
Citation: Stern, A.J.; Daughtry, C.S.T.;

Hunt, E.R., Jr.; Gao, F. Comparison of

Five Spectral Indices and Six Imagery

Classification Techniques for

Assessment of Crop Residue Cover

Using Four Years of Landsat Imagery.

Remote Sens. 2023, 15, 4596.

https://doi.org/10.3390/rs15184596

Academic Editors: Joanne N. Halls,

Chuanrong Zhang and Weidong Li

Received: 14 July 2023

Revised: 1 September 2023

Accepted: 14 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Comparison of Five Spectral Indices and Six Imagery
Classification Techniques for Assessment of Crop Residue
Cover Using Four Years of Landsat Imagery
Alan J. Stern *, Craig S. T. Daughtry , E. Raymond Hunt, Jr. and Feng Gao

Agricultural Research Service, Hydrology and Remote Sensing Laboratory, U.S. Department of Agriculture,
Beltsville, MD 20705, USA
* Correspondence: alan.stern@usda.gov

Abstract: Determining residue cover on agricultural land is an important task. Residue cover helps
reduce soil erosion and helps sequester carbon. Many studies have used either spectral indices
or classification techniques to map residue cover using satellite imagery. Unfortunately, most of
these studies use only a few spectral indices or classification techniques and generally only study
an area for a single year with a certain level of success. This manuscript presents an investigation
of five spectral indices and six classification techniques over four years to determine if a single
spectral index or classification technique performs consistently better than the others. A second
objective is to determine whether using the coefficient of determination (R2) from the relationship
between residue cover and a spectral index is a reasonable substitute for calculating accuracy. Field
visits were conducted for each of the years studied and used to create the correlations with the
spectral indices and as ground truth for the classification techniques. It was found that no spectral
index/classification technique is consistently better than all the others. Classification techniques
tended to be more accurate in 2011 and 2013, while spectral indices tended to be more accurate in 2015
and 2018. The combination of spectral indices/classification techniques outperformed the individual
approach. For the second objective, it was found that R2 is not a great indicator of accuracy. Root
mean square error (RMSE) is a better indicator of accuracy than R2. However, simply calculating the
accuracy would be the best of all.

Keywords: crop residue; tillage intensity; remote sensing; classification; spectral indices

1. Introduction

Crop residue or senescent plant litter remaining on the surface of agricultural fields
helps to reduce erosion, increase soil organic carbon, and protect soil health. The soil tillage
intensity may be inferred from residue cover and is important regionally for government
policies on soil carbon sequestration and water quality [1,2]. Soil health is important for
maintaining farm sustainability [3].

Crop type and management (including tillage practices) may change each year. The
Conservation Technology Information Center (CTIC) conducts roadside surveys for selected
counties in the U.S. each year to measure and track the type of tillage used by crop at the
county level. The accuracy of these surveys suffers from the low observation angle and the
subjective nature of the observer [4,5].

Estimating residue cover on the soil surface with remote sensing has been studied, yet
it is still challenging because soils and crop residues are spectrally similar at visible and near-
infrared wavelengths [6]. However, dry crop residue has prominent absorption features in
the shortwave infrared (SWIR) associated with lignin and cellulose [7–9]. There have been
many attempts at developing spectral indices for the prediction of residue cover based on
the cellulose absorption feature [3,10]. The Cellulose Absorption Index (CAI) developed by
Daughtry [11] shows promise as an accurate index but requires relatively narrow spectral
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bands near 2020, 2110, and 2220 nm [12,13]. In contrast, multispectral satellite instruments,
such as Landsat Thematic Mapper, provide only wide-band reflectance in the SWIR and do
not allow direct measurement of the cellulose absorption feature.

