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Abstract: Seismic data processing plays a key role in the field of geophysics. The collected seismic
data are inevitably contaminated by various types of noise, which makes the effective signals difficult
to be accurately discriminated. A fundamental issue is how to improve the signal-to-noise ratio of
seismic data. Due to the complex characteristics of noise and signals, it is a challenge for the denoising
model to suppress noise and recover weak signals. To suppress random noise in seismic data, we
propose a multi-scale deformable convolution neural network denoising model based on U-Net,
named MSDC-Unet. The MSDC-Unet mainly contains modules of deformable convolution and
dilated convolution. The deformable convolution can change the shape of the convolution kernel to
adjust the shape of seismic signals to fit different features, while the dilated convolution with different
dilation rates is used to extract feature information at different scales. Furthermore, we combine
Charbonnier loss and structure similarity index measure (SSIM) to better characterize geological
structures of seismic data. Several examples of synthetic and field seismic data demonstrate that the
proposed method is effective in the comprehensive results in terms of quantitative metrics and visual
effect of denoising, compared with two traditional denoising methods and two deep convolutional
neural network denoising models.

Keywords: seismic data; denoising; U-Net; deep learning

1. Introduction

Seismic exploration is one of the methods for oil and gas exploration. Compared
with other methods such as gravity prospecting, it is excellent at clearly determining the
structural formation, burial depth and rock properties of rock formations. It also has the
advantages of high accuracy and low cost, and has been widely used in the geoscience
community. Seismic exploration uses the elastic differences of the underground environ-
ment to infer the structural distribution of underground rock formations by investigating
the propagation of artificially excited seismic waves in the underground medium [1,2]. In
the process of acquiring field data, effective waves are inevitably affected by interference
waves and external factors, thus the effective signals are usually masked by various types of
complex noise [3]. Among many types of noise, random noise forms a chaotic background
in the seismic data without a fixed frequency and a fixed travel direction. The random
noise mainly comes from ground microearthquakes such as wind and grass movement,
sea waves, water flow, people and animals, walking and mechanical operation, as well
as the instrument of seismic excitation and sensors. Therefore, it is very important for
seismic data processing to recover useful signals while suppressing random noise, thereby
improving the quality of seismic data.

In the past few decades, researchers have developed many methods to improve the
signal-to-noise ratio (SNR) of seismic data. Traditional methods are applied in seismic
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noise reduction, such as f-x filtering [4], median filter [5], singular value decomposition [6],
Fourier transform [7], empirical wavelet transform [8], rank reduction methods [9–11],
etc. However, these traditional approaches have certain limitations. For example, Fourier
transform and wavelet transform convert seismic data to the sparse domain, and then
separate effective signals from the noise through the threshold function. The selection of the
threshold value requires a lot of prior knowledge. The filtering algorithm suppresses the
noise through the different frequency distribution of the signal and noise in seismic data.
However, there is serious overlap of the effective signal, random noise, and surface wave
in the low frequency band, which poses a big challenge to traditional denoising methods.
In addition, most traditional methods require specific mathematical models to fit seismic
data, which is a tedious and time-consuming process [12].

Deep learning has taken a great leap forward due to the development of neural
networks and the progress of computer hardware in the field of computer vision. With the
increasing amount of available data, deep learning method is becoming more and more
widely used in the science of remote sensing as well as geophysics. Recently, deep learning
algorithms have been applied to many tasks in the field of remote sensing, including scene
classification, segmentation, target recognition and detection, change detection, and so
on [13–17]. In the field of geophysics, deep learning has received much attention due to
the efficient feature extraction methods from a set of data, especially in denoising, seismic
inversion, fault detection and facies classification tasks [18]. Compared with traditional
methods, deep learning can automatically learn noise characteristics from the training data,
which does not require much prior knowledge to improve the denoising performance.
More and more scholars applied various deep learning models to seismic data processing.
Among those models, CNNs are widely used in image denoising tasks, and many CNN-
based models have been successfully applied to seismic signal processing [19–24]. Zhang
et al. proposed a DnCNN that combines residual learning with a CNN for image denoising.
The network framework of DnCNN learns characteristics of noise instead of signal [25].
The complexity of the noise is much lower than the signal, which is more conducive to
reduce the calculation of the network. Moreover, the DnCNN verified the role of the BN
layer, which can stabilize the model distribution, accelerate the model convergence speed,
and alleviate the problem of gradient disappearance to a certain extent. Ronneberger et
al. proposed a U-Net that uses shortcut connections to connect the encoder and decoder,
so as to fuse the shallow feature information into the deep image details, reducing the
loss of information [26]. Yang et al. proposed a novel attention-fused network (AFNet)
architecture to deal with the problems of feature fusion [27]. The infrared attention network
(InfAttNet) proposed by Gui et al. enhanced feature extraction by designing a series of
attention mechanisms [28].

Seismic data contains a lot of feature information, so the original U-Net does not meet
the requirement of seismic data processing. This means that we need a more complex
network structure to achieve feature extraction of seismic data, including global features
and local details, so that the random noise in the seismic data can be suppressed while
effective signals can be preserved as much as possible. In response to the above problems,
experts improve the denoising performance by adding different modules to deepen the
convolutional neural network [29–34]. Saad et al. proposed a deep learning algorithm
(PATCHUNET) using a patching technique to divide the input data into several patches to
suppress random noise [35]. Dong et al. adapted a leaky ReLU as the activation function,
and proposed a forward convolutional neural network (L-FM-CNN) [36]. Li et al. proposed
a deep convolutional neural network with a subpixel layer and several residual blocks
to achieve seismic image super-resolution and denoising simultaneously [37]. Gao et al.
proposed a deep convolutional network model (DnRDB) combined with residual dense
blocks (RDB). The model is mainly composed of several RDB in series, and skip connection
is applied in the middle layer to retain the features extracted from each layer [38]. Feng et al.
proposed a multi-granularity feature fusion CNN (MFFCNN) with a block of multi-scale
feature extraction, using different scales of convolution kernels to extract features of seismic
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data and then fusing the features, which results in a more comprehensive seismic data
feature extraction [12]. This method can fully extract the local self-similarity of seismic
data, thereby improving the effect of noise suppression. Convolution kernel of different
scales are used in MFFCNN. Although the feature extraction performance is improved,
the number of hyperparameters is also increased, which makes the training time longer.
Zhao et al. improved U-Net and applied it to seismic random noise suppression; they
added several dropout layers to the U-Net and set the output of the network as the residual
units [39]. Subsequently, they proposed a deep learning method named U-Net with Global
Context Block and Attention Block (GC-AB-Unet) to suppress the background noise for
DAS-VSP records [40].

In order to make full use of local self-similarity of seismic data, it is not enough
to extract features only with convolution kernel of fixed size. We propose a multi-scale
deformable convolution framework based on U-Net, called MSDC-Unet. It consists of a
multi-scale convolution module and residual learning. The improvements in MSDC-Unet
are summarized as follows.

First, we add the multi-scale convolution module at the beginning of the model. The
multi-scale convolution module contains deformable convolution and dilated convolution.
Deformable convolution can change the shape of the convolution kernel to adjust its shape
to fit different features of seismic data. A multi-scale convolution module uses dilated
convolution with different dilation rates to extract feature information at different scales
and increase the denoising efficiency. In addition, we use residual learning to accelerate the
training of the model.

Second, we use a loss function that combines Charbonnier loss and SSIM to better
measure the similarity between the predicted data and the input data. In order to fine-tune
the denoising effect, we use the supervised learning method to train the network on the
training set of synthetic seismic data.

