieves high-precision outlier denoising for the overall structure without
significantly losing overhead line data. This allows practitioners to avoid the tuning
problems associated with traditional filtering algorithms, thereby greatly enhancing the
efficiency of the denoising work.

According to the scene division scheme proposed in this paper, two denoised scenes
were processed. The first CSF processing was implemented using default parameters, while
the grid resolution GR for the second CSF processing was determined based on the dk value
of the scene. The Rigidness was set to 3, and the rail height H was set to 176 mm according
to the actual scanned rail height. The time step dT was set to 58 mm. The segmentation
parameters and results are shown in Table 3. Combined with Figures 16 and 17, and the
data, it can be seen that for flat ground like scene B, both CSF and PMF algorithms can
segment the required scene. However, for the curved track and uneven ground of scene A,
the PMF method cannot segment the rail area.
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Table 3. Segmentation data results.

Methods Parameters Stage 1 Stage 2 Scene Classification IoU Runtime (s)

CSF

GR 2 dk A
Overhead lines 0.9699

2.1Rigidness 1 3 Rails 0.5258
H (m) 1 0.176

B
Overhead lines 0.9736

1.6dT (m) 1 0.058 Rails 0.7004

PMF

Rs (m) 1.5 1.5
A

Overhead lines 0.9616
79,089.7MaxS 0.2 0.1 Rails —

MaxW (m) 5 5
B

Overhead lines 0.9845
106,522.3Et (m) 0.4 0.4

Rails 0.7032Es 0.4 0.1
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Figure 16. Scene segmentation results based on CSF: (a) Scene A, (b) Scene B.

In terms of performance, using the CSF method proposed in this paper to process
two scenes of approximately 450 m each took about 2 s, while the processing time using
the PMF method may even be higher than manual processing. In terms of accuracy, the
two methods have relatively close IoU values in the segmented areas, with a minimum of
0.9616 for the overhead line area. However, the PMF method based on the height difference
information may result in incomplete segmentation at the junction between the post and
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the ground, as shown in the enlarged area in Figure 17a. The IoU of the rail area is as low as
0.5258, mainly because the segmented area is larger than the actual area, but it can be seen
from the results that the rail area can be fully preserved for subsequent fine segmentation
processing.

Figure 17. Scene segmentation results based on PMF: (a) Scene A, (b) Scene B.

Prior to this, due to the possibility of different numbers of tracks and distances between
them in different scenes, we did not set up adaptive processing for multiple railroad tracks.
Therefore, we manually segmented each track in scene B and processed them separately
for subsequent analysis.

It can be seen that in the case of complex railroad scenes, relying solely on elevation
information for segmentation is difficult to implement. However, with the CSF processing
scheme proposed in this paper, adaptive segmentation of complex railroad scenes can be
achieved with only the steel rail height parameter H set for the track used. Subsequently,
the steel rail areas of the two scenes were subjected to the steel rail fine segmentation
proposed in Section 3.2 of this paper, and the changes in the areas are shown in Figure 18,
with the corresponding IoU changes listed in Table 4.
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Figure 18. Rail segmentation results: (a) Scene A, (b) Scene B.
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Table 4. Rail segmentation data results.

Scene Runtime (s) IoU Previous IoU after

A 15.4 0.5258 0.8814
B 71.9 0.7004 0.9613

The results demonstrate that this study integrates the development of an adaptive
filtering algorithm and an improved CSF method for data preprocessing. Subsequently, a
novel rail segmentation approach is employed for fine-tuning. Compared to mainstream
rail segmentation methods [22,28,48], our proposed method achieves precise rail point seg-
mentation solely based on point cloud coordinate data without relying on track alignment
or intensity information. Furthermore, the proposed method fulfills the required accuracy
and efficiency demands for data processing, significantly reducing the challenges and costs
associated with obtaining authentic rail point cloud data in the field of railroad engineering
maintenance and operation.

In the process of extracting power lines, due to the different distribution and quantity
of power lines in the two scenes, we manually pre-divided each power line area so that
each point cloud contains only one power line, including surface noise points and catenary
posts. Because the structure is located in the air and is far apart, this process is easy to
implement.

For the segmentation of power lines and catenary posts in the overhead wire area
of the two scenes, the effectiveness of each process in the segmentation method has been
described in detail in Section 3.3, and the processing results are shown directly in Figure 19.
In terms of parameter settings, the key parameters of the PCA and RANSAC algorithms
are relatively conservative. The linear metric α is set to 0.6 and the allowable distance D
is set to 0.1. The subsequent columnar search approach requires no parameter settings,
enabling adaptive detection of the direction of power lines, whether they are straight or
curved, and precise segmentation of messenger-wire and double-chain suspension lines.