Residue cover may also be estimated by land cover classification techniques using
either multispectral [5,14] or hyperspectral sensors [15]. Many studies acquire hyperspectral
imagery but analyze the data using spectral indices developed for multispectral sensors [16].
Some of the classification techniques originally developed for hyperspectral sensors, such
as linear spectral unmixing and support vector machine, are just as applicable to the
analysis of multispectral datasets. However, hyperspectral data have limited availability
and relatively high cost; therefore, multispectral satellite sensors with a few broad spectral
bands are currently the most likely to be used for operational assessment of cropland
residue cover.

Most studies for assessing crop residue cover using multispectral imagery were con-
ducted only for a single year, using spectral indices such as the Normalized Difference
Index (NDI5,NDI7) [17], Simple Tillage Index (STI), Normalized Difference Tillage Index
(NDTI) [18] and Normalized Difference Senescent Vegetation Index (NDSVI) [19]. These
studies demonstrate the feasibility of new spectral indices or classification techniques
but do not show the effects on accuracy of year-to-year variability in weather and farm
operations, which is manifested as variation in the planting date and crop phenology. A
few studies have been conducted over multiple years, but these studies generally focused
on the feasibility of only a few spectral indices or classification techniques [2,20–22]. This
study investigates the accuracy of multiple spectral indices as well as imagery classification
techniques over multiple years.

In previous studies, a diversity of classification techniques have been used to assess
the accuracy of spectral indices or classification results for predicting crop residue cover.
Statistical methods, such as the coefficient of determination (R2) and root mean square
error (RMSE), were used to assess the accuracy of continuous variables such as spectral
indices. Categorical methods were used to handle classification analyses, summarized
by an accuracy assessment matrix [23]. Accuracy is calculated by comparing the created
classification with the observed values. The observed values can either come from the
observations that were used to train the classification, or those that were set aside to validate
the classification. Using the validation data is a more reasonable approach as the accuracy
is not contaminated with the data used to create it. The prediction accuracies of spectral
indices cannot be compared directly to prediction accuracies from classification. However,
thresholds may be applied to the continuous spectral indices to obtain classification-like
data, supporting a more direct comparison.

This study has two objectives. The first objective of this study is to compare the
accuracy of five spectral indices and six imagery classifications over four years and to see
if any are consistently superior to the others. The second objective is to determine the
appropriateness of using R2 instead of accuracy when comparing spectral indices. We
hypothesized for the first objective that while accuracies will change from year to year,
the overall rank of each classification technique will be similar from year to year. For the
second objective, we hypothesized that the use of R2 is not the best proxy for accuracy.

2. Materials and Methods
2.1. Study Area and Data Collection

The study area was the South Fork of the Iowa River in Central Iowa. The watershed
encompasses 810 km2. In 2010, the watershed was 56% corn and 25% soybean [24]. In
2017, the watershed remained roughly the same at 56% corn and 26% soybean [24]. A map
showing the location of the watershed within Iowa and within the United States is shown
in Figure 1.
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Figure 1. Study area of the South Fork Watershed in Central Iowa. Major crops (corn and soybean)
from the Cropland Data Layer (CDL) are shown on the zoom-in map.

The South Fork of the Iowa River is a Conservation Effects Assessment Project (CEAP)
watershed. Some recent research involves assessing the effectiveness of conservation
practices such as contour buffering and grassed waterways [25]. Other research focuses on
modeling the subsurface drains, which assist in moving water from the surface of the field
through the subsurface and into surface culverts [26].

Crop residue was measured in the spring of 2011, 2013, 2015, and 2018. Visits were
timed so that corn planting was nearly completed (>90%) and soybean planting was
>80%. The number of fields visited varied each year depending on which fields we had
permission to visit and what tillage practices the farmer had implemented. Residue cover
was measured from two locations per field that were at least 100 m from the edge of the
field and at least 100 m from each other and relatively homogeneous. At each location
a line-point transect of 15.2 m length was placed diagonally across the rows and residue
was measured at 100 evenly spaced marks [4]. The line-point transect was then rotated
90 degrees and another measurement was taken. Thus, for each field there were four
measurements (two at each location).

