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Abstract: Chlorophyll is an important indicator for monitoring crop growth and is vital for agricul-
tural management. Therefore, rapid and accurate estimation of chlorophyll content is important for
decision support in precision agriculture to accurately monitor the SPAD (Soil and Plant Analyzer
Development) values of winter wheat. This study used winter wheat to obtain canopy reflectance
based on UAV hyperspectral data and to calculate different vegetation indices and red-edge param-
eters. The best-performing vegetation indices and red-edge parameters were selected by Pearson
correlation analysis and multiple stepwise regression (MSR). SPAD values were estimated using a
combination of vegetation indices, vegetation indices and red-edge parameters as model factors,
two types of machine learning (ML), a support vector machine (SVM), and a backward propagation
neural network (BPNN), and partial least squares regression (PLSR) for four growth stages of winter
wheat, and validated using independent samples. The results show that for the same data source,
the best vegetation indices or red-edge parameters for estimating SPAD values differed at different
growth stages and that combining vegetation indices with red-edge parameters gave better estimates
than using only vegetation indices as an input factor for estimating SPAD values. There is no signif-
icant difference between PLSR, SVM, and BPNN methods in estimating SPAD values, with better
stability of the estimated models using machine learning methods. Different growth stages have a
large impact on winter wheat SPAD values estimates, with the accuracy of the four growth stage
models increasing in the following order: booting < heading < filling < flowering. This study shows
that using a combination of vegetation indices and red-edge parameters can improve SPAD values
estimates compared to using vegetation indices alone. In the future, the choice of appropriate factors
and methods will need to be considered when constructing models to estimate crop SPAD values.

Keywords: UAV hyperspectral; SPAD values; vegetation index; red-edge parameters; machine learning

1. Introduction

Chlorophyll is an essential pigment for photosynthesis in plants, which absorbs and
transmits light energy and serves as a key indicator of crop growth [1]. Additionally, the
content of chlorophyll is closely correlated with the nitrogen and health status of crops [2,3].
Timely monitoring of the crop’s chlorophyll levels is crucial for nutrient management in
the agricultural field.

Traditional chemical approaches used for chlorophyll content measurement are not
only irreversibly invasive toward plant leaves but also operationally intricate and time-
consuming to implement [4,5]. Recently, remote sensing technology has experienced rapid
growth and has demonstrated efficient, rapid, and noninvasive monitoring capabilities.
As a result, it has fostered encouraging research results in the estimation of physical
and chemical parameters of vegetation. Nevertheless, ground-based remote sensing still
necessitates one-point sampling, which is not only laborious but also carries a temporal
lag and has a limited spatial range. These limitations restrict their practical use in the
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field [6]. Conversely, satellite remote sensing has partially resolved the issue of spatial scale
and can conduct quantitative monitoring at a spatial distance. However, it still exhibits
large operational cycles, low spatial accuracy, and is sensitive to weather interference [7].
The advent of UAV remote sensing has largely remedied these issues by offering low-cost,
flexible, and straightforward high-resolution image acquisition and the ability to carry out
timely monitoring over large land areas [8,9]. Thanks to these advantages, UAV remote
sensing is increasingly being used to estimate crops’ physicochemical parameters, such as
the content of chlorophyll [10,11], yield [7], leaf area index (LAI) [12], and above-ground
biomass (AGB) [13].

There are numerous approaches for estimating crops’ physical and chemical parame-
ters, with statistical approaches based on vegetation index (VI) being well-liked for their
simplicity and resiliency [4,11,14,15]. For instance, Cui et al. [16] compared the efficacy of
12 vegetation indices in estimating the wheat leaf chlorophyll content (LCC) and demon-
strated that the red-edge chlorophyll absorption index/triangular vegetation index (RE-
CAI/TVI) presented the most superior accuracy out of all the indices. Croft et al. [17]
assessed the functionality of 47 vegetation indices in estimating the canopy chlorophyll
content of different tree species. They found that the double difference vegetation index
(DDVI) exhibited the most robust relation with chlorophyll at the canopy level. Cui and
Zhou [18] assessed the sensitivity of various vegetation indices to herbaceous chlorophyll
content. The transformed chlorophyll absorption reflectance index/optimized soil-adjusted
vegetation index (TCARI/OSAVI) was identified as one of the most appropriate vegetation
indices for the estimation of leaf chlorophyll content (LCC). With increased knowledge
of plant spectral properties, the strong correlation between reflectance in the red-edge
region (680–760 nm) and the physicochemical properties of crops has received significant
attention. Ju et al. [19] analyzed the suitability of red-edge symmetry (RES) for estimating
leaf chlorophyll content using UAV-acquired hyperspectral data of oilseed rape and wheat
and found it to be highly feasible. Boochs et al. [20] analyzed the variability of red-edge
reflectance and showed that red-edge characteristics can be influenced by plant biologi-
cal parameters. Filella and Penuelas [21] investigated the correlation between red-edge
reflectance and crop growth parameters and identified that the red-edge position and
shape can serve as indicators of plant chlorophyll content, above-ground biomass, and
water status. Analysis of the red-edge area of the crop, where reflectance contains a large
amount of growth information, can improve the accuracy of the estimation of physical and
chemical parameters.