The remainder of this paper is organized as follows. Section 2 introduces the structure
of the proposed denoising method for seismic data. Experimental results of the synthetic ex-
amples and field examples are given in Section 3. Finally, the discussion and the conclusions
are presented in Sections 4 and 5, respectively.

2. Methods

In this section, we briefly introduce seismic data denoising based on a mathematical
model in terms of supervised learning. Then, we present the MSDC-Unet architecture.

2.1. Network Architecture

The purpose of seismic data denoising is to attenuate the noise from the noisy data
and recover an effective signal as much as possible. The mathematical model of denoising
can be expressed as:

y = x + n, (1)

where y represents the noisy data contaminated by random noise, x is the clean data, n is
the random noise.

The foundation of our method is the U-Net architecture. U-Net is a U-shaped convolution
neural network structure based on Fully Convolutional Networks (FCNs), which is used to
overcome the problems of FCNs. For example, a FCN cannot contact the context and location
information, which is not suitable for complex tasks. The structure of U-Net makes it extract
multi-level and multi-scale features, and the features extracted in the down-sampling process
can be transferred to the up-sampling process through skip connection.

In order to enable U-Net to be competent for the task of seismic data denoising, we
make some improvements to U-Net and propose a MSDC-Unet. As shown in Figure 1,
we add a multi-scale convolution module to the network framework of the MSDC-Unet.
The multi-scale convolution module is placed at the beginning of the network structure
to maximize the advantages of multi-level and multi-scale feature extraction. The multi-
scale convolution module mainly contains dilated convolution layers, feature fusion and
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deformable convolution, as illustrated in Figure 2a. The expansion of the receptive field of
the network is realized by connecting the dilated convolution layers with different dilation
rates in parallel. The parallel dilated convolution module can learn feature information of
seismic data at different scales, which effectively improves the denoising efficiency. The
deformable convolution can effectively change the range of the receptive field depending
on the shape of the signal, which helps the network to fully learn the characteristics of the
random noise. In the down-sampling process of U-Net, the computation is reduced and
the receptive field is increased by dimension reduction operation. Furthermore, we use a
convolution layer with two strides instead of the pooling layer to implement the process of
down-sampling, which is able to avoid the information loss caused by the pooling layer.
Additionally, skip connection is used between up-sampling and down-sampling to fuse
features. In the following subsection, we will introduce the specific structure of multi-scale
convolution module in detail.

Figure 1. The structure of MSDC-Unet. Encoder and Decoder are marked with green and blue boxes,
respectively. The structure of multi-scale convolution module is shown in Figure 2a.
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offsets of deformable convolution.

In addition, we use four down-sampling layers and four up-sampling layers in the
network. The convolution kernel of each convolution layer is set to 3× 3. The extraction of
features and number of channels are realized through convolution. The numbers of filters
in the process of Encoder are 16, 32, 128 and 256, respectively. The process of Decoder is
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the opposite. Batch normalization and activation function are added after convolution
layer. Here, we replace the ReLU function with a LeakyReLU function to avoid the gradient
disappearing. The convolution layer uses zero padding to keep the size of the feature
map unchanged.

2.2. Multi-Scale Convolution Module

The structure of the multi-scale convolution module is shown in Figure 2a. The
number of input and output channels is 16, and the convolution kernel size is 3× 3. In the
module, the preliminary feature extraction of the input data are implemented through a
convolution layer, and can be expressed as:

y16×240×240 = conv
3×3

(input1×240×240). (2)

As shown in Figure 2a, we use dilated convolution with different dilation rates in a
parallel three-layer structure. The convolution kernel size of the dilated convolution is 3× 3.
Due to the different dilation rates, the features of the data extracted by the dilated convolution
are also different. The dilated convolution with a large dilation rate extracts global information
and the dilated convolution with a small dilation rate extracts local information.

y1 = conv
3×3

(y16×240×240), dilation rate = 1, (3)

y2 = conv
3×3

(conv
1×1

(y16×240×240)), dilation rate = 3, (4)

y3 = conv
3×3

(conv
1×1

(y16×240×240)), dilation rate = 5, (5)

where input is the input seismic noisy data, and y1, y2, y3 are the feature map extracted
from these three channels. In the multi-scale convolution module, dilated convolution with
different dilation rates is used to extract the features of the seismic data at different scales,
which results in a more comprehensive seismic data feature extraction.

Then, the results of the convolution of the three branches are feature fused, and the
number of channels is reduced by using a 1 × 1 convolution to reduce the amount of
network calculations. After the convolution operation, the LeakyReLU function and batch
normalization are used to increase non-linearity, prevent overfitting, and improve the
training efficiency of the model. Additionally, we add the deformable convolution at the
end of the module, which can adjust the shape of the convolution kernel according to the
different shapes of the seismic signal to improve the accuracy of feature extraction.

y4 = conv
3×3

(conv
1×1

(concat(y1, y2, y3))), (6)

y5 = deconv
3×3

(y4), (7)

y6 = LeakyReLU(BN(y5)), (8)

where concat represents the fusion of features, deconv is the deformable convolution layer,
y5 is the feature extraction through the deformable convolution, and y6 is the output of the
multi-scale convolution module.

As shown in Figure 2b, the position change of grid sampling points is realized by
the spatial offset learned by deformable convolution. The deformation of the convolution
kernel is actually an offset of the sampling position. By adding offsets to the sampling
points of the standard convolution, the convolution kernel is deformed, so that the network
can adapt to the size and shape of the seismic event. Compared with the fixed rectangle
convolution kernel of standard convolution, the sampling points of deformable convolution
are closer to the receptive field center, so more effective receptive fields can be obtained.
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Experiment results in Section 3 show that the combination of multi-scale information in
this way can improve denoising performance.

2.3. Loss Function

The denoising process in MSDC-Unet can be expressed as:

x̂ = F(y, Θ), (9)

where F is a mapping function between y and x̂. x̂ is the clean data predicted by the model
from the input noisy data y. Θ is the hyperparameters of the MSDC-Unet architecture.

As mentioned above, we use the multi-scale convolution module to fully extract the
features of seismic data, and use the skip connection to ensure that extracted features are
fully utilized. Moreover, motivated by DnCNN, we use residual learning to avoid gradient
disappearance and gradient explosion. The loss function can be written as:

L = a · (losschar) + b · (lossSSIM), (10)

losschar =
√
||n− n̂||2 + ε2, (11)

lossSSIM = 1− SSIM(n, n̂), (12)

where lossSSIM is loss function based on SSIM, losschar is the Charbonnier loss [41], n is the
input noise, and n̂ is the predicted noise. a and b are the weight parameters that adjust
the relative importance of these two losses. ε is a constant that is suggested to be 10−5.
The SSIM is added in the loss function to fine tune the denoising performance in terms of
enhancing the continuity of the geological structures. Finally, we use Adam algorithm to
optimize the loss function [42].

2.4. Synthetic Dataset

Denoising methods based on deep learning need a large amount of data as the training
dataset for feature learning to obtain good optimization results. Due to the high difficulty
and cost of field seismic data acquisition, we use the numerical simulation method to
construct the training dataset. We use three mathematical models to synthesize the seismic
data, namely Vertical Seismic Profile (VSP) data, the reflection seismic data and the Mar-
mousi2 data, respectively. The synthetic seismic data obtained by the models is clean, so
we add white Gaussian noise with different levels (different SNR randomly selected in the
range of 17 to 27 dB) to the synthetic clean data to obtain the noisy seismic data.

VSP acquisition technology can provide a direct relationship between underground
structure and ground measurement parameters, which is widely used in the field of
geophysical exploration [43]. We use the reflectivity method to synthesize VSP data in
MATLAB, and the synthesized data contains up-going and down-going waves [44,45]. In
the simulation of VSP data, the dominant frequency of seismic source varies from 10 Hz to
60 Hz. Finally, we obtain 38 synthetic clean seismic datasets, where each seismic dataset is
composed of 240 traces and 2048 samples with a sampling interval of 1 ms.