2.2. Remote Sensing Data and Methods

For each year, Landsat Imagery was acquired as near as possible to the date of the
field data collection. Table 1 shows the type of Landsat sensors and the band width of each
band. Since a sun photometer in Ames, IA approximately 60 km from the study site and
atmospheric profiles were available from about 300 km away, MODTRAN [27] was used to
convert each image to surface reflectance. The images were masked to remove pixels with
substantial vegetation using the Normalized Difference Vegetation Index (NDVI) > 0.3 and
to limit the analysis to pixels identified as planted with corn or soybean in the previous
year using the Cropland Data Layer [24]. Since field sampling and associated imagery
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acquisition occurred in the springtime, the residue was left from the crop of the year before;
thus, observations in the spring of 2011 identified residue from the summer crop of 2010.

Table 1. List of Landsat bands and spectral width.

Band L5 TM L7 ETM+ L8 OLI

Green 520–600 520–600 530–590

Red 630–690 630–690 640–670

NIR 760–900 770–900 850–880

SWIR1 1550–1750 1550–1750 1570–1650

SWIR2 2080–2350 2080–2350 2110–2290

Five spectral indices were calculated for each image:

Normalized Difference Index 5 (NDI5) = (NIR − SWIR1)/(NIR + SWIR1)

Normalized Difference Index 7 (NDI7) = (NIR − SWIR2)/(NIR + SWIR2)

Normalized Difference Tillage Index (NDTI) = (SWIR1 − SWIR2)/(SWIR1+SWIR2)

Simple Tillage Index (STI) = SWIR1/SWIR2

Normalized Difference Senescent Vegetation Index (NDSVI) = (SWIR1 − Red)/(SWIR1 + Red)

These spectral indices have been used frequently in previous studies [17–19]. In
addition, six imagery classification techniques were tested. These classification techniques
have been found in various papers for classifying residue levels and are readily available
from software packages [2,14,28–30]. In this study, ENVI/IDL was used for Mahalanobis
Distance, Minimum Distance, and Spectral Angle Mapper; ARCGIS was used for Maximum
Likelihood, Random Tree, and Support Vector Machine; and in all cases, the default
parameters were used. For each year of data, a multiband image was created using the
Landsat bands listed in Table 1. The basis for classifying crop residue cover using Landsat
is that dry crop residue shows different spectral reflectance, especially in the SWIR bands
in which residue cover has significant absorption features different from the soil.

The following classification techniques were applied:

• Minimum Distance (MINDIST) assigns the class based on the class with the smallest
Euclidean distance in n-space from the unclassified pixel to the mean of the known
class [31].

• Maximum Likelihood (MAXLI) assigns the unclassified pixel to the class which is
most probably a part of assuming each class in each band is normally distributed [31].

• Mahalanobis distance (MAHLDIST) is similar to maximum likelihood but assumes all
class covariances are equal [31].

• Random tree (RANDTR) classified unclassified pixels based on a series of decisions
which lead to the known classes [32].

• Spectral Angle Mapper (SAM) creates a modified spectra from the training data, based
on the angle between the various bands. It assigns each unclassified pixel to the
spectra that it matches the best [33].

• Support Vector Machine (SVM) uses a decision surface or optimal hyperplane that
maximizes the difference between the classes [34].

Table 2 shows the date of the image used and the date of the field visit. Figure 2 shows
the timing of the field visits relative to imagery acquisition and the crop status [35]. In two
cases, the field sampling occurred prior to image acquisition, and in two cases, it occurred
after imagery acquisition. The longest separation (18 days) was in 2015. For field visits that
occurred prior to imagery acquisition, nearly all fields had been tilled. For field visits that
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occurred after imagery acquisition, it is impossible to know how much field activity took
place between the image and the field visit.

Table 2. Date and Type of Landsat Used, Field Visit Dates, Days between Visit and Image.

