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Abstract: Although the Landsat 30 m Enhanced Vegetation Index (EVI) products are important input
variables in land surface models, recurring Landsat 5/7 EVI time series over cloud-prone, fragmented,
and mosaic agricultural landscapes is still a great challenge. In this study, we put forward a simple,
but effective “Light and Temperature-Driven Growth model and Double Logistic function fusion
algorithm” (LTDG_DL). The empirical basis of the LTDG_DL algorithm was traced from the de Wit
crop growth simulation model and the commonly observed nonlinear correlation between the EVI
and the Leaf Area Index (LAI). It assimilates the ground daily solar radiation and air temperature to
generate seasonal profiles of the empirical LAI and EVI and conducts the within-season calibration of
the empirical EVI by adjusting crop growth using cloud-free Landsat EVI observations. The initial
date of seedling emergence (DOYini) and the accumulated Growing Degree Days for completion of
the vegetative and Flowering stage (FGDDs) were variables to which the algorithm’s accuracy was
most sensitive. The variable-constrained optimization of the LTDG_DL algorithm was performed by
loading the seedling emergence calendar of local prevailing crops and establishing an FGDD lookup
table with an exhaustive sampling without replication method. Compared to temporal interpolation
functions and Landsat–MODIS spatiotemporal fusion algorithms, the LTDG_DL algorithm had
superior performance in the predictions of the EVI increment slope at the vegetative growth stage, the
timing of the peak EVI, and the protection of key Landsat EVI observations over cloud-contaminated
and complex landscape agricultural systems. Finally, the advantages and limitations of the LTDG_DL
algorithm are discussed.

Keywords: Landsat EVI; time series; EVI reconstruction; agricultural landscapes

1. Introduction

In the 2000s, land holdings per family in China were recorded at 0.53 ha [1]. In Korea,
approximately 69% of farms have small land parcels measuring less than 1.0 ha [2]. The
majority of agricultural landscapes in East Asia consist of small land parcels (<1.5 ha,
approximately 120 × 120 m) [3–5], which are significantly smaller than the average holding
size of 19.3 ha in the USA [6]. Additionally, most patchy and fragmented agricultural
landscapes in East Asia practice multi-crop planting [7,8]. One common atmospheric
characteristic in East Asia monsoon areas is the regular occurrence of precipitation during
the summer season, when crop growth accelerates [9,10]. However, the use of open-access
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high-temporal-resolution products from the Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) in highly fragmented and mosaic agricultural landscapes has been limited
due to their coarse spatial resolution [7]. On the other hand, satellite products provided
by the Landsat series, which are free to the public, offer an improved spatial resolution of
30 m and the longest continuous record of land surface reflectance since 1984 This includes
Landsat 5 (1984–2013), Landsat 7 (1999–present), and Landsat 8 (2013–present) [11]. These
data make it possible to analyze historical changes in land use and land cover change in the
agricultural sector and detect crop types in certain areas [6,12–14]. However, research on the
quality of Landsat data has shown that obtaining at least three high-quality observations
from Landsat 5–7 within a single crop growing season is not feasible on a large scale due to
issues such as cloud coverage, selective scene acquisition, sensor malfunction, and other
factors [15–17]. Therefore, monitoring crop growth in cloud-prone and complex landscape
regions is still a significant challenge, especially when using retrospective Landsat VI data
from Landsat 5/7.

The contemporary methods for reconstructing Landsat VI can be classified into two
groups based on the reconstruction algorithms: those that use auxiliary information to
infer the reflectance or VI of ground objects and those that do not [18,19]. The first group
includes VI/reflectance temporal interpolation functions, while the second group consists
of Landsat–MODIS VI/reflectance spatiotemporal fusion methods. While some recon-
struction algorithms provide calibrated reflectance estimates, most of the algorithms in
the literature focus on VI as the outcome [20]. The VI temporal interpolation function
is specifically designed for Landsat VI data. Two commonly used global temporal in-
terpolation functions, namely Savitzky–Golay (SG) and Double-Logistic (DL), have been
successfully applied to single-year continuous MODIS VI time series [21–24]. They have
also been used for aggregating multi-year cloud-free Landsat Enhanced Vegetation Index
(EVI) data [25]. Harmonic time series models, which utilize sines and cosines, have shown
good performance in fitting single-year temporally rich Landsat Normalized Difference
Vegetation Index (NDVI) data, with the Root-Mean-Squared Error (RMSE) ranging from
0.05 to 0.08 [26]. However, reliable NDVI reconstruction is challenging when fitting single-
year coarse Landsat observations, resulting in higher RMSE values (RMSE ≥ 0.12) [27]. The
coefficient estimations of the global temporal interpolation functions are highly sensitive
to the range of dates and the density of Landsat VI observations. These functions also
lack flexibility [28]. Although long-term mean changes in Landsat VI can be detected, they
cannot adequately represent inter-annual variability in the land cover and land use in the
agricultural sector.