Establishing an experience model based on the relationship between spectral infor-
mation and SPAD values has become one of the most popular methods for estimating
plant SPAD values. Single variable models constructed by spectral parameters usually only
consider a small number of bands, especially when processing hyperspectral data, hence
the relationship between spectral data and interesting physical and chemical parameters
cannot be accurately captured [22]. PLSR is widely considered to be a powerful alternative
to a single variable model, and it performs better in most cases [23–25]. In recent years, ma-
chine learning has been widely used for estimating crop parameters [26,27]. Liu et al. [28]
and Shi et al. [29] have explored the potential performance of machine learning methods,
such as SVM, ANN, and BPNN. Machine learning methods have the advantage of avoiding
the exploration of crop physiological processes while allowing for the rapid integration
of multiple sources of data for non-linear calculations [30]. The studies conducted by
Kiala et al. [31] and Yuan et al. [32] indicate that utilizing machine learning algorithms is
more effective than the PLSR method. Meanwhile, Kiala et al. [31] and Yuan et al. [32] have
indicated that the performance of both PLSR and machine learning methods is influenced
by the growth stages of the crops. However, the impact of different methods and growth
stages on the model accuracy for estimating SPAD in the canopy of winter wheat using
machine learning methods has not been thoroughly investigated.

This study utilized UAV hyperspectral data to screen the optimum vegetation indices
and red-edge parameters via a Pearson correlation analysis and multiple stepwise regres-
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sion (MSR) methodologies. The combination of VIs and red-edge parameters was then
used as model factors. Two machine learning methods, support vector machine (SVM)
and backward propagation neural network (BPNN), as well as partial least squares regres-
sion (PLSR), were used to estimate the SPAD values of winter wheat. The study aimed to:
(1) investigate the impact of VIs and red-edge parameters on the model algorithm;
(2) evaluate the potential of SPAD values estimation at different stages of growth; and
(3) compare the validity of SPAD values estimation in winter wheat under different meth-
ods. This study provides new ideas and methods for rapid, non-destructive, and real-time
chlorophyll monitoring using UAVs.

2. Materials and Methods
2.1. Experimental Profile

The study site is situated in Liangshan Town, Qian County, Xianyang City, Shaanxi
Province, China, at coordinates 108◦07′E and 34◦38′N (Figure 1). It is in the transition
zone between the southern region of the Loess Plateau and the Guanzhong Plain, and the
landform primarily comprises gullies and hills. The study area has an average altitude
of 831 m, and the soil type is red soil. The soil is heavy and lumpy, with little organic
matter and a lack of alkali metals. The climate is a warm temperate semi-humid continental
monsoon climate, characterized by an average annual temperature of 13.1 ◦C and an
average annual precipitation of 630 mm. The crop maturity period is annual, and the main
food crops are summer corn and winter wheat.
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Winter wheat in the test area was planted on 1 October 2021, and harvested on 12 June
of the following year, and the test variety was Xiaoyan 22. A total of 36 test plots were set up
for the trial, with each plot measuring 10× 9 m2. To create growth variations between plots,
three fertilizers with different nitrogen (N), phosphorus (P2O5), and potassium (K2O) levels
were applied (Figure 1). Six levels of each fertilizer were set, with a total of 18 treatments,
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each replicated twice. The nitrogen levels were 0, 60, 120, 180, 240, and 300 kg ha−1, the
phosphate levels were 0, 30, 60, 90, 120, and 150 kg ha−1, and the potash levels were 0, 30,
60, 90, 120, and 150 kg ha−1. For the observations, two sampling points were set up in each
experimental plot, for a total of 72. For four crucial growth stages of winter wheat, CCC
and UAV hyperspectral data were obtained. The specific information on the acquired data
is shown in Table 1.

Table 1. Specific information for each experiment.