Date Image Field Visit Dates Days between Visit and Image

31 May 2011 Landsat 5 TM 20–23 May 2011 11

13 June 2013 Landsat 7 ETM+ 29 May–1 June 2013 15

9 May 2015 Landsat 7 ETM+ 27–29 May 2015 −18

25 May 2018 Landsat 8 OLI 30 May–1 June 2018 −5
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Figure 2. Percentage of corn and soybean planting dates (dots) from the NASS crop progress reports
and dates of field visit and Landsat image acquisition.

2.3. Data Preparation

Crop residue measurements for each field were averaged and the residue type (corn,
soybean) was assigned based on the previous year’s crop. The fields were placed into a
class based on the amount of observed residue according to CTIC [36] guidelines: intensive
tillage (less than 15% residue), reduced tillage (15–30% residue) and conservation tillage
(greater than 30% residue). Conservation tillage was then split into two classes (30–60%
residue and greater than 60% residue), for a total of four classes (Table 3).
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Table 3. Total number of fields per level of crop residue and number of fields used for training and
validation for each year.

2011 2013

% Residue All Training Validation % Residue All Training Validation

<15 3 2 1 <15 5 3 2

15–30 37 25 12 15–30 16 11 5

30–60 20 13 7 30–60 17 11 6

>60 4 3 1 >60 9 6 3

2015 2018

% Residue All Training Validation % Residue All Training Validation

<15 5 3 2 <15 6 4 2

15–30 14 9 5 15–30 22 15 7

30–60 17 11 6 30–60 20 13 7

>60 2 1 1 >60 10 7 3

For each class, approximately 2/3 of the fields (stratified for even representation of
each class type) were used to calculate the correlation between residue cover and spectral
indices and were also used as training data for the classification techniques (Training). The
remaining 1/3 of the data was used to test the accuracy of the classifications (Validation).
Table 3 shows the total number of fields in each residue category and the number used for
training and for validation.

To derive a classified image of fractional residue cover, the average observed percent-
age of residue cover for each training field was linearly correlated with the average spectral
index values for each field to derive a relationship between residue cover and the spectral
indices. The resulting equations were then applied to the imagery-derived raster maps of
spectral index values to create an image of predicted residue cover on corn and soybean
fields, which was then assigned to one of the four levels of crop residue cover.

To derive input for the six classification techniques, each sampled training field was
assigned to a residue grouping based on the average observed crop residue cover. The
mean and standard deviation (SD) of reflectance for each multispectral band was then
derived for each training field and was used in the classification process. The resulting
classified residue image consisted of the four levels of residue cover (0–15, 15–30, 30–60,
60–100%).

Lastly, to see the impact of combining both classification techniques and spectral
indices, two different procedures were performed. In the first, the most frequent class of
all classification techniques and spectral indices was selected as the class for each pixel;
for simplicity, this will be referred to as ALL. In the second, the most frequent class of STI,
NDI7, SVMC, and RANDTR was selected as the class for each pixel; for simplicity, this will
be referred to as FOUR.

2.4. Accuracy Assessment

For the first objective (determining if a single classification or spectral index is the most
accurate), accuracy was assessed by using the thematic crop residue image ((number of
pixels correctly classified / number of total pixels) × 100%). In this case, while we assume
the validation field is uniform, we compare the field average of in situ measurements to the
pixels that make up the field from the thematic crop residue image.

For the second objective (determining if using Training R2 is a reasonable proxy for
validation accuracy), the numeric residue image is created by applying each correlation
equation to the index. The residue is averaged for each field and then each field is placed
in one of the four levels. To calculate the accuracy, each averaged field is compared to
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the observed residue values ((number of fields correctly classified/number of total fields)
× 100%). In addition to R2, root mean square error (RMSE) was calculated based on the
average field information.