In Landsat–MODIS VI spatiotemporal fusion methods, the first step is to perform
gap-filling of missing Landsat values in order to obtain more cloud-free satellite data, then
one or two smoothing functions are applied [5,19,29–32]. The Landsat–MODIS fusion
method predicts Landsat VI data at daily or consistent time steps. It is trained using a
medium number of cloud-free Landsat and MODIS NDVI image pairs on base dates, and
then, it predicts Landsat images on prediction dates along with corresponding cloud-free
MODIS NDVI image. Various Landsat–MODIS fusion methods with different algorithm
structures have been developed. Examples include the Gap-Filling and Savitzky–Golay
filtering method (GF-SG) [32], the Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) [33] and its derivatives [19,34], and the Flexible Spatiotemporal DAta Fusion
(FSDAF) [35]. The GF-SG/STARFM/FSDAF method involves a key step, which is the
generation of a synthesized NDVI time series. This is achieved by fusing MODIS NDVI
time series data at 250/500 m resolution with cloud-free Landsat observations (referred
to as Landsat observations unless otherwise indicated). In order to improve the fusion
accuracy, algorithms have progressed from directly merging multiple satellite photos on
distinct forecast dates to the weighted fusion of partially cloud-free images [32,36,37].
However, there are four critical issues that these fusion methods encounter, which need to
be addressed: (1) The EVI, which can reduce the saturating effects of dense canopy as much
as possible, performs better than the NDVI [38]. (2) The spatial resolution of MODIS pixels
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(500/250 m) covers fragmented land parcels with multi-crop planting systems, resulting in
week spatial autocorrelation between the MODIS and Landsat VI temporal shapes. This
leads to incorrect quantification of the land surface crop phenology under certain conditions.
(3) The reliability of these methods depends on a medium number of consistently gap-
filled high-quality Landsat data on dates close to the prediction dates, which cannot be
guaranteed in cloud-prone areas wherein the whole Landsat scene is contaminated by
clouds at several acquisition dates. (4) These methods cannot be applied to regions or
years where/when MODIS observations are not available. Consequently, there may be
inadequate reconstruction in Landsat EVI time series in certain areas. For example, this can
occur with fast-growing crops that have continuous missing MODIS/Landsat EVI values
or in fragmented agricultural ecosystems, where crops with diverse phenological features
grow adjacent to each other.

Although numerous methods for Landsat EVI reconstruction have been proposed,
the question of how to reduce uncertainty in the daily series reconstruction for small
land parcels during periods without MODIS data such as the 1990s and 2000s remains
unanswered. This study addressed this question by introducing a novel algorithm, Light-
and Temperature-Driven Growth and Double-Logistic fusion (LTDG_DL), which uses daily
ground meteorological data and Landsat EVI observations to generate daily 30 m EVI
profiles for the crop growing seasons. Section 2 provides a detailed description of the
conceptual framework of LTDG_DL and its bivariable co-strained optimization solutions
(Section 2). Section 3 discusses the validation objects, including four farming parcels in
the Republic of Korea, China, and the USA where the crop types, Landsat, and field EVI
observations were known and available; the cloud-prone Haean basin in the Republic of
Korea, which features fragmented and mosaic agricultural landscapes with a known crop
phenology; and the cloud-prone Shandong Province in China, where the crop types in
double-cropped agricultural systems are unknown. The Sections 4 and 5 present the results
and discussion, respectively.

2. Development of the LTDG_DL Algorithm

The LTDG_DL algorithm is executed on a daily basis for reconstructing one-season
EVI. It consists of two interconnected sub-models (Figure 1): the DL function and the LTDG
model. While LTDG_DL does not require site calibration at the per-pixel level, it is still
necessary to refine exclusive parameters for different agroclimatic zones. Two structural
parameters must be constrained in order to obtain satisfactory daily Landsat EVI data. The
algorithm principles of LTDG_DL and its structural parameters are explained in Section 2.1,
followed by Section 2.2, which presents the bivariable-constrained optimization solutions.