Figure 19. Overhead lines segmentation results: (a) Scene A, (b) Scene B.

In summary, by combining commonly used hybrid segmentation methods [59] with
the proposed Columnar search method, the IoU for power line segmentation has been
significantly enhanced without incurring noticeable time overhead. Compared to previous
efforts that extracted power lines from overhead line data [61] with an IoU of 0.9360, the
results obtained in this study achieved an impressive IoU of 0.9981, as detailed in Table 5.
This substantial improvement allows for more precise extraction of power line data from
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point cloud datasets, thereby providing accurate information for automated modeling and
other related tasks.

Table 5. Power line segmentation data.

Methods Parameter Runtime (s) IoU

PCA α 0.6 26.6 0.9283
+RANSAC

D 0.1
+6.0 0.9302

+Columnar search +6.6 0.9981

4. Automatic Segmentation Verification

As mentioned in the earlier validation process, railroad scenes may involve a complex
spatial distribution of multiple tracks and power lines, which do not have fixed distribution
rules and require manual adjustments for algorithmic segmentation. To address this, this
paper introduced a deep learning method for automation, replacing the parts that still
require manual processing (such as scene segmentation for multiple track and power line
scenes) with a deep learning segmentation approach, and combining it with segmentation
algorithms to achieve efficient and accurate point cloud data segmentation.

4.1. Data Description

The semantic segmentation data obtained from the performance verification in Sec-
tion 3 were used as the dataset for evaluation. The dataset consists of five different types of
structures, and the results are shown in Table 6.

Table 6. Distribution of classes.

Scene Total Points Background Rails Catenary Post Messenger-
Wire

Double Chain
Suspension Line

Scene A 29,638,949 26,605,500 1,838,351 471,642 165,151 558,305
Scene B 29,009,362 22,731,479 3,791,550 1,834,265 156,682 495,386

4.2. Deep Learning
4.2.1. Parameter Configuration

In Section 2, it was mentioned that the RandLa-Net network improved the random
sampling and aggregation of local features for 3D point clouds in large scenes, making it
suitable for training point cloud segmentation in railroad environments. Therefore, this
paper utilized this deep learning network for training and constructed the environment
based on the Tensorflow machine learning and artificial intelligence framework. The
training hardware configuration is as follows: GPU: NVIDIA GeForce RTX 3070, CPU:
AMD Ryzen9 5900X, RAM: 32 GB DDR4.

4.2.2. Training Data Preprocessing

Point cloud data in different formats may have varying attribute descriptions. This
paper took into account the features of the RandLa-Net network and dataset and used only
the Euclidean coordinates and RGB information of each point cloud as input. This can be
represented as follows:

XNx6 =

 x1
...

xN

y1
...

yN

z1
...

zN

r1
...

rN

g1
...

gN

b1
...

bN

 (8)

where N represents the number of point clouds, (x, y, z) represents the Euclidean coordi-
nates of a point, and (r, g, b) represents the color information of a point.
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(1) Down-sampling

The original point cloud data collected by the device are often very large. To input
the data into the network, a downsampling process that does not affect the geometric
features is performed to reduce the data size. First, the original data and the point clouds
downsampled in the grid format (using a grid width of 0.8 m for this dataset) are both
saved in the ply format, and a kdtree file is created for the downsampled points to retain
the corresponding relationship with the original data, facilitating quick input of the point
cloud into the network. Secondly, the nearest downsampled point is assigned to each point
in the original data, and a proj file is created to save the corresponding relationship, making
it easier to obtain labels for the original data from the downsampled point cloud after
semantic segmentation.

(2) Training data generator

To obtain the local features of the entire point cloud, a random and comprehensive
selection of local point clouds is necessary, from which data and labels are extracted for
input into the network. The generator first assigns a random probability value to each point
and selects the point with the minimum value as the center point. Then, a batch of points
near the center point is obtained based on the preset number of points fed in at a time and
the kdtree file. Next, the probabilities are updated considering the distance between this
batch of points and the center point, as well as the weight of the number of points in each
category (i.e., the proportion of this category in the dataset). This ensures that all parts of
the point cloud can be adequately represented. Finally, the necessary training data and
corresponding labels are extracted from this batch of points to generate a unit of training
data. This process is iterated for the entire point cloud to generate the global training data.

(3) Data augmentation

To enhance the model’s applicability, it is often necessary to expand the dataset
through data augmentation, which enables the model to better generalize to new data.
After generating the training data, this batch of data can be transformed through rotation,
scaling, translation, and other techniques to create more diverse data samples. This process
enables the model to better handle different inputs and improve its overall performance.