In addition to accuracy, it is important to look at Kappa and Z. Kappa is an indication
of how much better than chance the observed distribution of points is. Kappa is defined as:

Kappa = (po − pe)/(1 − pe)

where po is the relative observed agreement among classes and pe is the hypothetical
probability of chance agreement. If Kappa is zero, then the distribution is no better than
chance, Kappa’s top value is 1. Z is a measure of how statistically significant the Kappa
value is. Z is defined as:

Z = (X − E[X})/SD(X)

where X is the variable and E[X} is the expected value divided by the standard deviation.
While accuracy is commonly used to determine how well a classification or index has
worked, Kappa and Z are also important indicators of classification performance.

The accuracy for each spectral index and classification technique was calculated
for each year using the validation data set. The average and standard deviation of the
accuracies were calculated for the four years. The four-year averages were then sorted from
most accurate to least accurate. In addition, the average and standard deviation of all the
index/methods were calculated for each year.

3. Results and Discussion
3.1. Results from Discussion

The results are shown in Table 4, with values that are more than one standard deviation
above the mean in blue and those more than one standard deviation below the mean in red.
Similar processes were also carried out for Kappa and Z, as shown later in this section.

Table 4. Accuracy for classification techniques and spectral indices and overall rank. Spectral indices
are in gray. ALL is the most frequent class when combining all spectral indices and classification
techniques. FOUR is the most frequent class when combining STI, NDI7, SVMC, and RANDTR. Blue
values are above one SD from the mean for that year. Red values are below one SD from the mean for
that year.

Accuracy 2011 2013 2015 2018 AVG SD Rank AVG
NDI7 52.75 46.83 56.48 66.32 55.60 7.08 1
STI 54.57 39.59 60.87 63.51 54.64 9.27 2

NDTI 53.41 39.25 61.36 63.4 54.36 9.49 3
NDI5 49.77 49.01 55.35 61.16 53.82 4.89 4

SVMC 65.48 49.34 47.99 48.75 52.89 7.28 5
NDSVI 50.45 49.39 55.57 54.27 52.42 2.57 6

RANDTR 64.17 44.3 52.65 46.17 51.82 7.77 7

MAHL 56.86 48.77 48.81 48.04 50.62 3.62 8

MAXLI 60.47 50.07 50.33 39.34 50.05 7.47 9

SAM 59.72 45.69 41.6 40.59 46.90 7.64 10
MINDIST 53.96 41.42 44.31 44.02 45.93 4.77 11

Would Be Rank

ALL 63.28 52.46 59.20 52.32 59.42 4.31 1

FOUR 67.08 52.90 62.63 64.81 61.86 5.40 1

AVG 56.51 45.79 52.30 52.32 51.73

SD 5.06 3.89 6.08 9.39 2.98
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The least accurate year for the measurement of residue cover was 2013 with an accuracy
of 45.79%. However, the best year, 2011, at 56.51%, was only 11% higher. This points to the
difficulty of measuring residue cover using broadband spectral data. In 2011, classification
techniques were more accurate than spectral indices, and this was partially true in 2013. In
2015 and 2018, spectral indices were more accurate than classification techniques. Of the
classification techniques, SVMC and RANDTR were the most accurate and MINDIST and
SAM were the least accurate. Overall, the spectral indices produced similar results, with
four-year average accuracies ranging from 52.42 to 55.60%. STI, NDTI and MAXLI have
at least one year where they are more than one standard deviation above the mean and at
least one standard deviation below the mean. This shows that just because on a given year
a spectral index or classification technique does well (badly), on a different year, they will
perform the same.

It is interesting to note that classification techniques were more accurate than spectral
indices in years when the field visit preceded the image, while spectral indices were more
accurate than classification techniques in years in which the image preceded the field visit.
It is speculated that spectral indices are more resistant to changes in the residue levels
between image and visit times. It is preferable/ideal to have both field visits and imagery
shortly after most field activities have been completed. However, satellite revisit schedules
and weather (cloud and rain) interfere with the ability to obtain images at the ideal time.
In cases in which the image is after the visit, most field activities have finished, and there
is no change in residue cover, which classification techniques perform well with. If the
image preceded the field visit, it is possible field activities were still going on, changing the
residue cover between the image and field visit, which are the circumstances that spectral
indices perform better in.