2.1. Algorithm Principles
2.1.1. The DL Function

The SG and DL functions are commonly used statistical measures for preparing
satellite VI time series. The SG function is primarily utilized to smooth consecutive VI time
series by applying a weighted moving average with a polynomial of a certain degree [39].
The degree of the smoothing polynomial is determined by the time window size and the
number of data points within that window. However, the SG function has limitations when
dealing with irregularly distributed observations and continuously missing data points
over an extended period. This is due to the fact that rare satellite observations can be
considered as “sudden/spike points” and are either removed or flattened [28]. Previous
studies have proposed the use of the DL function to fit MODIS NDVI observations from
a single season, which allows for less homogeneity in the temporal distribution while
preserving important cloud-free observations [23,24]. In this study, we applied the DL
model to fit Landsat EVI observations for one season using Equation (1), resulting in the
generation of daily EVI data (dEVIDL) (as shown in Figure 1).
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f (t, x1, x2, x3, x4) =
1

1 + exp
(

x1−t
x2

) − 1

1 + exp
(

x3−t
x4

) (1)

where x1 and x3 are the locations of the left (the increasing phase) and right (the decreasing
phase) inflection points, respectively; x2 and x4 determine the rate of change at these points;
t is the day of the year. x1 and x3 are defined as the date when the crop growth rate is
maximized and the date when the crop senescence rate is maximized, respectively. The
ranges of x2 and x4 are limited to [8.8, 40.9] and [8.8, 40.9], respectively. The DL model,
which incorporates constrained values for x2 and x4, has shown the ability to accurately
predict VI time series data for temperate crops [24]. It should be noted that the range of x2
and x4 may differ between temperate and tropical crops.
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Figure 1. Schematic illustration of the LTDG_DL algorithm to reconstruct one-season daily Landsat
EVI data in complex landscape agricultural systems. accGDDs: accumulated Growing Degree Days;
EVI: Enhanced Vegetation Index; LTDG_DL: Light- and Temperature-Driven Growth (LTDG) model
and Double-Logistic (DL) function fusion algorithm; dEVILTDG: daily EVI data reconstructed by the
LTDG; dEVIDL: daily EVI data reconstructed by the DL; pred.: prediction; obs.: observation; GLDAS:
the Global Land Data Assimilation System; canopy light interception: the amount of solar radiation
intercepted by plant canopies.
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2.1.2. The LTDG Model

The LTDG model explores the principles of the “School of de Wit” crop growth
simulation models [40,41]. It operates under the assumptions that the crop growth and
development potentials are primarily influenced by the interception of sunlight by the
canopy (i.e., the amount of solar radiation intercepted by the canopy) and the accumu-
lation of Growing Degree Days (accGDDs) [42]. The variations observed in satellite EVI
measurements throughout the seasons are attributed to changes in crop growth dynamics,
specifically alterations in canopy size in irrigated and rainfed fields [38,43–45]. In the
LTDG model, the daily aboveground biomass production is estimated using a radiation
use efficiency model, which is then multiplied by canopy light interception and radiation
use efficiency [46]. Canopy light interception is typically determined using Beer’s law,
which calculates it as the product of the green Leaf Area Index (LAI) and light extinction
coefficient (k) [47]. The increase in aboveground biomass on the ith day after seedling
emergence or transplanting (∆MAGB,i, units: g) is represented by the following equation:

∆MAGB,i = ε× β× Rs,i ↓ ×(1.0− exp(−k× LAIi)) (2)

where ε is the radiation use efficiency (default 3.5 g MJ–1); β is the fraction of total solar
radiation that is photosynthetically active radiation (default 0.45); Rs,i↓ is the daily incident
solar irradiance on the ith day (MJ day–1); k is light extinction coefficient (default 0.5); LAIi
is the green Leaf Area Index on the ith day (m2 m–2).

The expansion of the canopy area during the vegetative growth and flowering stages,
as well as its decline during the maturation stage are regulated by a biomass allocation
coefficient (ρ) (Equation (3)). The ρ value indicates whether there is positive or negative
growth and senescence in the canopy. This coefficient, expressed as a function of accGDDs
in Equation (4), determines the amount of daily increase in aboveground biomass allocated
to leaves.

∆LAi = ρi × ∆MAGB,i × SLA (3)

ρi = 1.0− ai × exp(bi × accGDDsi) (4)

where ρi is the allocation coefficient of ∆MAGB,i to leaves on the ith day; SLA is the Specific
Leaf Area (default 0.024 m2 g–1); ∆LAi is the daily increase in canopy Leaf Area on the ith
day (m2 m–2); accGDDsi is the accGDDs on the ith day; ai and bi are model coefficients on
the ith day. The GDD on the ith + 1 d (GDDi+1, ◦C) is computed by the daily air temperature
and base temperature as follows:

accGDDsi+1 = accGDDsi + GDDi+1 (5)

GDDi+1 = max[Tair,i+1 − Tbase, 0] (6)

where Tair,i+1 is the daily air temperature on the ith + 1 d (◦C) and Tbase is the base tempera-
ture below which crop growth ceases (default 5 ◦C for crops in temperate regions). The
accGDDs on the initial date of seedling emergence/transplanting (DOYini) are equal to
GDD1. The accumulated leaf area on the ith + 1 d is a product of the LAI on the ith day
plus the daily increase in leaf area on the ith day (Equation (7)), and the empirical EVI on
the ith + 1 d is generated by using a generic EVI-LAI equation (Equation (8)).