Growth Stage Date of Measurement Number of Samples

Booting 10 April 2022 72
Heading 25 April 2022 72

Flowering 7 May 2022 72
Filling 23 May 2022 72

2.2. Data Collection
2.2.1. Acquisition and Processing of UAV Hyperspectral Data

Hyperspectral images of winter wheat were acquired using a six-rotor UAV (DIJ
M600 Pro) with a Cubert UHD185 (UHD185) imaging hyperspectrometer, as shown in
Figure 2. The UAV has a take-off weight of 15.5 kg and a net payload of 9.5 kg, the
maximum communication distance is 5 km, and the single battery lasts approximately
30 min, with a pre-set route before the flight and an autonomous return at the end of
the flight. The UHD185 camera has a 470 g weight, a 450 nm to 950 nm wavelength
range, an 8 nm spectral resolution, and a 4 nm sampling interval. UAV hyperspectral data
acquisition is selected when the weather is clear, windless, and cloudless, with a solar
altitude angle > 45◦, between 10:30 and 14:00. Before each flight, a reference plate is used
to perform radiation correction on the spectrometer, which means collecting the reflectance
of the spectral correction panel before each flight. This radiation correction is automatically
completed within UHD185 and does not require manual processing in the software. When
the drone is flying, the lens is vertically downwards with a focal length of 25 mm, a set
altitude flight height of 100 m, a speed of 6 m s−1, a setting of 80% collateral overlap and
60% heading overlap, and markers at ground sampling points.
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Individual grey-scale images are fused and stitched together after acquisition with the
aid of Cubert Cube Pilot 1.4 and Agisoft PhotoScan Professional 1.16 software. The stitched
grey images were then geo-aligned in ArcMap 10.6 and Google Earth 7.3.2 software [33].
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The reflectance of the region of interest (ROI) was then constructed and extracted from the
ground markers using ENVI 5.1 based on the markers placed at the ground testing points,
and the average reflectance of the images within the ROI range was used as the spectral
reflectance of the winter wheat canopy at the corresponding sample points [34,35].

2.2.2. Measurement of Canopy SPAD Values

The SPAD-502 (Soil and Plant Analyzer Development) portable chlorophyll meter,
created in Japan, was used in this investigation to measure the relative chlorophyll content
of winter wheat (Figure 2). The SPAD-502 portable chlorophyll meter measuring SPAD
values indicating chlorophyll content has been validated: with a correlation coefficient
of up to 0.99, plant chlorophyll content and SPAD values exhibit an extremely significant
positive association, and the instrument measures the transmission of radiation through
leaves at infrared (R) and near-infrared (NIR) wavelengths [6,36,37]. The reading of the
SPAD chlorophyll meter, which gauges the relative chlorophyll content of leaves, yields the
SPAD value, a dimensionless quantity [38]. The SPAD chlorophyll meter’s key benefit is its
ability to measure leaf chlorophyll content, damage-free, in situ in real-time, which makes
it ideal as a counterpart to drone measurements.

Winter wheat SPAD values after completion of each drone data acquisition were
measured. In an area of 0.3 × 0.3 m2 area, the top leaves of different plants were selected
for the determination, and a total of 20 leaves with uniform growth were selected, and an
average of three measurements were taken at various points on each leaf to determine its
SPAD values. The SPAD values of the sample size was determined by taking the average
of the 20 leaves. The region is used as the ROI to extract the UAV hyperspectral reflectance.
Figure 1 and Table 1 display the sampling locations and sample count.

2.3. Vegetation Indices and Red-Edge Parameters

The vegetation index was obtained by linear or non-linear combinations of spectral
reflectance in different bands, and green plants have distinctive spectral characteristics in
the red-edge band range from other landscape features. Based on this, this study builds
on previous studies to construct the vegetation indices and red-edge parameters shown in
Table 2.

Table 2. Formulas or definitions of vegetation indices (VIs) or red-edge parameters.

Vegetation Index
or Red-Edge Parameter Formula or Definition Reference

ratio vegetation index (RVI) R800/R760 [39]
green normalized difference vegetation index (GNDVI) (R780 − R550)/(R780 + R550) [40]

plant biomass index (PBI) R810/R560 [41]
leaf chlorophyll index (LCI) (R850 − R710)/(R850 + R670)1/2 [42]

simple ratio index (SR) R750/R550 [43]
optimize soil and adjust vegetation index (OSAVI) 1.16 × (R800 − R670)/(R800 + R670 + 0.16) [44]

structure insensitive pigment index (SIPI) (R810 − R460)/(R810 + R460) [45]
pigment ratio vegetation index (PRVI) R800/R553 [46]
photochemical reflectance index (PRI) (R570 − R531)/(R570 + R531) [47]
red-edge chlorophyll index (CIred-edge) R800/R720 − 1 [48]

Dr the maximum value of the first derivative
the spectrum of the red-edge region [7]

Drmin minimum red-edge amplitude [7]

Dr/Drmin
red-edge amplitude/minimum

amplitude value [7]

SDr the sum of the first-order differential of
the red-edge region spectrum [21]

RES the ratio of 718 nm left red-edge area to the whole
red-edge area [19]

Note: Ri denotes the reflectance at wavelength i. If there is no corresponding Ri, the average of the reflectance at
adjacent wavelengths is used.
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2.4. Selection of Vegetation Indices and Red-Edge Parameters and Regression Analysis Methods
2.4.1. Selection of Vegetation Indices and Red-Edge Parameters

The absolute value of the kurtosis of the variables in this study is less than 10, the
absolute value of the skewness is less than 3, and the data are basically characterized by
normal distribution. The Pearson correlation analysis was used to study the correlation
between VIs or red-edge parameters and SPAD values in wheat, implemented in SPSS PRO
1.0.11 software. The equation is shown in Equation (1):

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
, (1)

where xi and yi represent the sample values, x and y are the mean values of the sample
set, n is the number of samples, r represents the correlation coefficient, when |r| is larger,
the higher the correlation between x and y.