For verification and testing, this paper divided the training and validation sets accord-
ing to the method shown in Table 7, where “m” represents meters of track-length.

Table 7. Distributions of training/test sets.

Scene Training Set (m/%) Test Set (m/%)

Scene A 450/22 1550/78
Scene B 90/20 360/80

4.2.3. Training Evaluation Parameters

Training was performed with an initial learning rate of 0.01, a learning rate decay rate
of 0.95, a total of 100 epochs, 500 training steps per Epoch, 100 validation steps, a batch size
of 4, and 500 points input per step.

To evaluate the model’s performance, this paper recorded the Accuracy and Loss data
during the training process and recorded the IoU for each class and the overall mIoU
during the testing process. The definitions of these indicators are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TN represents true negative, and Accuracy represents the proportion of correctly
predicted samples to the total number of samples.

Loss = ∑C
i=1 wi × (−yi × log pi − (1− yi)× log(1− pi)) (10)
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where C represents the number of classes. yi represents the probability distribution of the
true class, pi represents the probability distribution of the predicted class, and wi represents
the weight of each class.

This loss function calculates the cross-entropy between the true class yi and the
predicted class pi for each class and then multiplies it by the weight wi to obtain the
weighted cross-entropy. Finally, the sum of the weighted cross-entropy of all classes is
obtained as the value of the total Loss.

mIoU =
∑C

i=1 IoUi

C
(11)

mIoU is the average of the IoU values for all categories, used to measure the overall
performance of the model, and the maximum value of this value is usually taken as the
best model.

4.2.4. Training and Segmentation

To verify the effectiveness of the proposed automatic segmentation method, this paper
compared two different approaches during the training process.

Approach 1 involves training the network using all five types of data in the dataset,
and then performing segmentation validation directly on the complete point cloud after
adaptive denoising, as shown in Figure 20a.

Figure 20. Flowchart for point cloud segmentation using deep learning: (a) Approach 1, (b) Approach 2.

In Approach 2, all four types of data (excluding background) are used to train the net-
work. For segmentation validation, the complete point cloud is first separated into ground
and non-ground points using adaptive denoising and CSF algorithms. The remaining
points are then inputted into the trained model for scene segmentation and classification.
Finally, the data is sent to the corresponding segmentation algorithm for further refinement,
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as shown in Figure 20b. The algorithms mentioned here are consistent with the methods
introduced in Section 3.

4.3. Conclusions and Analysis

For Approach 1, the training Accuracy and Loss data, as well as the mIoU and IoU data
for each class, after 100 epochs of training, are shown in Figure 21. The best mIoU achieved
was 0.8303, and the IoU for each category is presented in Table 8. The segmentation results
are shown in Figures 22a and 23a.

For Approach 2, the training Accuracy and Loss data, as well as the mIoU and IoU
data for each class, after 100 epochs of training, are shown in Figure 24. Compared with
direct segmentation, all data improved significantly. The best mIoU achieved was 0.9665,
and the IoU for each category is presented in Table 8. The specific segmentation results are
shown in Figures 22b and 23b.

Based on the results, it is evident that Approach 1, as a comparative method, was prone
to significant segmentation errors due to unclear boundary features between the rail and the
ground. This leads to frequent missing parts of the rail and poor segmentation performance
in the zoom-in area where the power line and catenary post intersect, as illustrated in
Figure 23. The overall IoU of each structure is also lower, making it challenging to ensure
the accuracy of segmentation results for modeling or other purposes, and thus, it is not
suitable for production use.

On the other hand, Approach 2, with the proposed processing pipeline, achieved a
higher IoU of above 0.9 for each structure while maintaining a model accuracy of 1. This
success indicates that automatic segmentation for each structure in both scenes is achieved,
with a processing time of less than 1 min per kilometer for the single-track line scene A.

Existing semantic segmentation approaches for complex railroad point clouds [67]
have explored various deep-learning network segmentation techniques, achieving an
overall best mIoU of 0.9095. The best IoU for rails reached 0.8376, and for cables, it
reached 0.9239. However, the IoU for most structures fluctuated between 0.5 and 0.8,
with a minimum training time of 113 min. Additionally, significant discrepancies in test
results were observed among different datasets. The study concluded that the current deep-
learning methods struggle to address noise interference. It was evident from the discussion
and results that processing large-scale point cloud data directly using pure deep learning
networks results in long training times, difficulty in identifying noise interference, and
errors in segmenting local rail and Catenary posts from the ground, similar to Approach 1
used in this paper. Moreover, the segmentation performance was poor for special railroad
structures such as informative signs and traffic signs. Furthermore, due to the variability of
railroad scenes, the model’s generalization capability when applied to other datasets was
limited, restricting its applicability in specific engineering projects.