LAIi+1 = ∆LAi + LAIi (7)

EVIi+1 = e× LAI f
i+1 (8)

where e and f are model coefficients (defaults 0.39 and 0.51, respectively) [41].
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The empirical EVI can deviate significantly from the actual Landsat EVI observation
on the same date due to the seasonal impacts of environmental factors, such as prolonged
drought or nutrient deficiency, affecting crop growth. The LTDG method utilizes Landsat
EVI observations to calibrate the empirical EVI within a season. To ensure that the adjusted
EVI simulations match the Landsat EVI observations on all observation dates, the daily ρ
and initial conditions of the LAI (LAIini, default 0.002 m2 m–2) at seedling emergence/the
transplanting date are dynamically adjusted using an iterative numerical procedure. In
this iterative process, two statistics, E+ and E−, are used to quantify the difference between
the simulation and the observation values. E+ represents the sum of the positive errors
between the simulation and the observation values; likewise, E− represents the absolute
value of the sum of the negative errors. The total error, E, is calculated as the sum of E+ and
E−. A satisfactory fit between the simulation and observation EVI values occurs when E+ is
equal to E−. To determine the LAIini that achieves the best fit, the secant method developed
by Conte and de Boor [48] is employed. Once the fit involving LAIini is obtained, daily ρ is
adjusted using the parameters ai and bi through parabolic interpolation [49] to minimize
the value of E.

The life history of annual and perennial crops is traditionally divided into four phe-
nological phases: vegetative, flowering, grain/fruit maturation, and senescence/harvest
phases. The development of the crop phenology closely follows the accumulation of GDDs
throughout its lifespan. The accGDDs required to transition from one phenological stage
to the next are relatively consistent within crops, but vary greatly among different crop
types [42,50]. In this study, the total number of accGDDs needed to complete each phe-
nological phases is represented by VGDDs, FGDDs, MGDDs, and HGDDs, respectively.
In determinate crops, the plant stops growing beyond the point where the flowers have
bloomed. Conversely, morphologically indeterminate crops such as cotton exhibit simul-
taneous growth and flower setting, which differs from the determinate crops, such as
paddy rice. Considering the use of the LTDG in multi-crop planting systems that include
both indeterminate and determinate crops, the VGDDs and FGDDs for the vegetative and
flowering phases are combined (hereinafter referred to as FGDDs). Differences in crop
phenological development between early-maturing and late-maturating varieties mainly
stem from variations in the FGDDs [50]. The FGDDs can be considered the primary variable
that differs considerably among crop types.

For agricultural pixels with infrequent Landsat EVI observations over prolonged
periods of time, the daily EVI data reconstructed by LTDG (dEVILTDG) may yield higher
or lower values than the dEVIDL on certain observation dates. Therefore, an average of
the dEVIDL and dEVILTDG without weighted coefficients is used as the resulting output
(dEVILTDG_DL). This calculation is performed as follows:

dEVIi,LTDG_DL = ∑
i=1

(dEVIi,LTDG + dEVIi,DL)/2.0 (9)

2.2. Bivariable-Constrained Optimization Solutions

Although LTDG_DL includes numerous parameters, the reconstruction of daily EVI
data can be achieved satisfactorily by utilizing constrained configurations of two specific
parameters: DOYini and the FGDDs.

2.2.1. Constrained Configurations of DOYini

DOYini can vary greatly across different agroclimatic zones due to variations in per-
sonal preference for seeding date and choice of crop [24]. In agricultural landscapes within
agroclimatic zones where the crop types are unknown, a landscape-level DOYini setting
was establishing by incorporating the seedling emergence calendar of locally predominant
crops. To configure the landscape-level DOYini, satellite EVI observations from a specific
number of agricultural pixels were merged to generate an endmember ensemble of Landsat
EVI observation time series (see Figure S1 in the Supporting Information, Section S1). The
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onset of the consistent increase phase in the seasonal EVI curves included in the endmember
EVI ensemble can be used to determine the landscape-level DOYini more easily.

2.2.2. Constrained Configurations of the FGDDs

Uncertainty in the FGDDs may significantly impact Landsat EVI reconstruction accu-
racy [41]. In a case study of the paddy rice crop, there were six Landsat EVI observations
from DOYini until the end of the growing seasons (Figure 2a). Reconstructed daily EVI data
that well-captured the Landsat EVI observations were obtained using FGDDs = 900 ◦C.
However, when only four Landsat EVI observations were available over the rice growing
seasons (two mid-season EVI observations in Figure 2a were masked in Figure 2c), a better
reconstruction of the daily EVI profile was achieved using FGDDs = 750 ◦C. The FGDDs at
750 ◦C in the case with only three available Landsat EVI observations (three data points in
Figure 2a were masked in Figure 2e) generated a superior daily EVI curve compared to
other FGDDs (Figure 2e). These results indicate that the satisfactory generation of daily
Landsat EVI data using FGDDs is dependent on the number of available Landsat EVI
observations. Given the sensitivity of the LDTG_DL modeling performance to the density
of Landsat EVI observations, incorporating more EVI data points into LTDG_DL may help
improve EVI reconstruction accuracy.