Multiple stepwise regression (MSR) is an improvement on multiple linear regression
(MLR) in terms of efficiency, a statistical method for selecting the optimal variable from
multiple independent variables [49]. Following the determination of the first set of variables,
the variable outside the set with the largest impact on the dependent variable is chosen, and
each time a brand-new independent factor is introduced, it is compared with the existing
variables in the set. The variables that are correlated and those that have the least influence
on the dependent variable are removed, in turn, until the number of variables does not
increase [50]. The MSR for this study was implemented in SPSS PRO 1.0.11 software.

Pearson correlation analysis was used to select VIs and red-edge parameters that were
highly significantly (p < 0.01) correlated with SPAD values. The optimal VIs and red-edge
parameters for each growth stage were then selected using MSR. Finally, the intersection of
the two was chosen to build a model for estimating SPAD values.

2.4.2. Regression Analysis Method

Using the statistical analysis approach known as partial least squares regression
(PLSR), principal component analysis (PCA), conventional correlation analysis (CCA), and
multiple linear regression (MLR) are all carried out simultaneously [51]. For hyperspectral
data, PLSR can both achieve data dimensionality reduction and be used as a modeling
method to solve the covariance problem of the independent variables while maximizing
the extraction of spectral feature information, effectively enhancing the adaptability of the
model [7]. This study implemented PLSR in The Unscrambler X 10.4 software.

Support vector regression (SVM) is a statistically based implementation of structural
risk minimization approximation. SVM can adapt to regression problems with high-
dimensional features. At its core, it creates an ideal place in the high-dimensional space
to finish the classification process and then utilizes inverse mapping to return to the low-
dimensional space thereafter. The method employs a kernel function to nonlinearly transfer
data from a low-dimensional space to a high-dimensional space [52]. The dimensionality of
the input data has no bearing on how complicated the computation outputs are, effectively
avoiding over-fitting problems and having a strong generalization capability [53]. To obtain
better estimation results, this article uses a grid search method to determine the penalty
factor (c) and kernel function parameter (g). The optimal values of c and g are selected
within the range of [10−2, 10−1, 1, 10, 100] and [10−4, 10−3, 10−2, 10−1, 1, 10], respectively.
This study implemented the SVM method in Matlab 2019b software.

A multilayer feedforward neural network called a backward propagation neural
network (BPNN) propagates backward by the error. The BPNN is a popular tool for
estimating the physical and chemical properties of crops because it is efficient at resolving
non-linear multi-dimensional fitting issues in complicated regressions [54]. The BPNN
is made up of three layers: an input layer, an implicit layer, and an output layer. The
BPNN can have multiple implicit layers, and the precise number of layers will need to
be determined after extensive testing. Neurons within the same implicit layer are not
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connected, but they are fully connected to those in adjacent implicit layers [53]. The
two processes that make up BPNN are forward signal propagation and backward error
propagation, where the error output is determined in the forward direction, and the
weights and thresholds are changed from the reverse way. The input and output layer
neuron parameters of BPNN are determined by the number of independent and dependent
variables, and the number of nodes in the hidden layer is calculated using an empirical
formula. The BPNN method for this study was implemented in Matlab 2019b software.

2.5. Modeling Set and Verification Set Division

The standard deviation method was used to identify outliers for SPAD values mea-
surements at each growth stage, i.e., values measured outside the (µ − 3σ, µ + 3σ) range
in a set of data were considered outliers, and 286 samples remained after the removal of
2 outliers. Then, at each growth stage, the values were arranged in order of ascending
SPAD values, using a stratified sampling ratio of 2:1. The number of samples obtained
for the modeling set was 47, 47, 48, and 48 for the booting, heading, flowering, and filling
stages, and the number of samples for the validation set was 24 in all cases. SPAD values
estimation models for each growth stage were developed using the modeling set data and
model testing was carried out using the corresponding validation set samples.

2.6. Model Accuracy Testing

The accuracy of the SPAD values estimating model was examined in this research
using the coefficient of determination (R2), root mean square error (RMSE), and relative
percentage difference (RPD). In other words, the more closely R2 approaches 1, the lower
the RMSE, the greater the RPD, and the more accurate the model. When RPD is less than
1.4, the model is unable to predict the sample; between 1.4 and 2, the model has a rough
capacity to forecast; and when RPD is more than 2, the model has an incredibly powerful
ability to predict [10].

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 , (2)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2, (3)

RPD =
SD

RMSE

√
n

n− 1
, (4)

where ŷi and yi represent the predicted and measured values of the samples, y is the
mean of the measured samples, n is the number of samples, and SD is the variance of the
measured values of the samples.