The reflection seismic data is composed of different hyperbolic seismic events [24].
Each example of the reflection seismic data contains 401 traces and 601 time samples with a
time sampling rate of 2 ms. The dominant frequency and apparent velocity are randomly
chosen in the range of 10–40 Hz and 1500–2400 m/s, respectively.

In addition, we generate the zero-offset seismic profile based on the Marmousi2
velocity model [46], named the Marmousi2 dataset. We use the convolution model to
generate 95 seismic datasets through convolution the reflectivity series with Ricker wavelet.
Each dataset contains 1530 traces and 1100 time samples with the time sample rate of
being 1 ms.
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In order to increase the diversity of network training samples, we choose seismic
data (Bpvelanal2004) from Dataset (website: https://wiki.seg.org/wiki/2004_BP_velocity_
estim--ation_benchmark_model/ (accessed on 10 October 2022)).

Consequently, we generate 115 clean synthetic seismic datasets, from which we ran-
domly select 15 as the test data. By adding white Gaussian noise with different intensities
to the clean seismic data, the noisy data are generated. For large-scale seismic data, in order
to increase the feature extraction ability, it is bound to increase the training parameters
while it leads to a reduction in the training efficiency. In order to improve training efficiency
and reduce training costs, the training dataset is cropped into many small-scale samples.
We use the sliding window method to divide the input noisy data into sample patches with
sizes of 240× 240. By preprocessing three different synthetic data, and arranging sliding
windows from left to right, 3258 patches in size of 240× 240 are generated from training
samples and 354 patches with the same size are generated from test set. In order to test the
generalization ability of the model, 3100 samples are randomly selected from 3258 samples
as training sets, the model is iteratively trained, and 354 samples are used as verification
sets to verify and evaluate the model. The ratio of each type of data in the training dataset
and the test dataset is shown in Table 1.

Table 1. Quantity of the train dataset and the test dataset allocations. The size of each patch is
240× 240.

Datasets The Training Datasets The Test Datasets

VSP data 800 139

Reflection seismic data 800 35

Marmousi2 data 800 180

Bpvelanal2004 700 -

Total 3100 354

2.5. Selection of Parameters and Quantitative Analysis of Denoising Performance

The Adam algorithm with β1 = 0.9 is used to train our model. It takes about 6 h to
train our model on a Nvidia GeForce GTX 2080 GPU. In addition, the number of training
epochs is set to 300.

We use the signal-to-noise ratio (SNR), mean square error (MSE) and SSIM as quanti-
tative metrics and seismic difference profiles as qualitative metric to evaluate the network
denoising effect. The calculation formulas of SNR, MSE and SSIM are as follows:

SNR = 10lg
||x||2
||n̂||2 . (13)

MSE =
1
N

N

∑
i=1

(x̂i − xi)
2. (14)

SSIM =
(2µxµx̂ + c1)(2σxσx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
. (15)

where x and xi denote the clean seismic data, x̂i denotes the denoised seismic data, N is
the number of seismic data sets, n̂ is the predicted noise, µx and µx̂ are the mean values
of clean seismic data and denoised seismic data, σx and σx̂ are the standard deviations of
clean seismic data and denoised seismic data, respectively. c1 and c2 are constants. The
higher the SNR value, the closer the denoising data are to the clean data. On the contrary,
the closer the MSE is to 0, the smaller the difference between the denoising and clean data
is. SSIM is an index to evaluate the similarity between the denoised seismic data and the
clean seismic data, and it is close to 1, indicating a higher similarity.

https://wiki.seg.org/wiki/2004_BP_velocity_estim- -ation_benchmark_model/
https://wiki.seg.org/wiki/2004_BP_velocity_estim- -ation_benchmark_model/
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3. Results

In this section, we compare the proposed MSDC-Unet with a number of deep learning
methods and traditional denoising algorithms, including DnCNN, U-Net, Damped Rank
Reduction (DRR) [47] and f-x filtering [4]. To ensure the fairness of the experiment, we
increase the corresponding number of layers in the network framework comparable to the
MSDC-Unet and corresponding parameters are selected consistently. DnCNN takes about
4 h and the U-Net takes more than one hour during the training. Compared with DnCNN
and U-Net, the training process of MSDC-Unet is more complicated, and requires more
computational time because the deformable convolution needs to calculate the position
offset of each sampling point. The addition of deformable convolution improves the
perception ability of local details. Our MSDC-Unet achieves the highest average SNR
and SSIM, as well as lower MSE in the denoising results of synthetic data. Moreover,
MSDC-Unet outperforms the deep learning denoising methods from the visualized results.

3.1. Synthetic Examples

Figures 3–5 and Table 2 compare the denoising results of several existing methods with
those of the proposed method in terms of denoising performance of synthetic seismic data.

Table 2. Denoising results of synthetic data.

Dataset VSP Data Reflection Seismic Data Marmousi2 Data

Evaluation
indexes SNR/dB MSE SSIM SNR/dB MSE SSIM SNR/dB MSE SSIM

Initial
value 9.31 5.47× 10−3 0.938 5.16 0.01 0.849 −0.92 7.75× 10−3 0.629

f-x
filtering 14.26 1.78× 10−3 0.97 12.93 2.08× 10−3 0.954 13.24 2.65× 10−4 0.949

DRR 15.69 1.19× 10−3 0.985 16.24 6.66× 10−4 0.987 13.34 2.6× 10−4 0.974

DnCNN 23.77 2.31× 10−4 0.996 20.92 2.32× 10−4 0.989 14.25 2.11× 10−4 0.949

U-Net 24.54 1.92× 10−4 0.987 22 1.93× 10−4 0.93 14.82 1.86× 10−4 0.941

MSDC-
Unet 25.63 1.69× 10−4 0.997 24.88 9.99× 10−5 0.997 17.58 9.69× 10−5 0.987

Bold text represents the denoising effect of MSDC-Unet.

There are 15 seismic data points in the test set, which are composed equally of three types
of synthetic seismic data. Then, we obtain the average SNR by averaging the SNR over the
five data of each type. Table 2 lists the average SNR, SSIM and MSE of denoising results with
different methods. As shown in Table 2, the average SNR and SSIM improvement of other
methods are smaller than MSDC-Unet, which means our proposed method is better than other
methods in quantitative metrics. The smaller the MSE value, the better the denoising effect,
and the MSE of our model on three types of seismic data is the smallest. Then, we compare the
denoising effect of these methods in different types of seismic data through visualization.