Landsat EVI observations from DOYini to the end of the crop growing seasons (around
mid-October in Northeast Asia) were utilized to generate various combinations of EVI
observations. An exhaustive sampling without replication method was employed to
develop these groups of EVI observation combinations, resulting in m groups of EVI
observation combinations, as shown in Figure 3. Each of these m groups was then input
into LTDG_DL to produce an equal number of dEVILTDG_DL outputs. By averaging the m
groups of dEVILTDG_DL, a single seasonal EVI profile was obtained (see dEVILTDG_DL in
Figure 3). Notably, it was observed that EVI combination groups with a least three Landsat
EVI observations performed better than those with only one or two observations. If there
were fewer than three Landsat EVI observations available over the crop growing seasons,
no EVI combination groups could be generated. Figure 2b illustrates the generation of
twenty EVI combination groups using the exhaustive sampling method with six Landsat
EVI observations (C3

6 = 20). Interestingly, the results showed no significant differences
in reconstructed daily EVI data when comparing the FGDDs of 750, 800, 850, and 900 ◦C,
which contrasts with the finding presented in Figure 2a. Furthermore, Figure 2d exhibits
the superior performance of the FGDDs = 750 ◦C compared to Figure 2c when four groups
of EVI combinations (C3

4 = 4) were used to drive the LTDG_DL model. This is evidenced
by the reconstructed maximum EVI closely aligning with the maximum EVI observation
shown in Figure 2a. In Figure 2b,d,e, it is apparent that the FGDDs of 750 ◦C yielded the
best results in reconstructing daily EVI data. These findings suggest that the exhaustive
sampling without replication method improved the accuracy of EVI reconstruction in crop
pixels with low Landsat EVI observation density.

A set of FGDDs produces the same number of dEVILTDG_DL, which were used to
create a reference database called LEVIreference,n (refer to Figure 3). The appropriate FGDDs
for each agricultural pixel can be determined by comparing them with Landsat EVI obser-
vations on various observation dates and selecting the one in the LEVIreference,n database
that shows the best agreement with the Landsat EVI observations (i.e., the smallest RMSE),
considered as the optimized dEVILTDG_DL (see Figure 3). Additionally, a lookup table was
established, which comprises n groups of FGDDs, MGDDs, and HGDDs (Figure 3). The
FGDD lookup table, accompanied by an exhaustive sampling method without replication,
plays a vital role in generating the optimized dEVILTDG_DL.
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Figure 2. Effects of varying FGGDs values (750, 800, 850, and 900 ◦C, (a,c,e)) and the group number
of Landsat EVI observation combinations (b,d) on Landsat EVI reconstruction. Crop growing seasons
are indicated by the double-arrow line in (a). Six, four, and three Landsat EVI observations from
DOYini to the end of the crop growing seasons are available in Scenarios 1, 2, and 3, respectively.
The group of EVI observation combination = 1 in (a,c,e) represents that all EVI observations of
the crop growing seasons were grouped into one EVI observation combination. For the case of
six EVI observations over the crop growing seasons, the exhaustive sampling method without
replication helped yield 20 groups of EVI observation combinations, wherein each group had at least
three EVI observations (C3

6 = 20, (b)). Using this procedure, four EVI observations over the crop
growing seasons yielded four groups of EVI observation combinations (C3

4 = 4, (d)), and three EVI
observations over crop growing seasons had only one group of EVI observation combination (C3

3 = 1,
(e)). FGDDs: the accumulated Growing Degree Days for completion of the vegetative and Flowering
stage; EVI: Enhanced Vegetative Index; DOYini: the initial seedling emergence/transplanting date;
LTDG_DL: Light- and Temperature-Driven Growth model and Double-Logistic function fusion
algorithm; obs.: observation.
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Figure 3. Data-processing roadmap of the FGDD-constrained optimization solution involved in the
LTDG_DL algorithm. obs.: observation; GDDs: Growing Degree Days; EVI: Enhanced Vegetation
Index; RMSE: root mean square error; LTDG_DL: a parameter-constrained Light- and Temperature-
Driven Growth (LTDG) model and Double-Logistic (DL) function fusion algorithm; FGDDs: the
accumulated GDDs required to complete the vegetative growth and Flowering stage; MGDDs: the
accumulated GDDs for completion of the Maturation stage; HGDDs: the accumulated GDDs for
completion of the Harvest stage; dEVILTDG_DL: the mean of daily EVI data reconstructed by m groups
of EVI observation combinations.