3. Results
3.1. Descriptive Statistical Analysis of Canopy SPAD Values

Table 3 displays SPAD values data for the four development phases of winter wheat.
The statistical characteristics demonstrated statistical similarities between the modeling
and validation sets, with the winter wheat SPAD values varying between 10.53 and 62.00
and the coefficient of variation (CV) ranging from 0.06 to 0.27. As the wheat developed, the
mean SPAD values displayed a pattern of growing and then declining, with the greatest
occurring during flowering and the lowest occurring at filling, the maximum and minimum
values of SPAD values occurred at filling, the stage with the largest span of SPAD values.
At filling, the maximum standard deviation (SD) and coefficient of variation (CV) values
also occurred.
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Table 3. Statistical characteristics of canopy SPAD values at different growth stages.

Data Sets Growth Stages Number of Samples MIN MEAN MAX SD CV (%)

Modeling set

Booting 47 40.2 49.37 56.83 3.88 0.08
Heading 47 42.07 49.68 55.40 3.09 0.06

Flowering 48 34.90 50.20 59.10 5.62 0.11
Filling 48 10.53 46.01 62.00 12.09 0.26

Validation set

Booting 24 38.7 49.11 55.27 4.17 0.08
Heading 24 41.67 49.53 55.23 3.28 0.07

Flowering 24 37.07 50.27 58.60 5.56 0.11
Filling 24 11.97 45.91 59.90 12.33 0.27

3.2. Correlation of Canopy SPAD Values with Vegetation Indices or Red-Edge Parameters

Figure 3 displays the results of the correlation (|r|) study between winter wheat SPAD
values and VIs or red-edge characteristics based on the Pearson correlation analysis. The
results demonstrated that the relationships between SPAD values and Vis or red-edge
characteristics were not constant throughout the development stages. During the whole
growth stage, |r| increases as the winter wheat grows, with the highest |r| at the filling stage.
For Vis, all Vis showed a highly significant correlation (p < 0.01) at all four growth stages,
except LCL and PRI which did not reach a highly significant correlation at booting (p < 0.01).
For the red-edge parameters, Dr, Drmin, and RES showed a highly significant correlation
throughout reproduction (p < 0.01), Dr/Drmin showed a highly significant correlation only
at the filling stage (p < 0.01), and SDr showed a highly significant correlation except at
booting (p < 0.01).
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At booting, PRVI had the highest correlation coefficient (|r| = 0.48) among the VIs and
Drmin had the highest correlation (|r| = 0.36) among the red-edge parameters. At heading,
it had the highest correlation of CIred-edge (|r| = 0.75) in VIs and RES (|r| = 0.69) in the
red-edge parameters. At flowering, the CIred-edge correlation was highest in VIs (|r| = 0.87)
and the RES correlation was highest in the red-edge parameters (|r| = 0.72). At filling, the
correlation was highest for LCL in VIs (|r| = 0.91) and RES in the red-edge parameters
(|r| = 0.90).

3.3. Based on MSR Estimation of SPAD Values Using Vegetation Indices or Red-Edge Parameters
and Variable Selection

The winter wheat SPAD values were estimated using a multiple stepwise regression
(MSR) method based on the VIs or red-edge parameters in Table 2 and the results are
shown in Table 4 and Figure 4. At booting, based on the VIs, the modeling R2 value was
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0.26 (RMSE = 3.31, RPD = 0.63), and based on the red-edge parameters, the modeling R2

value was 0.20 (RMSE = 3.42, RPD = 0.50). For this stage, the best-performing VIs and
red-edge parameters were PRVI and Drmin. At heading, based on the VIs, the modeling
R2 value was 0.59 (RMSE = 1.979, RPD = 1.28), and based on the red-edge parameters, the
modeling R2 value was 0.41 (RMSE = 2.34, RPD = 0.87). For this stage, the best performing
VIs and red-edge parameters were CIred-edge, RVI, and RES. At flowering, based on the VIs,
the modeling R2 value was 0.84 (RMSE = 2.21, RPD = 2.30), and based on the red-edge
parameters, the modeling R2 value was 0.53 (RMSE = 3.81, RPD = 1.06). For this stage, the
best performing VIs and red-edge parameters were CIred-edge, RVI, PBI, and RES. At filling,
based on the VIs, the modeling R2 value was 0.84 (RMSE = 4.8, RPD = 2.28), and based on
the red-edge parameters, the modeling R2 value was 0.86 (RMSE = 4.53, RPD = 2.41). For
this stage, the best-performing VIs and red-edge parameters were GNDVI, RES, and SDr.

Table 4. SPAD values estimates based on vegetation indices or red-edge parameters and multiple
stepwise regression method.