The denoising results of VSP data are provided in Figure 3, which shows a visual
comparison on the VSP data from the test dataset for the methods of DnCNN, U-Net, DRR
and f-x filtering. Figure 3a–c are clean data, noisy data and noise data. Figure 3d,f,h shows
the denoised results using f-x filtering, DRR and DnCNN, respectively. It can clearly be
seen that a large amount of random noise still remains in those denoising data. Figure 3j,l
shows the denoising results using U-Net and our proposed network, which are entirely
cleaner than other methods. Figure 3e,g,i,k,m shows the removed noise corresponding to
Figure 3d,f,h,j,l, and the signal loss is intuitive, compared with Figure 3c. Figure 3e shows
strong signal leakage in the denoising results with f-x filtering. Figure 3g indicates that
there is distinct signal damage in the coupling section of down-going waves and up-going
waves in the method of DRR. Figure 3i shows that in the denoising results of DnCNN
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some effective signals are removed while a certain amount of noise is still retained in the
denoising data of Figure 3h. Figure 3k,m illustrate that the U-Net and MSDC-Unet methods
preserve the signals very well, which contain few down-going waves in the denoising
results of U-Net and extremely few up-going waves in the denoising results of MSDC-Unet.
It can be seen from the removed noise that there is some signal damage to the down-going
wave in the denoising results of these methods, while obvious signal leakage also exists
in up-going wave for other methods. The up-going wave with our method basically does
not lose information. The SNR of noisy VSP seismic data are 9.31 dB. The SNR of the
denoising data obtained by f-x filtering, DRR, DnCNN, U-Net, and MSDC-Unet are 14.26,
15.69, 23.77, 24.54, 25.63 dB, respectively. The MSDC-Unet has higher SSIM and lower MSE
than other methods.
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24.54, 25.63 dB, respectively. The MSDC-Unet has higher SSIM and lower MSE than other
methods.
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Figure 3. VSP synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data using: (d) f-x
filtering, (f)DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x filtering, (g) DRR,
(i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations of signal loss are marked with red arrows.

The clean data, noisy data and noise data for the second test data are shown in
Figure 4a–c. The reflection seismic data consists of several hyperbolic seismic events
and the seismic signal structure is relatively simple [24]. Therefore, all of the denoising
algorithms can recover the seismic signals to some extent. In Figure 4, we can clearly see
that the denoising data obtained by our method (seen in Figure 4l,m) is the most similar to
clean data and the noise removal is the most thorough. We can see that the signal leakage
in Figure 4i,m is relatively small, but there is still a lot of residual noise in the denoising
data as shown in Figure 4h for the method of DnCNN. It can be seen from Figure 4 that the
denoising data with MSDC-Unet is cleaner and brighter than other methods, while there is
almost no signal leakage in the removed noise. According to the evaluation index in Table 2,
the improvements of SNR, SSIM and MSE of denoising data obtained by MSDC-Unet is the
highest compared with other methods, in which the SNR and SSIM increase from 5.16 dB
to 24.88 dB, from 0.849 to 0.997 and the MSE decreases from 0.01 to 9.99× 10−5 respectively,
indicating that our method has the best denoising performance.

Figure 3. VSP synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data using: (d) f-x
filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x filtering, (g) DRR,
(i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations of signal loss are marked with red arrows.

The clean data, noisy data and noise data for the second test data are shown in
Figure 4a–c. The reflection seismic data consists of several hyperbolic seismic events,
and the seismic signal structure is relatively simple [24]. Therefore, all of the denoising
algorithms can recover the seismic signals to some extent. In Figure 4, we can clearly see
that the denoising data obtained by our method (seen in Figure 4l,m) is the most similar to
clean data and the noise removal is the most thorough. We can see that the signal leakage
in Figure 4i,m is relatively small, but there is still a lot of residual noise in the denoising
data as shown in Figure 4h for the method of DnCNN. It can be seen from Figure 4 that the
denoising data with MSDC-Unet is cleaner and brighter than other methods, while there is
almost no signal leakage in the removed noise. According to the evaluation index in Table 2,
the improvements in SNR, SSIM and MSE of denoising data obtained by MSDC-Unet is the
highest compared with other methods, in which the SNR and SSIM increase from 5.16 dB to
24.88 dB, from 0.849 to 0.997, and the MSE decreases from 0.01 to 9.99× 10−5, respectively,
indicating that our method has the best denoising performance.
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Figure 4. Reflection synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations of signal loss are marked
with red arrows.

Figure 5a–c shows the clean data, noisy data and noise data from the Marmousi2
model. Figure 5d,f,h,j,l show the denoising data using f-x filtering, DRR, DnCNN, U-Net,
and MSDC-Unet, respectively. The steep interfaces part of the denoising results is zoomed
to better show the denoising effect, as shown on the left side of Figure 5d,f,h,j,l. One can
see that the denoising data through MSDC-Unet is much clearer than other methods and
many weak seismic signals in the enlarged parts are well restored. Figure 5d,h,j show the
seismic signal reconstructed by f-x filtering, DnCNN and U-Net is blurry and discontinuous,
indicating that there is still a large amount of noise in the denoising data while the signal
damage is relatively serious. Figure 5f,g illustrate that DRR strongly damages the seismic
signal at the position of strong impedance contrasts and steep interfaces. The difference
profiles in Figure 5e,i,k also confirm the disadvantage of these methods. From Figure 5e,i,k,
it is clear that some geophysical structures in details are lost in the removed noise, which
results in a decline in data quality. The seismic signals in Marmousi2 synthetic data are
more complex and a large number of weak signals exist in these data, which requires higher
performance of the denoising network framework. From Figure 5l,m, it can be seen that
our method retains the most signal details compared with other methods and the denoising
data is much cleaner and more continuous in geological structures, which corresponds to
the improved SNR and SSIM in Table 2.

Figure 4. Reflection synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations of signal loss are marked
with red arrows.

Figure 5a–c shows the clean data, noisy data and noise data from the Marmousi2
model. Figure 5d,f,h,j,l shows the denoising data using f-x filtering, DRR, DnCNN, U-Net,
and MSDC-Unet, respectively. The steep interfaces part of the denoising results is zoomed
to better show the denoising effect, as shown on the left side of Figure 5d,f,h,j,l. One can
see that the denoising data through MSDC-Unet is much clearer than other methods, and
many weak seismic signals in the enlarged parts are well restored. Figure 5d,h,j shows the
seismic signal reconstructed by f-x filtering, DnCNN and U-Net is blurry and discontinuous,
indicating that there is still a large amount of noise in the denoising data while the signal
damage is relatively serious. Figure 5f,g illustrates that DRR strongly damages the seismic
signal at the position of strong impedance contrasts and steep interfaces. The difference
profiles in Figure 5e,i,k also confirm the disadvantage of these methods. From Figure 5e,i,k,
it is clear that some geophysical structures in details are lost in the removed noise, which
results in a decline in data quality. The seismic signals in Marmousi2 synthetic data are
more complex and a large number of weak signals exist in these data, which requires higher
performance of the denoising network framework. From Figure 5l,m, it can be seen that
our method retains the most signal details compared with other methods and the denoising
data are much cleaner and more continuous in geological structures, which corresponds to
the improved SNR and SSIM in Table 2.
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Figure 5. Marmousi2 synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The denoising results in the red boxes in
Figure 5d,f,h,j,l are zoomed to the left. The locations of signal loss are marked with red arrows.

To further verify the denoising performance of the proposed method on seismic data
with low SNR, Marmousi2 data with complex geological structures and amounts of weak
signals is selected for testing. Figures 6a and 6b are clean data and noisy data, respectively.
Figure 6c is noise data added in the Figure 6b. It can be found that compared with Figure 5b,
the noise level in Marmousi2 data increases and the initial SNR changes from −0.94 dB to
−14.75 dB, making some weak signals hidden in the noise. Compared with other methods,
the denoising results of DRR and MSDC-Unet are relatively clean and have less signal
loss in the removed noise. It can be seen that there is residual noise in the denoising
result through DRR where the area indicated by the red arrows in Figure 6f, while the
corresponding part of the noise in the result of MSDC-Unet is removed, as shown in
Figure 6l. Figure 6g,m indicate that both DRR and MSDC-Unet damage the signal at the
steep interfaces. From Figure 6d,e, it can be seen that f-x filtering cannot handle the mixing
of signal and noise in the frequency domain. In the case of low SNR and hidden signals,
the signal loss of DnCNN and U-Net is serious and they cannot recover weak signals well.
In contrast, MSDC-Unet can recover weak signals while removing noise, which has better
denoising performance.