In this study, a lookup table for the FGDDs was established, encompassing a tem-
perature range of 600 to 1200 ◦C with a sampling interval of 50 ◦C (i.e., 600, 650, 700, . . .,
1200). For each crop pixel, a total of fourteen dEVILTDG_DL datasets were generated. These
fourteen datasets were then clustered to create the LEVIreference,n, denoted as n (n ∈ 14).
The optimized daily Landsat EVI profile, referred to as LEVIoptimized, was determined by
evaluating its RMSE against Landsat EVI observations on all observation dates, as follows:

LEVIoptimized ≈ min(
n

∑
j=1

LEVIre f erence,j, Landsatobs) (10)
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The development of the FGDD lookup table adhered to the following criteria:
(1) FGDDs > MGDDs > HGDDs; (2) the sum of FGDDs, MGDDs, and HGDDs should
be equal to or less than the total accGDDs of the crop growing seasons. Crop growing
seasons are defined as the period starting on DOYini and ending on the first autumn date
when the daily air temperature falls below Tbase.

3. Algorithm Validations

Validations of the LTDG_DL were conducted using three independent datasets. The
first dataset consisted of three experimental fields; the second dataset included agricultural
landscapes in the Haean basin; the third dataset encompassed regional agricultural land-
scapes in Shandong Province. These datasets presented various climate types, different
crop types in distinct cropping systems, and varied densities of Landsat EVI observations
throughout the crop growing seasons in each agricultural system. The Haean basin and
Shandong Province are characterized by fragmented and mosaic agricultural landscapes,
which aligned well with the selection of the validation objects pertaining to our research
question. Additionally, auxiliary information regarding crop phenology and weather
station data was accessible in the Haean basin.

Four variables were used to assess the accuracy of EVI reconstruction with considera-
tion given to the crop growth trajectory. These variables included the EVI increment slope,
the EVI decline slope, the absolute EVI, and the timing of peak EVI (Tpeak_EVI). It should be
noted that the Tpeak_EVI derived from the crop pixels with a low density of Landsat EVI
observations may not accurately represent the field conditions. For the validation of the
DL, LTDG, and LTDG_DL methods, crop pixels in the Haean basin that had a peak EVI
reasonably close to the flowering stage were selected. To obtain detailed information on
crop phenology in the Haean basin, the study by Lindner et al. [3] was consulted. The
RMSE and R2 were calculated as indictors of modeling accuracy.

3.1. Introduction of the Three Experimental Fields and Parameter Settings of the LTDG_DL

Four crops were selected for algorithm validation in well-managed experimental fields
located in Yanhu in China (34◦27′03′′N, 117◦07′11′′E), Nebraska in the USA (41◦10′46.8′′N,
96◦26′22.7′′W), and Gimje in the Republic of Korea (35◦45′N, 126◦56′E) [51–53]. The DOYini
settings were determined based on the onset of the consistent increase phase of Landsat EVI
observations. Portable multi-spectral sensors were used to extract field EVI measurements
from these studies. The EVI increment slope, which represents the increase in the EVI
per day during the vegetative growth stage, and the EVI decline slope, which represents
the decrease in the EVI per day during the senescence stage, derived from the field EVI
measurements were considered as benchmarks to evaluate the performances of the DL,
LTDG, and LTDG_DL methods. The calculation modes of the EVI increment and decline
slopes are illustrated in the inset of Figure 5h.

The Landsat EVI observations of the growing season were categorized into two sce-
narios, as shown in Figure 5a–d. The first scenario, labeled S1 manipulation, represented
the situation where the EVI observations were intentionally excluded during the periods of
rapid green-up and senescence. This is depicted by small triangles. The second scenario, la-
beled S2 manipulation, depicted the condition where the EVI observations were purposely
omitted around the date of the maximum EVI. This is represented by big circles. The S1 and
S2 scenarios exemplified the instances of low-density Landsat EVI observation and irregular
seasonal distributions, which are commonly observed at larger spatial scales [15,16]. For
the validation of the DL, LTDG, and LTDG_DL methods, all Landsat EVI observations
during the crop growing seasons were utilized.