Growth Stage Model Factors Regression Equation Optimal Vegetation Indices or
Red-Edge Parameters

Booting VIs y = 39.80 + 0.96 × PRVI PRVI
REPs y = 51.39 + 23,760.34 × Drmin Drmin

Heading VIs y = 35.44 + 8.27 × CIred-edge − 0.51 × RVI CIred-edge, RVI
REPs y = 61.58 − 70.68 × RES RES

Flowering VIs y = 27.68 + 8.35 × CIred-edge − 2.23 × RVI + 4.14 × PBI CIred-edge, RVI, PBI
REPs y = 79.56 − 139.52 × RES RES

Filling VIs y = −34.71 + 131.62 × GNDVI GNDVI
REPs y = 103.18 − 148.61 × RES − 10.43 × SDr RES, SDr
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Figure 4. Estimation of SPAD values by growth stage based on multiple stepwise regression.
(a) Modeling set; (b) Validation set.

Based on VIs, there is an increase in modeling R2 from 0.26 to 0.84 from the boot-
ing to the filling stage. The modeling’s smallest RMSE value was at the heading stage
(RMSE = 1.97) and the largest at the filling stage (RMSE = 4.80). The modeling’s smallest
RPD value was at the booting stage (RPD = 0.63) and the largest at flowering (RPD = 2.30).
Based on the red-edge parameters, the modeled R2 increases from 0.20 to 0.86 from the
booting to the filling stage. Modeling RMSE values were smallest at the heading stage
(RMSE = 2.34) and largest at the filling stage (RMSE = 4.53). There is an increase in modeling
RPD from 0.50 to 2.41 from the booting stage to the filling stage. In addition, as shown in
Figure 4, the results for the validation set R2, RMSE, and RPD remain largely consistent
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with the results of the corresponding modeling set. For example, the larger the RPD of the
modeling sample, the larger the RPD of the validation sample.

Based on the Pearson correlation analysis, VIs showing highly significant correlations
(p < 0.01) were RVI, GNDVI, PBI, PRI, SR, OSAVI, SIPI, and PRVI. The red-edge parameters
that showed a highly significant correlation (p < 0.01) were Dr, Drmin, and RES. Based on
the MSR method, the best-performing VIs for the four growth stages were PRVI, CIred-edge,
RVI, PBI, and GNDVI, and the best-performing red-edge parameters were Drmin, RES,
and SDr. Combining the above two methods to select modeling factors, for the VIs, PRVI,
CIred-edge, RVI, PBI, and GNDVI were selected to construct the SPAD values estimation
model, for the red-edge parameters, Drmin and RES were selected to construct the SPAD
values estimation model.

3.4. Estimation of Canopy SPAD Values Using PLSR, SVM, and BPNN Methods

To achieve SPAD values estimation in winter wheat at different growth stages, based
on the Pearson correlation analysis and MSR methods, five VIs (PRVI, CIred-edge, RVI, PBI,
GNDVI) and two red-edge parameters (Drmin, RES) were selected. The following method-
ology was used for modeling: (1) three methods of PLSR, SVM, and BPNN regression;
(2) five VIs based on hyperspectral UAV data; (3) five VIs combined with two red-edge
parameters. The modeling results are shown in Figures 5 and 6.

When using only VIs to estimate winter wheat SPAD values, in all models, for the
PLSR, the best modeling R2 value was 0.85 (RMSE = 2.16, RPD = 2.37); for the SVM, the best
modeling R2 value was 0.88 (RMSE = 4.2, RPD = 2.65); for the BPNN, the best modeling
R2 value was 0.85 (RMSE = 2.15, RPD = 2). At booting, the BPNN regression model was
the best with an R2 value of 0.30 (RMSE = 3.23, RPD = 0.72). At heading, the PLSR model
was the best with an R2 value of 0.64 (RMSE = 1.81, RPD = 1.36). At flowering, the SVM
regression model was the best with an R2 value of 0.85 (RMSE = 2.20, RPD = 2.23). At filling,
the SVM regression model was best with an R2 value of 0.89 (RMSE = 4.10, RPD = 2.61).

When using the combination of VIs and red-edge parameters to estimate SPAD values,
in all models, for PLSR, the best modeling R2 value was 0.88 (RMSE = 1.90, RPD = 2.77); for
SVM, the best modeling R2 value was 0.88 (RMSE = 4.20, RPD = 2.65); for BPNN, the best
modeling R2 value was 0.86 (RMSE = 4.50, RPD = 2.47). At booting, the BPNN regression
model was the best with an R2 value of 0.46 (RMSE = 2.83, RPD = 0.89). At heading, the
PLSR model was the best with an R2 value of 0.69 (RMSE = 1.71, RPD = 1.45). At flowering,
the PLSR model was best with an R2 value of 0.88 (RMSE = 1.9, RPD = 2.77). At filling, the
SVM regression model was best with an R2 value of 0.88 (RMSE = 4.20, RPD = 2.65).