From the perspective of the visual effect as shown in Figures 3–6, MSDC-Unet has better
effect on random noise denoising compared with other algorithms in the synthetic data.

Figure 5. Marmousi2 synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The denoising results in the red boxes in
Figure 5d,f,h,j,l are zoomed to the left. The locations of signal loss are marked with red arrows. The
steep interfaces part of the denoising results marked by red box is zoomed on the left sides (d,f,h,j,l)
of the figure.

To further verify the denoising performance of the proposed method on seismic data
with low SNR, Marmousi2 data with complex geological structures and amounts of weak
signals are selected for testing. Figure 6a, 6b are clean data and noisy data, respectively.
Figure 6c is noise data added in the 6b. It can be found that, compared with Figure 5b,
the noise level in Marmousi2 data increases and the initial SNR changes from −0.94 dB to
−14.75 dB, making some weak signals hidden in the noise. Compared with other methods,
the denoising results of DRR and MSDC-Unet are relatively clean and have less signal
loss in the removed noise. It can be seen that there is residual noise in the denoising
result through DRR, where the area indicated by the red arrows in Figure 6f, while the
corresponding part of the noise in the result of MSDC-Unet is removed, as shown in
Figure 6l. Figure 6g,m indicates that both DRR and MSDC-Unet damage the signal at the
steep interfaces. From Figure 6d,e, it can be seen that f-x filtering cannot handle the mixing
of signal and noise in the frequency domain. In the case of low SNR and hidden signals,
the signal loss of DnCNN and U-Net is serious and they cannot recover weak signals well.
In contrast, MSDC-Unet can recover weak signals while removing noise, which has better
denoising performance.

From the perspective of the visual effect as shown in Figures 3–6, MSDC-Unet has better
effect on random noise denoising compared with other algorithms in the synthetic data.
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Figure 5. Marmousi2 synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The denoising results in the red boxes in
Figure 5d,f,h,j,l are zoomed to the left. The locations of signal loss are marked with red arrows.

To further verify the denoising performance of the proposed method on seismic data
with low SNR, Marmousi2 data with complex geological structures and amounts of weak
signals is selected for testing. Figures 6a and 6b are clean data and noisy data, respectively.
Figure 6c is noise data added in the Figure 6b. It can be found that compared with Figure 5b,
the noise level in Marmousi2 data increases and the initial SNR changes from −0.94 dB to
−14.75 dB, making some weak signals hidden in the noise. Compared with other methods,
the denoising results of DRR and MSDC-Unet are relatively clean and have less signal
loss in the removed noise. It can be seen that there is residual noise in the denoising
result through DRR where the area indicated by the red arrows in Figure 6f, while the
corresponding part of the noise in the result of MSDC-Unet is removed, as shown in
Figure 6l. Figure 6g,m indicate that both DRR and MSDC-Unet damage the signal at the
steep interfaces. From Figure 6d,e, it can be seen that f-x filtering cannot handle the mixing
of signal and noise in the frequency domain. In the case of low SNR and hidden signals,
the signal loss of DnCNN and U-Net is serious and they cannot recover weak signals well.
In contrast, MSDC-Unet can recover weak signals while removing noise, which has better
denoising performance.

From the perspective of the visual effect as shown in Figures 3–6, MSDC-Unet has better
effect on random noise denoising compared with other algorithms in the synthetic data.

Figure 5. Marmousi2 synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The denoising results in the red boxes in
Figure 5d,f,h,j,l are zoomed to the left. The locations of signal loss are marked with red arrows. The
steep interfaces part of the denoising results marked by red box is zoomed on the left sides (d,f,h,j,l)
of the figure.

To further verify the denoising performance of the proposed method on seismic data
with low SNR, Marmousi2 data with complex geological structures and amounts of weak
signals are selected for testing. Figure 6a, 6b are clean data and noisy data, respectively.
Figure 6c is noise data added in the 6b. It can be found that, compared with Figure 5b,
the noise level in Marmousi2 data increases and the initial SNR changes from −0.94 dB to
−14.75 dB, making some weak signals hidden in the noise. Compared with other methods,
the denoising results of DRR and MSDC-Unet are relatively clean and have less signal
loss in the removed noise. It can be seen that there is residual noise in the denoising
result through DRR, where the area indicated by the red arrows in Figure 6f, while the
corresponding part of the noise in the result of MSDC-Unet is removed, as shown in
Figure 6l. Figure 6g,m indicates that both DRR and MSDC-Unet damage the signal at the
steep interfaces. From Figure 6d,e, it can be seen that f-x filtering cannot handle the mixing
of signal and noise in the frequency domain. In the case of low SNR and hidden signals,
the signal loss of DnCNN and U-Net is serious and they cannot recover weak signals well.
In contrast, MSDC-Unet can recover weak signals while removing noise, which has better
denoising performance.

From the perspective of the visual effect as shown in Figures 3–6, MSDC-Unet has better
effect on random noise denoising compared with other algorithms in the synthetic data.

Figure 5. Marmousi2 synthetic data. (a) Clean data. (b) Noisy data. (c) Noise data. Denoised data
using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet. Removed noise using: (e) f-x
filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The denoising results in the red boxes in
(d,f,h,j,l) are zoomed to the left. The locations of signal loss are marked with red arrows. The steep
interfaces part of the denoising results marked by red box is zoomed on the left sides (d,f,h,j,l) of
the figure.

To further verify the denoising performance of the proposed method on seismic data
with low SNR, Marmousi2 data with complex geological structures and amounts of weak
signals are selected for testing. Figure 6a,b are clean data and noisy data, respectively.
Figure 6c is noise data added in the 6b. It can be found that, compared with Figure 5b,
the noise level in Marmousi2 data increases and the initial SNR changes from −0.94 dB to
−14.75 dB, making some weak signals hidden in the noise. Compared with other methods,
the denoising results of DRR and MSDC-Unet are relatively clean and have less signal
loss in the removed noise. It can be seen that there is residual noise in the denoising
result through DRR, where the area indicated by the red arrows in Figure 6f, while the
corresponding part of the noise in the result of MSDC-Unet is removed, as shown in
Figure 6l. Figure 6g,m indicates that both DRR and MSDC-Unet damage the signal at the
steep interfaces. From Figure 6d,e, it can be seen that f-x filtering cannot handle the mixing
of signal and noise in the frequency domain. In the case of low SNR and hidden signals,
the signal loss of DnCNN and U-Net is serious and they cannot recover weak signals well.
In contrast, MSDC-Unet can recover weak signals while removing noise, which has better
denoising performance.

From the perspective of the visual effect as shown in Figures 3–6, MSDC-Unet has better
effect on random noise denoising compared with other algorithms in the synthetic data.

3.2. Field Examples

To further verify the practicality of the proposed MSDC-Unet method, we apply it to
three field seismic datasets to demonstrate its denoising performance. The denoising results
of the MSDC-Unet method are also compared with those of other denoising methods.

To evaluate the denoising performance of our proposed network, Figures 7–9 show
the denoising results of three field seismic data. Figure 7a shows the first raw field seismic
data. The corresponding denoising results are shown in Figure 7b,d,f,h,j, respectively.
Figure 7c,e,g,i,k are residuals after noise suppression. From Figure 7a, we can find that
the noise in the field seismic data are relatively strong, and there are many weak signals
masked by noise. Although DRR can remove a lot of noise, the signal recover in part of
region marked with the red box is not as good as MSDC-Unet. Figure 7b,c shows that, in
the denoising results of f-x filtering, a lot of noise is removed, but visible effective signals
are lost. It can be seen from Figure 7f that the DnCNN is also good at noise suppression, but
the obvious block blur exists in the denoising data and the signal loss remains in difference
profile of Figure 7g. Compared with the denoising results of Figure 7h,j, we can find that
the MSDC-Unet can remove more noise than U-Net, and the signal leakage in Figure 7k is
relatively small. Among the residual results, the signal loss in Figure 7k is the least. The
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denoising results demonstrate the MSDC-Unet has the ability of signal recovery and noise
attenuation for field seismic data.
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Figure 6. Marmousi2 synthetic data with low SNR. (a) Clean data. (b) Noisy data. (c) Noise data
added. Denoised data using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet.
Removed noise using: (e) f-x filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations
of signal loss are marked with red arrows.