The year-round daily meteorological data (Tair and Rs; see Supporting Information S2)
were obtained from the Global Land Data Assimilation System Version 2 products (GLDAS2.0)
at the same location and year. These data are available at a daily resolution with a spa-
tial resolution of 0.25◦ × 0.25◦ (https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS)
(accessed on 5 March 2023). The year-round Landsat 5/7/8 surface reflectance images,

https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS
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centered on the farming lands, were downloaded from the U.S. Geological Survey (USGS)
Earth Explorer on 5 July 2022. These images underwent radiometric and atmospheric
corrections using the radCor function of the RStoolbox package in the R language (R Core
Team, 2021) [54]. Since Landsat 5 and 7 exhibit a good and consistent match in surface re-
flectance [55], no further adjustments were necessary regarding sensor geometry. However,
the Landsat 5/7 surface reflectance was adjusted to be compatible with Landsat 8 using the
band-specific surface reflectance linear regression parameters provided by Roy et al. [56].
Data points with poor Quality Assurance (QA) or blue reflectance of ≥0.2 were considered
outliers due to contamination from clouds or aerosols [24]. Reflectance data in the blue
(ρblue, 450–520 nm), red (ρred, 630–690 nm), and near-infrared (ρnir, 760–900 nm) bands
were used to calculate the EVI [38]. It should be noted that the radCor processing applied
to remove cloud and shadow pixels for atmospheric corrections was not perfect [54]. As a
result, residual clouds and shadows may appear as distinct outliers in the EVI time series.
Due to the irregular observations and low density of observation during the crop growing
seasons, reliable outlier detection could not be performed [26]. Therefore, outlier detection
techniques were not used to evaluate the radCor-processed Landsat 5/7/8 EVI images.

3.2. Introduction of Agricultural Landscapes in Haean Basin and Parameter Settings of LTDG_DL

The Haean basin (128◦5′–128◦11′E, 38◦13′–38◦20′N, 297 lines × 385 rows) is located in
Yanggu county in Gangwon Province, the Republic of Korea. The topography of the basin
resembles a “punch-bowl” shape, with a north–south length of 10.5 km and an east–west
width of 6.7 km. Within the Haean basin, a single-cropping system is implemented. Based
on field census data from 2009 and 2010 [7], the average parcel area for different crops in the
Haean basin is as follows: paddy rice 0.91 ha, potato 0.69 ha, orchard 0.81 ha, bean 0.47 ha,
cabbage 0.73 ha, radish 0.69 ha, and ginseng 0.80 ha. The mean parcel area of all croplands
is 0.72 ± 0.13 ha (mean ± standard deviation). The land use and cover change in the Haean
basin during the years 2009 and 2010 are presented in Supporting Information S3.

Field EVI measurements in the Haean basin were not initiated. Surface reflectance
images from Landsat 5/7 were downloaded from the Earth Explorer on 26 September 2021
for the years 2009 and 2010. Figure 4 illustrates EVI observational images throughout the
crop growing seasons. In 2009, less than 50% of the basin pixels had a fraction of growing
season Landsat EVI observations of approximately 91%. In 2010, approximately 87% of
the basin pixels had a rate of 61%. A significant proportion had a low fraction of growing
season EVI observations (20–40%) in 2009. With the exception of cloud-free data during
the early and late growth stages, most pixels had only one or two to three cloud-free EVI
observations within the rapid and peak growing seasons.

The landscape-level DOYini for the onset of vegetation growth (120 DOY) was deter-
mined by analyzing the seasonal EVI curves collected from fifty crop pixels. To quantify
the landscape-level MGDDs and HGDDs, a meta-analysis of published data on crops
grown in the Haean basin was conducted, resulting in values of 300 and 150 ◦C for the
MGDDs and HGDDs, respectively. Two standard weather stations were established in the
agricultural lands, one in paddy rice and the other in the dry field zone on an east-facing
slope. These stations recorded half-hourly meteorological factors such as incident solar
radiation, air temperature, wind speed and direction, relative humidity, and rainfall. Pre-
vious research conducted from July to December 2009 revealed insignificant variations
in incident solar radiation and daily maximum and minimum air temperatures between
the two standard weather stations [3]. Based on these findings, it can be reasonably
assumed that all sampled crops in the agricultural landscape developed under similar
climate conditions.
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3.3. Introduction of Regional Agricultural Landscapes in Shandong Province and Parameter
Settings of LTDG_DL

This was a double-cropping system, with a rotation of spring and summer crops, in
the regional agricultural landscapes of Shandong Province of China (114◦19′–122◦43′E,
34◦22′–38◦23′N). The area covered a length of 120km and a width of 46km, consisting of
3993 lines and 2229 rows. The land use and cover data layer, with Level-2 classification
information (i.e., paddy fields and upland fields), at a resolution of 30 m in 1995, was
obtained from the Resource and Environmental Science and Data Center (https://www.
resdc.cn/) (accessed on 15 December 2022). The crop types present in each pixel were
unknown, and field EVI measurements were not available in Shandong Province. Only
Landsat 5 TM surface reflectance images were available in 1995. Landsat observational
images were classified into four land cover types for the period between March and October
in Shandong (Figure 4). For spring crops, only four observational images were available
from February to mid-June. Among these, two were acquired at 60 and 76 DOY when
crop growth was at a high momentum. Another image was obtained on 170 DOY (the end
of June) during the harvest stage of the spring crops. The most-valuable Landsat image
was acquired on 123 DOY, corresponding to the flourishing growth stage of the spring