In addition, the results of the validation set are largely consistent with the results of
the modeling set, as shown in Figure 6. That is, the higher the modeling R2 and RPD, the
larger the validation R2, and the higher the RPD, the lower the modeling RMSE, the smaller
the validation RMSE. The results also indicate that there are no significant differences
between the PLSR, SVM, and BPNN methods in estimating SPAD values. The optimum
growth stage for SPAD values estimation was blooming, and utilizing a combination of
red-edge parameters and VIs to estimate SPAD values was more accurate than using
VIs alone. Different growth stages had a significant influence on the accuracy of the
estimation model.
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based on SVM; (e) Booting, using VIs based on BPNN; (f) Booting, using VIs and REPs based on 
BPNN; (g) Heading, using VIs based on PLSR; (h) Heading, using VIs and REPs based on PLSR; (i) 
Heading, using VIs based on SVM; (j) Heading, using VIs and REPs based on SVM; (k) Heading, 
using VIs based on BPNN; (l) Heading, using VIs and REPs based on BPNN; (m) Flowering, using 

Figure 5. The prediction results of canopy SPAD values were estimated using PLRS, SVM, and BPNN
methods for each growth stage. (a) Booting, using VIs based on PLSR; (b) Booting, using VIs and
REPs based on PLSR; (c) Booting, using VIs based on SVM; (d) Booting, using VIs and REPs based on
SVM; (e) Booting, using VIs based on BPNN; (f) Booting, using VIs and REPs based on BPNN;
(g) Heading, using VIs based on PLSR; (h) Heading, using VIs and REPs based on PLSR;
(i) Heading, using VIs based on SVM; (j) Heading, using VIs and REPs based on SVM; (k) Heading,
using VIs based on BPNN; (l) Heading, using VIs and REPs based on BPNN; (m) Flowering, using
VIs based on PLSR; (n) Flowering, using VIs and REPs based on PLSR; (o) Flowering, using VIs based
on SVM; (p) Flowering, using VIs and REPs based on SVM; (q) Flowering, using VIs based on BPNN;
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(r) Flowering, using VIs and REPs based on BPNN; (s) Filling, using VIs based on PLSR; (t) Filling,
using VIs and REPs based on PLSR; (u) Filling, using VIs based on SVM; (v) Filling, using VIs
and REPs based on SVM; (w) Filling, using VIs based on BPNN; (x) Filling, using VIs and REPs
based on BPNN.
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Figure 6. Accuracy parameters for the modeling and validation set for canopy SPAD Values esti-
mation using PLRS, SVM, and BPNN methods. (a) Booting modeling set; (b) Booting validation
set; (c) Heading modeling set; (d) Heading validation set; (e) Flowering modeling set; (f) Flowering
validation set; (g) Filling modeling set; (h) Filling validation set.
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4. Discussion
4.1. Estimation of SPAD Values Using Vegetation Indices, Red-Edge Parameters, and
Their Combinations

The research showed that the SPAD values estimate model produced by VIs was better
than that produced by the red-edge parameters (Figure 4). According to Gao et al. [55], us-
ing only VIs rather than red-edge parameters to evaluate the physiological and biochemical
characteristics of crops produced superior results. This result is in line with the conclusion
in this research that utilizing VIs alone produced better SPAD values estimations than using
the red-edge parameters alone. Compared to the red-edge parameters, the composition of
the vegetation index includes visible and near-infrared wavelengths [41]. This indicates
that for UHD185, both visible and near-infrared wavelengths can play an important role in
estimating chlorophyll content in winter wheat [56].

Based on PLSR, SVM, and BPNN using VIs, VIs were combined with red-edge pa-
rameters as model factors to estimate SPAD values. When VIs and red-edge parameters
are used together, the accuracy of the CCC estimate is improved compared to when VIs
are used alone (Figures 5 and 6). Accordingly, it is possible to increase the precision of the
SPAD values estimations for wheat by including red-edge characteristics in the modeling
elements. This is because the red-edge is located in the region where the spectral reflectance
sharply increases between the red absorption valley and the near-infrared reflection peak,
with a general wavelength range of 680–760 nm, which can reflect chlorophyll content
and leaf structure. The position of the red-edge is sensitive to the chlorophyll content in
the plant canopy and plays an important role in estimating the chlorophyll concentration
of vegetation [57,58]. The red-edge parameters, as shown by Tao et al. [59] enhanced the
estimations of the leaf area index (LAI) and above-ground biomass (AGB). AGB and LAI
are strongly associated with SPAD values, and the results of this work are compatible with
their results.