The combination of ALL and FOUR performed very well. FOUR was more accurate
than any of the individual spectral indices or classification techniques, ranking most
accurate in 2011, 2013, 2015 and second highest in 2018. ALL performed slightly worse,
ranking first in 2013, third in 2011 and 2015 and fourth in 2018. It should be noted that
ALL and FOUR were ranked in comparison to the individual spectral indices/classification
techniques and not to each other, hence both being ranked first in 2013.

To understand the importance of calculating Kappa and Z, Table 5 shows results using
data from 2013. In the example from 2013, NDI5 has an overall accuracy of 49.01%, but
everything has been classified as class 3, which is not very meaningful. In comparison,
NDTI has an accuracy of 39.25%, but the points are distributed more meaningfully, and the
Kappa and Z are higher as a result. This shows the importance of using Kappa and Z in
addition to accuracy. It is possible to have an accuracy near 50% simply by chance.

Table 5. Accuracy, Kappa and Z Number of Pixels in Accuracy Assessment for NDI5 and NDTI in
2013.

NDI5 Reference Kappa = 0

C
la

ss
ifi

ed

0–15 15–30 30–60 60–100

0–15 Z = 0

15–30

30–60 476 1362 2180 430 overall accuracy

60–100 49.01

NDTI Reference Kappa = 0.1472

C
la

ss
ifi

ed

0–15 15–30 30–60 60–100

0–15 161 225 240 9 Z = 13.32

15–30 215 530 315 15

30–60 100 577 771 122 overall accuracy

60–100 30 854 284 39.25
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Tables 6 and 7 show Kappa and Z values for classification techniques and spectral
indices associated with overall rank. Kappa and Z mimic each other and, similar to the
accuracies (Table 4), 2013 showed the worst performance. Like the accuracies, except for
MINDIST, which was consistently bad, classification techniques performed better than
spectral indices in 2011 and 2013 and spectral indices performed better in 2015 and 2018. For
the classification techniques, the similarity with accuracy continued with SVMC performing
the best and SAM and MINDIST performing the worst. The spectral index results departed
from the pattern in accuracies. STI and NDTI performed the best, and NDI5 performed the
worst.

Table 6. Kappa for classification techniques and spectral indices and overall rank. Spectral indices
are in gray. ALL is the most frequent class when combining all spectral indices and classification
techniques. FOUR is the most frequent class when combining STI, NDI7, SVMC, and RANDTR. Blue
values are above one SD from the mean for that year. Red values are below one SD from the mean for
that year.

Kappa 2011 2013 2015 2018 AVG SD Rank AVG
STI 0.1405 0.1487 0.3487 0.4426 0.27 0.13 1

NDTI 0.1336 0.1472 0.3594 0.4402 0.27 0.13 2
SVMC 0.2815 0.2453 0.1599 0.2431 0.23 0.04 3
NDI7 0.1317 0.044 0.2684 0.4543 0.22 0.15 4