3.2. Field Examples

To further verify the practicality of the proposed MSDC-Unet method, we apply it to
three field seismic data to demonstrate its denoising performance. The denoising results of
the MSDC-Unet method are also compared with those of other denoising methods.

To evaluate the denoising performance of our proposed network, Figures 7–9 show
the denoising results of three field seismic data. Figure 7a shows the first raw field seismic
data. The corresponding denoising results are shown in Figure 7b,d,f,h,j, respectively.
Figure 7c,e,g,i,k are residuals after noise suppression. From Figure 7a we can find that
the noise in the field seismic data is relatively strong, and there are many weak signals
masked by noise. Although DRR can remove a lot of noise, the signal recover in part of
region marked with the red box is not as good as MSDC-Unet. Figure 7b,c show that in the
denoising results of f-x filtering a lot of noise is removed but visible effective signals are
lost. It can be seen from Figure 7f that the DnCNN is also good at noise suppression, but
the obvious block blur exists in the denoising data and the signal loss remains in difference
profile of Figure 7g. Compared with the denoising results of Figure 7h,j, we can find that
the MSDC-Unet can remove more noise than U-Net and the signal leakage in Figure 7k is
relatively small. Among the residual results, the signal loss in Figure 7k is the least. The
denoising results demonstrate the MSDC-Unet has the ability of signal recovery and noise
attenuation for field seismic data.

Figure 6. Marmousi2 synthetic data with low SNR. (a) Clean data. (b) Noisy data. (c) Noise data
added. Denoised data using: (d) f-x filtering, (f) DRR, (h) DnCNN, (j) U-Net, (l) MSDC-Unet.
Removed noise using: (e) f-x filtering, (g) DRR, (i) DnCNN, (k) U-Net, (m) MSDC-Unet. The locations
of signal loss are marked with red arrows.

Figure 8a shows the second field seismic data, a type of distributed acoustic-sensing
vertical seismic profile (DAS-VSP) with different types of noise such as random noise,
optical cable vibration noise and instrument vibration noise. From Figure 8b–e, we can
clearly see that f-x filtering and DRR do not thoroughly suppress the noise. The complex
noise in Figure 8a is relatively strong, so it is difficult for traditional denoising methods to
suppress the noise and recover weak signals. It can be seen from Figure 8f–i that DnCNN
and U-Net methods perform better than the above two traditional denoising methods in
noise attenuation. But Figure 8g,i show that the visible signals marked with red boxes are
lost when recovering the data. In Figure 8j, MSDC-Unet method has relatively complete
noise attenuation. Compared to the denoising results of DnCNN and U-Net, MSDC-Unet
is better in terms of less signal leakage and relatively thorough noise suppression.

In Figure 9, we can clearly see that various types of noise exist in the DAS-VSP field
seismic data, in addition to random noise, and the weak signals are strongly submerged
in the complex noise. It can be observed that there is remaining noise in the denoised
data, and the removed noise contains various degrees of signal loss in the other four
methods. Comparing the part of the pure noise data marked with red boxes in Figure 9,
the background in Figure 9j is cleaner than that of other methods. As shown in Figure 9j,k,
the denoising results illustrate that MSDC-Unet can remove random noise and other types
of noise to some extent.

Extensive experiments show that our MSDC-Unet is more efficient and has better
performance than existing representative deep leaning and classical denoising methods.
The noise suppression by DRR is completely in several field seismic data, but there is some
signal leakage in the denoising results of DRR. The signal damage in the denoising data
of f-x filtering and DnCNN is serious. The performance of U-Net is poor in some field
seismic data, especially in the test of the third field seismic data, where there is a large
amount of residual noise in the denoising results of U-Net. Visualization results show that
MSDC-Unet can achieve a good balance between removing noise and recovering details of
seismic signal.
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Figure 7. First field seismic data. (a) Raw field data. Denoised data using: (b) f-x filtering, (d) DRR,
(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet.

Figure 8a shows the second field seismic data a type of distributed acoustic sensing-
vertical seismic profile (DAS-VSP) with different types of noise such as random noise,
optical cable vibration noise and instrument vibration noise. From Figures 8b–e, we can
clearly see that f-x filtering and DRR do not thoroughly suppress the noise. The complex
noise in Figure 8a is relatively strong, so it is difficult for traditional denoising methods to
suppress the noise and recover weak signals. It can be seen from Figure 8f–i that DnCNN
and U-Net methods perform better than the above two traditional denoising methods in
noise attenuation. But Figure 8g,i show that the visible signals marked with red boxes are
lost when recovering the data. In Figure 8j, MSDC-Unet method has relatively complete
noise attenuation. Compared with the denoising results of DnCNN and U-Net, MSDC-Unet
is better in terms of less signal leakage and relatively thorough noise suppression.
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Figure 7. First field seismic data. (a) Raw field data. Denoised data using: (b) f-x filtering, (d) DRR,
(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet. The locations of signal loss are marked with red boxes.
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(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet.

Figure 8a shows the second field seismic data a type of distributed acoustic sensing-
vertical seismic profile (DAS-VSP) with different types of noise such as random noise,
optical cable vibration noise and instrument vibration noise. From Figures 8b–e, we can
clearly see that f-x filtering and DRR do not thoroughly suppress the noise. The complex
noise in Figure 8a is relatively strong, so it is difficult for traditional denoising methods to
suppress the noise and recover weak signals. It can be seen from Figure 8f–i that DnCNN
and U-Net methods perform better than the above two traditional denoising methods in
noise attenuation. But Figure 8g,i show that the visible signals marked with red boxes are
lost when recovering the data. In Figure 8j, MSDC-Unet method has relatively complete
noise attenuation. Compared with the denoising results of DnCNN and U-Net, MSDC-Unet
is better in terms of less signal leakage and relatively thorough noise suppression.
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Figure 8. Second field seismic data. (a) Raw field data. Denoised data using: (b) f-x filtering, (d) DRR,
(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet.

In Figure 9, we can clearly see that various types of noise exist in the DAS-VSP field
seismic data in addition to random noise, and the weak signals are strongly submerged
in the complex noise. It can be observed that there are remaining noise in the denoised
data and the removed noise contains various degrees of signal loss in the other four
methods. Comparing the part of the pure noise data marked with red boxes in Figure 9,
the background in Figure 9j is cleaner than that of other methods. As shown in Figure 9j,k,
the denoising results illustrate that MSDC-Unet can remove random noise and other types
of noise to some extent.
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(i) U-Net, (k) MSDC-Unet. The locations of signal loss are marked with red boxes.
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seismic data, in addition to random noise, and the weak signals are strongly submerged
in the complex noise. It can be observed that there is remaining noise in the denoised
data, and the removed noise contains various degrees of signal loss in the other four
methods. Comparing the part of the pure noise data marked with red boxes in Figure 9,
the background in Figure 9j is cleaner than that of other methods. As shown in Figure 9j,k,
the denoising results illustrate that MSDC-Unet can remove random noise and other types
of noise to some extent.
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data and the removed noise contains various degrees of signal loss in the other four
methods. Comparing the part of the pure noise data marked with red boxes in Figure 9,
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Figure 9. Third field seismic data. (a) Raw field data. Denoised data using: (b) f-x filtering, (d) DRR,
(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet.