Table 8. Results of segmentation.

Scene Ground
Data

Train Runtimes
(min) mIoU Rails Background Catenary

Post
Messenger-

Wire
Double Chain

Suspension Line

Scene A
No 51 0.9518 0.9999 — 0.9359 0.9245 0.9471
Yes 87 0.8265 0.5117 0.8471 0.9369 0.9318 0.9052

Scene B
No 59 0.9665 0.9999 — 0.9029 0.9900 0.9734
Yes 113 0.8303 0.7596 0.9333 0.8183 0.9943 0.9852
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Figure 21. Training results for Approach 1.
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Figure 22. Automatic segmentation results for scene A: (a) Approach 1, (b) Approach 2.
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Figure 23. Automatic segmentation results for scene B: (a) Approach 1, (b) Approach 2.
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Figure 24. Training results for Approach 2.
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As a point of comparison, this study introduced a novel workflow that begins with
the application of an adaptive denoising method for noise reduction. Subsequently, deep
learning techniques were employed to handle the pre-classification and segmentation of
extensive point cloud data, followed by the integration of corresponding segmentation
algorithms to extract key structures. The efficacy of these algorithms was validated in
earlier sections, demonstrating stable performance across different datasets. The proposed
approach achieved IoU of 0.9 and above for the key structures of interest, even as the
number of points increases, with a notable reduction in training time. Researchers can
utilize our segmentation algorithm to create localized datasets specific to railroad lines,
enabling automated segmentation for most structures with similar characteristics. Conse-
quently, this enhances the method’s applicability to specific railroad engineering projects
and offers valuable insights for achieving efficient and accurate automation of critical
structure segmentation directly from raw point cloud data.

4.4. Model Reconstruction

The numerous point cloud data are of little significance for establishing BIM models
in railroad scenes. For linear structures (including rails and power lines), the key point
of modeling is to extract their directions, while for catenary supports, the key point of
modeling is to extract their placement coordinates [73]. These parameterization schemes
have been widely used. Therefore, this section briefly introduces the modeling methods of
various structures in the scenes involved in this paper.

Parameterization and Modeling of Key Structures

Railroad structure: The centerline information of the steel rail is extracted using the
least-squares method, and the railroad structure section is established based on standard
design parameters. The rail model is built by integrating these two types of information, as
shown in Figure 25a.

Power line structure: Two types of power line structures are involved in this paper. For
a messenger wire, the line shape is directly fitted. For a double-chain suspension line, the
upper and lower lines are constructed in the same way as the former, and the suspension
cable’s centroid coordinates are extracted, considering it as a vertical line intersecting with
the upper and lower lines, as shown in Figure 25b,c.

Catenary post structure: A BIM model of the catenary post is preset, and the model is
established based on its centroid coordinates, as shown in Figure 25d.

Upon completion of the three major structural models, the core model of the railroad
has been successfully established. To enhance the final presentation of the BIM model, this
paper further improves the overall BIM model by incorporating manually prefabricated
BIM models for bridge piers, guardrails, and fasteners, along with embankment cross-
sections and corresponding material textures. The entire BIM model is programmatically
created using Dynamo software, as illustrated in Figure 26.

Notably, in Scene A, the placement of bridge piers, guardrails, and other equipment is
automated by inputting the respective mileage positions during the programming process.
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Figure 25. Process of parameterization and modeling of key structures: (a) rail structure, (b) messen-
ger wire structure, (c) double-chain suspension line structure, and (d) catenary post structure.
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5. Discussion

As the data collected in this study originate from handheld laser scanning devices,
which have relatively lower accuracy, the use of such BIM models for railroad engineering
management tasks, such as the integration of GIS data and sensor data for visualization-
based maintenance, can tolerate these errors without causing a significant impact on the
work. However, this automated method has limitations in meeting the high-scale precision
requirements for tasks such as measuring rail deformation, analyzing rail vibrations, and
detecting changes in track gauges.

Noise information is the biggest influencing factor on point cloud segmentation. In
railroad scenes, commonly used denoising methods can cause significant data loss to
overhead line structures, and directly lead to information loss in sparsely populated areas.
Moreover, excessive noise can also have an impact on ground detection. The adaptive
denoising method proposed in this paper works best on data with relatively uniform
density across structures. However, when different devices are used to collect data on
different structures, differences in density can pose greater challenges for denoising. To
avoid difficulties in processing field data, future research needs to consider denoising
methods that are combined with field scanning processes.