MAHL 0.1898 0.2347 0.1597 0.2472 0.21 0.04 5
RANDTR 0.2272 0.1755 0.231 0.1957 0.21 0.02 6

MAXLI 0.2353 0.2657 0.2329 0.0895 0.21 0.07 7
NDI5 0.1165 0.0000 0.2394 0.3421 0.17 0.13 8

NDSVI 0.1684 0.0165 0.2253 0.2092 0.15 0.08 9
SAM 0.2093 0.1979 0.0585 0.1491 0.15 0.06 10

MINDIST 0.1057 0.0717 0.1109 0.1835 0.12 0.04 11
Would Be Rank

ALL 0.2522 0.2078 0.2932 0.4204 0.29 0.07 1

FOUR 0.2926 0.2658 0.3835 0.4727 0.35 0.08 1

AVG 0.1763 0.1407 0.2176 0.2724 0.2018

SD 0.0540 0.0901 0.0875 0.1217 0.0459

FOUR is ranked highest for Kappa in 2011, 2015, and 2018 and second in 2013. ALL
performed slightly worse. Only in Z does FOUR perform slightly worse, ranking second
in 2011, third in 2015, and fourth in 2013 and 2018. ALL also shows a similar reduction in
rank. It should be noted that because certain pixels do not have a most-frequent class, some
pixels were lost in the combination process. ALL contained between 92.7 and 97.4% of the
individual spectral indices/classification techniques. FOUR contained between 67.3 and
74.2% of the pixels. The reduction in pixels is probably shown in the rank decrease in Z,
even though the accuracy and Kappa rated higher.

Figure 3 demonstrates a residue map created by using SVMC for 2011. Except for the
very western edge of the watershed, there is a general increase in no-till toward the east
(the mouth of the watershed), as the terrain becomes steeper. Figure A1 in Appendix A
show the residue cover maps of all spectral indices/classification techniques and the two
combinations for 2011.
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Table 7. Z for classification techniques and spectral indices and overall rank. Spectral indices are in
gray. ALL is the most frequent class when combining all spectral indices and classification techniques.
FOUR is the most frequent class when combining STI, NDI7, SVMC, and RANDTR. Blue values are
above one SD from the mean for that year. Red values are below one SD from the mean for that year.

Z 2011 2013 2015 2018 AVG SD Rank AVG
STI 15.73 13.5 26.03 51.5 26.69 15.08 1

NDTI 14.98 13.32 26.75 51.19 26.56 15.13 2
SVMC 30.02 22.16 12.13 25.18 22.37 6.54 3
NDI7 14.56 3.08 19.89 50.11 21.91 17.38 4

MAHL 21.06 20.7 12.48 27.66 20.48 5.38 5
MAXLI 25.98 25.13 18.65 9.11 19.72 6.75 6

RANDTR 22.76 15.96 17.54 19.79 19.01 2.56 7
NDI5 13.08 0.00 17.66 35.03 16.44 12.54 8
SAM 22.4 17.81 5.00 15.98 15.30 6.39 9

NDSVI 19.91 0.75 16.58 19.69 14.23 7.89 10
MINDIST 11.96 6.32 9.45 19.44 11.79 4.85 11

Would Be Rank

ALL 26.56 15.81 21.12 44.56 27.01 10.82 1

FOUR 26.14 19.37 23.88 45.91 28.83 10.16 1

AVG 19.31 12.61 16.56 29.52 19.50

SD 5.49 8.44 6.26 14.53 4.58
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3.2. Appropriateness of Using Training R2 As a Surrogate for Validation Accuracy

To analyze the appropriateness of using R2 from training data as a surrogate for
validation accuracy, the field-based R2 from training data were used. However, unlike the
previous objective, the resulting residue image was averaged at the field level before being
grouped into the four levels of residue. R2 and RMSE were calculated from the numeric
average residue for each field, while accuracy, Kappa and Z were calculated based on the
thematic level of residue cover (0–15, 15–30, 30–60, 60–100).

The process of calculating R2 for the various spectral indices was conducted in several
steps. To understand the process, NDI5 in 2011 will be used as an example. The training
data in 2011 consisted of 43 fields. First, NDI5 and the sample residue data were averaged
at the field level. Figure 4 shows the results, with an R2 of 0.5603. Second, the reference data
and the created residue map were grouped into four groups (0–15, 15–30, 30–60, 60–100)
and compared. Table 8 shows the accuracy matrix and the results of the overall accuracy of
55.81%, Kappa of 0.227 and Z of 1.72. Third, the process was repeated for each year and
each spectral index each created their own; see Figure 4 and Table 8.
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Figure 5 shows the result of R2 and accuracy from training samples for five spectral
indices and four years (20 points). The R2 of the 20 points in Figure 5 was computed (0.7).
The red triangle at training R2 of 0.5603 and training accuracy of 55.81% is the example.
Finally, Table 9 summarizes the R2 of each combination tested with the R2 from the example
being on the first row (i.e., Training R2 vs. Training Accuracy).
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Table 9. R2 for different comparisons.