Extensive experiments show that our MSDC-Unet is more efficient and has better
performance than existing representative deep leaning and classical denoising methods.
The noise suppression by DRR is completely in several field seismic data, but there is some
signal leakage in the denoising results of DRR. The signal damage in the denoising data of
f-x filtering and DnCNN is serious. The performance of U-Net is poor in some field seismic
data, especially in the test of the third field seismic data, there is a large amount of residual
noise in the denoising results of U-Net. Visualization results show that MSDC-Unet can
achieve a good balance between removing noise and recovering details of seismic signal.

4. Discussion
4.1. Parameters Selection in Multi-scale Convolution Module

The purpose of seismic data denoising is to remove noise and recover effective signals
as much as possible according to the characteristics of random noise in seismic data [48].
Therefore, we propose MSDC-Unet model to fully extract noise features by using residual
learning and multi-scale convolution module. Multi-scale convolution module can extract
features from different scales and improve the performance of feature extraction and
denoising. Therefore, the parameters selection of multi-scale convolution module is very
important. In this work, we mainly use SNR to evaluate the denoising performance of
seismic data. In order to obtain the best denoising performance, we tune the parameters of
the multi-scale convolution module according to the SNR. The selection and results of the
module parameters are shown in the Table 3. First, we change the number of layers of the
dilated convolution at each branch in Figure 2a. Second, we adjust the dilation rate of the
dilated convolution in the module.

Figure 9. Third field seismic data. (a) Raw field data. Denoised data using: (b) f-x filtering, (d) DRR,
(f) DnCNN, (h) U-Net, (j) MSDC-Unet. Removed noise using: (c) f-x filtering, (e) DRR, (g) DnCNN,
(i) U-Net, (k) MSDC-Unet. The locations of pure noise data are marked with red boxes.

4. Discussion
4.1. Parameters Selection in Multi-Scale Convolution Module

The purpose of seismic data denoising is to remove noise and recover effective signals
as much as possible, according to the characteristics of random noise in seismic data [48].
Therefore, we propose MSDC-Unet model to fully extract noise features by using residual
learning and a multi-scale convolution module. The multi-scale convolution module can
extract features from different scales and improve the performance of feature extraction
and denoising. Therefore, the parameter selection of the multi-scale convolution module is
very important. In this work, we mainly use SNR to evaluate the denoising performance of
seismic data. In order to obtain the best denoising performance, we tune the parameters
of the multi-scale convolution module according to the SNR. The selection and results of
the module parameters are shown in Table 3. First, we change the number of layers of the
dilated convolution at each branch in Figure 2a. Second, we adjust the dilation rate of the
dilated convolution in the module.

Table 3. Quantitative comparison of different parameters for multi-scale convolution module.

Number of Convolution Layers Dilation Rate Convolution Kernel SNR/dBBranch1 Branch2 Branch3 Branch1 Branch2 Branch3 Branch1 Branch2 Branch3

1 1 1 1 3 5 3×3 3×3 3×3 15.23

1 2 2 1 3 5 3× 3 1× 1,
3× 3

1× 1,
3× 3 16.44

2 2 2 1 3 5 3×3 3×3 3×3 14.82

3 3 3 1 3 5 3×3 3×3 3×3 13.74

1 2 3 1 2 2 1×1 1×1, 3×3 1×1, 3×3 15.13

Bold text represents the parameter selection for the best SNR.

After repeated testings of the model performance using the parameters listed in Table 3,
the optimal recommended parameters are shown in bold font (the second row). In Table 3,
SNR represents the average SNR of the test set.

Through the analysis of Table 3, it can be found that the size of the receptive field has a
significant impact on the feature extraction. When the receptive field is small, the extracted
features are relatively local. Correspondingly, when the receptive field becomes large, the
extracted features are more comprehensive. As can be seen from Table 3, it is clear that
SNR is largest when the number of convolution layers used by the multi-scale convolution
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module are 1, 2, 2, the size of convolution kernel is 3× 3, and the dilation rate is 1, 3, 5. In
this case, the corresponding receptive field size is 3, 7, 11. The results show that the use
of larger receptive field size can improve the evaluation index, compared with the case of
parameters in the second row and the last row, where the size of corresponding receptive
fields is 3, 7, 11 and 1, 5, 9, respectively. Compared with the parameters in the second,
third, and fourth rows, although the receptive field for the case of the second row is smaller
than that of the third and fourth rows, it enables us to achieve less occupied resources and
improve denoising precision compared to the choice of the other two parameters. This is
because of the grid effect of dilated convolution, and continuous use of dilated convolution,
may reduce feature extraction performance.

4.2. Loss Function Parameters Selection

The loss function measures the difference between the ground-truth and the predicted
data. Different loss functions have different advantages and disadvantages. For practical
problems, the corresponding loss function should be selected based on the real situation. As
a common loss function for denoising problems, MSE has the advantage of fast convergence,
but it is easily affected by outliers. Therefore, we choose Charbonnier loss as part of the
loss function of the proposed method, which has better denoising performance and can
better handle outliers. In this paper, due to the complex geological structures of seismic
data, we add SSIM into the loss function to enable the seismic events continuous in the
denoising data. SSIM can measure the structural similarity between two data, which makes
the predicted data have higher structural continuity. In order to obtain the best denoising
effect, we need to obtain the optimal weight through several experiments. We train the
MSDC-Unet model through the weighted loss function with different weights, and test the
trained model on the synthetic data. The test results are shown in Table 4.

Table 4. Quantitative comparison of different weights for loss function.

a b ε MSE SNR/dB

- - 10−3 0.0175 17.52

- - 10−4 0.0125 16.81

- - 10−5 0.0113 18.12

0.9 0.1 10−5 0.0085 17.57

0.99 0.01 10−5 0.0098 17.67

0.995 0.005 10−5 0.0079 17.62

0.999 0.001 10−5 0.0089 18.5
Bold text represents the parameter selection for the best SNR.

When the constant ε is 10−5, the denoising effect of the model is better. Then, we fix
the constant ε and adjust the weights a and b. The results show that the best denoising
performance is achieved when a = 0.001 and b = 0.999 in these experiments. The loss
curve is shown in Figure 10. From Table 4, we can see that good denoising effect can be
achieved using Charbonnier loss alone. However, the decline of loss curve is smoother
and the values of MSE and SNR are more reasonable when combing the Charbonnier loss
and SSIM. If the SSIM loss is added to the loss function for fine tuning, the structure of
the denoising data can become more continuous. The results show that we can give full
play to the advantages of each loss function by reasonable combination of different loss
functions, so that they can better measure the similarity between the predicted data and
the ground-truth and achieve satisfying denoising effect.
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Figure 10. The loss curve of MSDC-Unet in 500 epochs.