Point cloud intensity is an essential piece of information, but its accuracy is difficult to
ensure due to the influence of multiple factors, and there is relatively little work on intensity
calibration. In the data collected in this paper, the intensity information can roughly show
the rail surface, but some ground points’ intensity information falls into this range, causing
the rail extraction algorithm to fail. Therefore, in the authors’ view, it is meaningful to
combine intensity information for ground segmentation in the railroad environment, which
is crucial for promoting segmentation work in more scenes. Subsequently, it is possible to
consider reverse correction of stiffness information combined with geometric information
to adjust erroneous stiffness information in ground points, achieving faster and more
accurate classification. Of course, correcting this information during data acquisition is even
more critical.

Deep learning is one of the key approaches in the automatic segmentation of point
clouds. In terms of application, the same trained model performs well in situations where
the railroad section or structure is similar. However, there are variations in railroad con-
struction standards among different countries and types. Moreover, the limited availability
of open point cloud datasets and the significant differences in data acquisition devices make
it challenging to train highly generalizable large models that can be applied to specific
engineering projects. The proposed approach of combining the segmentation algorithm
presented in this paper with deep learning processing offers a solution. Creating a small



Remote Sens. 2023, 15, 4504 37 of 40

dataset specific to a particular railroad ensures high-quality automated segmentation for the
majority of that railroad. However, the creation of datasets for multi-line railroads involves
some manual processing, which may result in increased time requirements when dealing
with larger railroad scenes. In conclusion, in the railroad environment, it is difficult to
enhance the generalization power of deep learning by expanding the dataset. Considering
modifications to the deep learning network may be the key to improving model robustness.

Regarding the developed segmentation algorithm, this paper mainly focuses on ex-
tracting critical structures of the railroad line. For other accessory structures in the line,
they have not been addressed. When facing structures that do not have obvious geometric
features, the automatic segmentation process is often challenging. Therefore, corresponding
segmentation methods should be designed for similar signal equipment, power supply
equipment, and along-line stations’ data to provide data support for deep learning, or else
there will be a large amount of manual segmentation work.

In general, current deep learning-based point cloud semantic segmentation solu-
tions [67] and mainstream segmentation algorithms [22,48,74] mentioned earlier have made
significant progress in point cloud processing in railroad environments. However, there
still exist certain manual operations in dealing with noise, separating ground data, and
handling complex situations such as multi-track steel rails and multiple power lines in rail-
roads. Additionally, it remains challenging to perform point cloud semantic segmentation
without relying on intensity information or trajectory information.

By employing the solutions proposed in this paper and subsequent improvements
based on these techniques, it is possible to achieve low-cost and efficient processing of
point cloud data in specific offline railroad environments, as well as automated semantic
segmentation of key structures. This provides data support for the reconstruction of
railroad environments. Moreover, tasks such as health monitoring or data visualization of
railroad and other civil engineering structures will become more convenient and effortless,
ensuring the safety of structures and the general public with greater accuracy.

6. Conclusions

In this paper, we proposed an automatic segmentation method for railroad point
clouds, which utilizes a handheld laser scanner to acquire data and only processes coordi-
nate information due to the higher cost of collecting accurate trajectory information and
point cloud intensity information. In practical work, manual or semi-automatic processing
of railroad point cloud data is usually required, but it is time-consuming and labor-intensive
due to the large amount of data. Therefore, our work mainly realizes an automatic point
cloud segmentation method, which includes four stages: point cloud adaptive denoising,
scene segmentation, structure segmentation combined with deep learning, and model
reconstruction. We validated the proposed process on two types of railroad point cloud
data with significant ground differences, and the results showed that our process has strong
applicability.

We achieved ground data processing through adaptive denoising combined with the
improved CSF method and steel rail point extraction through the proposed double steel
rail segmentation method that can resist certain surface noise. Additionally, we improved
the completeness of power line structure segmentation without significantly increasing
computation time, resulting in a 6% improvement over existing methods. Moreover, we
proposed a process for automatic segmentation of critical structures by combining deep
learning, achieving at least 90% IoU, which is more efficient and accurate than existing
direct deep learning segmentation methods and supports model reconstruction.

In summary, our work provides a low-cost method for railroad line model reconstruc-
tion, allowing researchers to perform large-scale automated segmentation using only the
three-dimensional coordinate data of railroad point clouds, which can reliably reduce the
cost of railroad engineering operation and maintenance and improve the efficiency of BIM
model construction.
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