4.2. Estimation of Canopy SPAD Values Using PLSR, SVM, and BPNN

A comparison of PLSR, SVM, and BPNN modeling results showed no significant
differences between PLSR and machine learning (ML) methods in estimating CCC, which
is consistent with the results of Almeida et al. [60] and Zhu et al. [61]. Of the three modeling
methods, the PLSR method has poor modeling stability and the BPNN method performs
best in SPAD values estimation, which is influenced by the characteristics of the algorithm.
When using both SVM and BPNN machine learning methods for modeling, we discovered
that the BPNN model was more reliable than the SVM model, which is consistent with the
results of Wang et al. [62]. The BPNN method allows for rapid modification of the algorithm
and performs better when the sample size is large. The SVM approach has been popular
in recent years in remote sensing research because it is appropriate for multidimensional
datasets and small samples [63]. In this study, two conventional ML techniques were
chosen, and future research should focus on some more advanced prediction methods such
as deep learning [64], cubist (CB) method [60], and integration algorithms [65].

In addition, the PLSR, SVM, and BPNN used in this study are only applicable to the
region being calibrated and have limitations [66]. Radiative transfer models (RTMs) such
as PROSAIL [67], ACRM [68], and SCOPE [69] models have been applied to SPAD values
estimation. However, there are certain problems with RTMs, for example, the impact of row
crops on model inversion and the impact of ill-posed inverse problems [70,71]. However,
different angles of observation may also increase the uncertainty of the model, which is
discussed in depth by Duan et al. [72] and Wang et al. [73]. In addition, RTMs and ML
were used by Xu et al. [74] to improve the precision of crop chlorophyll content prediction.
In general, both simplicity and applicability should be considered when estimating crop
agronomic parameters.

Hyperspectral data can provide rich and detailed spectral information and can be bet-
ter applied to quantitative crop chlorophyll analysis [15,75]. However, hyperspectral data
are complex to process in use and sensitive to noise and interference. Some existing studies
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have shown that UAV-based multispectral data have good performance in estimating crop
canopy chlorophyll [9,76]. Future studies could compare the performance of multispectral
and hyperspectral data in estimating chlorophyll in winter wheat.

4.3. Canopy SPAD Values Estimates for Winter Wheat at Different Growth Stages

In this study, SPAD values estimation models were constructed for four key growth
stages of winter wheat, and the maximum accuracy of the SPAD values estimation models
varied at different growth stages. The estimation models that achieve the highest accuracy
are BPNN, PLRS, PLSR, and SVM for the booting, heading, flowering, and filling stages,
respectively. With the same modeling approach and parameter types, the highest accuracy
and stability of SPAD values estimation were achieved for the winter wheat flowering
stage. Although the R2 values of some of the models during the filling stage are large,
the RMSE is also large, and the stability of the models is poor. The accuracy of the SPAD
values estimates increased in the following order: booting < heading < filling < flowering,
suggesting that different growth stages do have an effect on SPAD values estimation in
winter wheat, which is consistent with the results of Zhu et al. [6]. Each growth stage of
winter wheat has different growth characteristics, and four key growth stages of winter
wheat were selected for modeling in this study, and further validation is needed to see if
these models can be applied to other growth stages.

The accuracy and robustness of SPAD values estimates can be influenced by factors,
such as plant structure, leaf thickness, plant cover, and soil context, and these effects vary
by growth stage [77]. At the booting and heading, due to the small size of the plants, the
soil background has a greater influence on canopy reflectance. At flowering and filling,
vegetation cover and leaf area increase, masking the effects of the soil background and
reducing visible light and red-edge reflectance [78]. The average spectral reflectance of the
four growth stages is shown in Figure 7. In addition, SPAD values vary with increasing leaf
size and number, thus having an impact on crop reflectance and SPAD values estimates [77].
As can be seen from Table 3, the highest values of the coefficient of variation (CV) for SPAD
values were found during the filling stage and significant SPAD values variation may have
contributed to a good fit of the prediction model, but at the same time, the wheat ears and
some senescing leaves may have affected the spectral reflectance and affected the accuracy
of the model during this growth stage. In addition, previous studies have shown that
saturation of VI occurs when the vegetation canopy cover is high and may occur to some
extent during the filling stage [79]. To elaborate on these results, future studies should make
more frequent observations to collect observations throughout the growth stage of the crop.
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5. Conclusions

This study estimated the SPAD values of winter wheat at different growth stages
using vegetation indices, vegetation indices combined with red edge parameters, PLSR,
SVM, and BPNN based on UAV hyperspectral (UHD185) data. The main conclusions are
as follows:

(1) Better SPAD values estimates were obtained when vegetation indices alone were
used compared to when the red-edge parameters were used alone. The accuracy of
the model for estimating SPAD values in winter wheat was better when vegetation
indices and red-edge parameters were combined compared to the use of vegetation
indices or red-edge parameters.

(2) Using a combination of vegetation indices and red-edge parameters, the predictive
performance of PLSR, SVM, and BPNN methods can be improved, with BPNN being
better than PLSR and SVM in terms of predictive power and stability.

(3) Different growth stages greatly impacted winter wheat SPAD values estimation, with
flowering being the best stage for estimating winter wheat SPAD values. The best-
performing model was based on the combination of vegetation indices and red-edge
parameters BPNN (R2 = 0.85, RMSE = 2.15, RPD = 2.39).
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