Comparison R2

Training R2 vs. Training Accuracy 0.7

Training R2 vs. Validate Accuracy 0.528

Training Accuracy vs. Training RMSE 0.758

Training Accuracy vs. Validate RMSE 0.584

Training Accuracy vs. Validate R2 0.025

Validate Accuracy vs. Training RMSE 0.33

Validate Accuracy vs. Validate RMSE 0.072

Validate Accuracy vs. Validate R2 0.024

Training Accuracy vs. Validate Accuracy 0.237

Table 9 shows that the R2 varies when using different metrics to assess accuracy.
Among combinations, the training data RMSE and training data accuracy have the highest
R2 of 0.758. While the training data R2 shows a good correlation, it still would be best to
simply calculate the accuracy. It should be noted that comparing training data R2 and the
accuracy from the validation data results in an R2 of 0.528, which means training data R2

is not a bad indicator of performance. However, the validation R2 is poorly correlated
to training accuracy (0.025) and validation accuracy (0.024). Like the training data, R2 is
slightly higher at 0.584 when comparing training data accuracy and the validation RMSE.
The training accuracy and validation accuracy are not well correlated (R2 = 0.237), which
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implies that the training accuracy may not be a good indicator of the validation accuracy.
Validation samples must be reserved during experiment design for accuracy assessment.

3.3. Limitations

This study is based on the South Fork of the Iowa River situated in Central Iowa. The
outcomes generated from this investigation are anticipated to have broad applicability
across a significant portion of the corn belt region. However, it is essential to acknowledge
that these findings might not directly translate to areas with diverse crops, soils, climates,
and weather patterns.

The collection of field data was conducted over a span of four years (2011, 2013, 2015,
and 2018). Although this timeframe offers insights, it is important to note that it does not
encompass the full spectrum of potential weather variations and soil moisture levels. Thus,
there is a need for further research to capture a more complete understanding.

The paper investigates five spectral indices and six classification techniques that are
commonly used for crop residue cover mapping. It is worth noting that more advanced
techniques may yield even more accurate results. It is expected that new satellite missions
with more frequent observations (e.g., Sentinel-2) or additional narrow shortwave infrared
reflectance bands (e.g., Landsat Next or Landsat 10) can provide a more accurate result in
crop residue mapping.

4. Conclusions

Residue cover can be estimated by remote sensing spectral indices and classification
techniques. In general, spectral indices have better accuracies than classification techniques.
This is probably because the relationship between index and residue is more tolerant of
fields that do not closely match the relationship. However, as seen in the 2011 result,
this is not always true. We found that the timing between observation and imagery also
plays an important role in residue cover mapping. By combining STI, NDI7, SVMC and
RANDTR (FOUR combination), it was possible to create a residue class image that was
more accurate than any spectral indices/classification technique alone. Combining all
spectral indices/classification techniques also produced good results, but the results were
generally worse than the FOUR combination.

The secondary study shows the limitation of using R2 as an indicator to assess the
performance of an index. R2 is not a great indicator of accuracy, and additional evaluation
metrics are needed in the accuracy assessment.

Lastly, using training and testing data is important. Without validation, data accuracies
will be inflated. In particular, the correlation of training data and validation data accuracies
for the field spectral indices was particularly low.

This study shows that crop residue cover and soil tillage intensity can be mapped
at a reasonable accuracy with the selected index and classification techniques. Landsat
imagery provides a way to map crop residue cover at a large scale to support agroecosystem
monitoring.
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