4.3. Strategy of Modifying the Network Structure

In this section, we perform ablation studies to demonstrate the role of the main
components in the MSDC-Unet. Table 5 shows the SNR of denoising results on the synthetic
dataset with different modules, where the first column shows the main components in
the network, i.e., MFE, CS, DC. When MFE is selected, it means that the multi-scale
convolution module, with the exclusion of deformable convolution, is used to replace
standard convolution layer, whose position is shown in Figure 1. CS means that convolution
layers with increased stride are used to replace max-pooling to implement down-sampling.
DC indicates that the deformable convolution is added at the last layer of the MFE. The
last column of Table 5 is our proposed MSDC-Unet. Table 5 indicates that the SNR for
MSDC-Unet containing MFE, CS and DC modules is highest in the experimental results. In
the MSDC-Unet, the MFE can change the receptive field to obtain contextual information
from different scales and positions in the data. The DC can learn different noise features by
changing the sampling locations. The CS can reduce unnecessary information loss in the
down-sampling process. The deeper the network layer, the more abstract the information
extracted. MFE and DC modules placed at the second layer of the network is conducive to
the extraction of complete spatial information, which is transmitted to the deep network
through the symmetric structure of U-Net to achieve the fusion of low-level features and
high-level features. In order to enhance the roles of each modules of MFE, CS and DC,
Figure 11 compares the feature maps of MSDC-Unet with those of U-Net. As shown in
Figure 11, feature maps in the modules of MFE and DC are really different, suggesting
that model with MFE and DC can extract more comprehensive features. The feature maps
learned by U-Net (Figure 11d) are relatively similar to the input features, indicating that
the effective information has not been learned much. In contrast, the features learned by
different channels after deformable convolution (Figure 11b) are relatively different, which
is beneficial for the subsequent noise suppression.

Table 5. Quantitative comparison of ablation experiments.

MFE X X

DC X

CS X X X

SNR/dB 12.51 14.93 16.08 17.58
Bold text represents the parameter selection for the best SNR.

Although the computing cost and training time of the network increase slightly, the
denoising effect of the model with the deformable convolution is obviously improved, and
the increase in training time is acceptable. From Table 5 and Figure 12, it can be seen that
each module such as MFE, CS and DC in the MSDC-Unet plays an important role and
contributes to improve the denoising performance of the network. Moreover, we use the
denoising results in Figure 11 as qualitative indicators to illustrate the denoising effects of
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different modules. The denoising results are consistent with the improvement in SNR. In
Figure 11, we take the Marmousi2 synthetic experiment as an example to show the denois-
ing effect of different modules. Figure 11a,b are clean data and noisy data. Figure 11c,e,g,i
show denoising results using U-Net, U-Net with CS, U-Net with CS and MFE, respectively.
The removed noise corresponding to them are shown in Figure 11d,f,h,j. It is clear that
with the increase in modules in the network, signal leakage decreases. In Figure 11c,d,
only strong signals are recovered and most weak signals are lost. In Figure 11f,h, there is
some obvious signal leakage, but the signal loss is reduced in Figure 11h, indicating that
the feature extraction ability of MFE effectively improves the model performance. The
denoising results of MSDC-Unet are shown in Figure 11i,j, the signal leakge is the least in
Figure 11j compared with Figure 11d,f,h. Therefore, it is reasonable to apply the multi-scale
convolution module to the MSDC-Unet model.
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Figure 12. Denoising results of different modules in MSDC-Unet on Marmousi2 synthetic data.
(a) Clean data. (b) Noisy data. Denoised data using: (c) U-Net, (e) U-Net with CS, (g) U-Net with CS
and MFE, (i) U-Net with CS, MFE and DC (MSDC-Unet). Removed noise using: (d) U-Net, (f) U-Net
with CS, (h) U-Net with CS and MFE, (j) U-Net with CS, MFE and DC (MSDC-Unet). The locations
of signal loss are marked with red arrows.

4.4. Future Works

Although MSDC-Unet achieves a good denoising effect in synthetic seismic data, it
still needs to be improved in field seismic data. First, the training dataset only contains
random noise and four types of synthetic data, which is different from complex field
seismic data with various types of noise. Second, the addition of multi-scale convolution
module inevitably increases the training time. How to strengthen the generalization of the
denoising model and decrease the training time also requires further research.

5. Conclusions

An effective denoising method is crucial for each step of the seismic data processing.
In this paper, we propose a MSDC-Unet model with multi-scale convolution module to
suppress random noise of seismic data. MSDC-Unet makes fully use of the extracted
features of seismic data by adding modules of MFE, CS and DC. We introduce the dilated
convolution with different dilation rates to extract both local and global information of the
data. We use convolutional layer with two strides instead of the pooling layer to implement
the process of down-sampling, which avoids the information loss caused by the pooling
layer. The deformable convolution is utilized to adjust the shape of the convolution kernel
according to the shapes of the input data to improve the accuracy of feature extraction.
Moreover, because of residual learning, the training performance is improved and the
problem of the gradient disappearance is avoided. In addition, we use ablation experiments
to illustrate the necessary of MFE, CS and DC. For the model loss function, we combine
Charbonnier loss and SSIM to effectively preserve the details of seismic data in which SSIM
fine tunes the denoising results in terms of retaining the continuity of seismic events.

The experiments demonstrate that the MSDC-Unet has good performance in synthetic
data and field data from the quantitative index and visualization effect. Compared with
other methods such as f-x filtering, DRR, DnCNN and U-Net, the MSDC-Unet model can
better suppress random noise and recover effective signal. However, the MSDC-Unet
model still has some limitations to be solved, such as training efficiency and generalization
to field seismic data. The above problems will be further improved in future work.
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Figure 11. Denoising results of different modules in MSDC-Unet on Marmousi2 synthetic data.
(a) Clean data. (b) Noisy data. Denoised data using: (c) U-Net, (e) U-Net with CS, (g) U-Net with CS
and MFE, (i) U-Net with CS, MFE and DC (MSDC-Unet). Removed noise using: (d) U-Net, (f) U-Net
with CS, (h) U-Net with CS and MFE, (j) U-Net with CS, MFE and DC (MSDC-Unet). The locations
of signal loss are marked with red arrows.

Figure 12. Visualization of the feature maps in MSDC-Unet and U-Net. The first row is feature maps
of MFE, DC and CS modules. The second row shows the corresponding feature maps of U-Net.
(a) The feature map of MSDC-Unet after MFE module. (b) The feature map of MSDC-Unet after DC
module. (c) The feature map of MSDC-Unet after CS module. (d) The feature map of U-Net after
convolution. (e) The feature map of U-Net after down-sampling by max-pooling.

4.4. Future Works

Although MSDC-Unet achieves a good denoising effect in synthetic seismic data, it
still needs to be improved in field seismic data. First, the training dataset only contains
random noise and four types of synthetic data, which is different from complex field
seismic data with various types of noise. Second, the addition of multi-scale convolution
module inevitably increases the training time. How to strengthen the generalization of the
denoising model and decrease the training time also requires further research.

5. Conclusions

An effective denoising method is crucial for each step of the seismic data processing.
In this paper, we propose a MSDC-Unet model with multi-scale convolution module to
suppress random noise of seismic data. MSDC-Unet makes fully use of the extracted
features of seismic data by adding modules of MFE, CS and DC. We introduce the dilated
convolution with different dilation rates to extract both local and global information of the
data. We use convolutional layer with two strides instead of the pooling layer to implement
the process of down-sampling, which avoids the information loss caused by the pooling
layer. The deformable convolution is utilized to adjust the shape of the convolution kernel
according to the shapes of the input data to improve the accuracy of feature extraction.
Moreover, because of residual learning, the training performance is improved and the
problem of the gradient disappearance is avoided. In addition, we use ablation experiments
to illustrate the necessary of MFE, CS and DC. For the model loss function, we combine
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Charbonnier loss and SSIM to effectively preserve the details of seismic data in which SSIM
fine tunes the denoising results in terms of retaining the continuity of seismic events.

The experiments demonstrate that the MSDC-Unet has good performance in synthetic
data and field data from the quantitative index and visualization effect. Compared with
other methods such as f-x filtering, DRR, DnCNN and U-Net, the MSDC-Unet model can
better suppress random noise and recover effective signal. However, the MSDC-Unet
model still has some limitations to be solved, such as training efficiency and generalization
to field seismic data. The above problems will be further improved in future work.
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