https://www.resdc.cn/
https://www.resdc.cn/
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crops. Regarding the summer crops, four Landsat observational images were available.
One image was acquired on 220 DOY, capturing the vigorous growth of summer crops,
although a significant portion was contaminated by clouds. The observational images
acquired on 236, 268, and 285 DOY had minimal cloud contamination, but only the image
acquired on 236 DOY was considered valuable due to the likely maximum canopy size of
the summer crops. The density of Landsat EVI observations for the spring and summer
crops was very low.

The DOYini values for the spring and summer crops at the landscape level were deter-
mined based on the onset of the consistent increase phase of seasonal EVI observations in
fifty randomly selected pixels. This approach was consistent with the DOYini determination
in the Haean basin. Prior knowledge of the life cycles of locally prevalent crops in Shandong
Province aided in determining the landscape-level DOYini. The landscape-level DOYini
values are displayed in Table 1. The GLDAS2.0 daily meteorological products for the entire
year in the same area were resampled to a 30 m resolution.

Table 1. Settings of the landscape-level DOYini in crop pixels in Shandong Province. DOYini: the
initial date of seedling emergence/transplanting.

Site Crop Types Life Cycle
Classification

Edaphic
Classification Years DOYini

Shandong
Province

Paddy or upland crops
(unknown crop types) Unknown Paddy/upland field 1995 55 for spring crops;

170 for summer crops

4. Results
4.1. Performance of the LTDG_DL Algorithm in Experimental Fields

Overestimation of the EVI around the date of peak EVI was observed in the LTDG
S1 and S2 simulations (Figure 5a–d). The DL S1 simulation in Nebraska and the DL S1
and S2 simulations in Gimje significantly underestimated the EVI values around the date
of the maximum EVI. Satisfactory performances were observed in the LTDG_DL S1 and
S2 simulations, with R2 and RMSE values of 0.71 and 0.09 and 0.84 and 0.07, respectively
(Figure 5g). The EVI reconstruction accuracy of LTDG_DL S2 was superior to that of
LTDG_DL S1, suggesting the importance of having Landsat EVI observations during
periods of rapid green-up and senescence for daily EVI reconstruction.

For the S1 scenario, the simulated EVI increment slope decreased from LTDG and
LTDG_DL to DL (Figure 5h). There were no significant differences in the EVI increment
slope between the field observation and the LTDG simulation. The deviation amplitude of
the DL simulation in the EVI increment slope decreased from 74% to 48% in the LTDG_DL
simulation. The EVI decline slope simulated by LTDG_DL was 48% lower than that of
the DL simulation, while being closer to the field observation. The improved prediction
accuracy of the EVI increment slope in the S2 scenario was also achieved by LTDG_DL
(Figure 5i).

4.2. Performance of the LTDG_DL Algorithm in Agricultural Landscapes of Haean Basin

The Landsat EVI observations and simulations in the Haean basin are displayed in
Figure 6, using the LTDG_DL, LTDG, and DL methods. A case study examining paddy rice
demonstrated that the dEVIDL preserved the Landsat EVI observations of the rice growing
seasons (Figure 6a), with the simulated Tpeak_EVI occurring on 245 DOY. The LTDG method,
on the other hand, simulated a Tpeak_EVI of 210 DOY, which was close to the observed
Tpeak_EVI of 220 DOY. The LTDG_DL method simulated a Tpeak_EVI of 220 DOY, falling
between the dEVILTDG and dEVIDL Tpeak_EVI simulations. However, the dEVILTDG was
significantly higher than the dEVIDL at the maturation stage (after 250 DOY). At this stage,
the LTDG_DL method effectively captured the EVI’s steady declining trend compared
to LTDG. The DL method failed to capture Landsat observations during the EVI peak
stage in potato (170 DOY) (Figure 6b). The Tpeak_EVI values for dEVIDL, dEVILTDG, and
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dEVILTDG_DL were 210, 175, and 175 DOY, respectively. In 2009 and 2010, the LTDG_DL
method achieved better reconstructions of the seasonal EVI tendency and amplitude in
crops such as bean, cabbage, radish, orchard, ginseng, and codonopsis (Figure 6c–p).
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Figure 5. Evaluations of the EVI reconstruction accuracy of the DL, LTDG, and LTDG_DL methods
in experimental fields in Yanhu, China (a), Nebraska in the USA (b,d), and Gimje in the Republic
of Korea (c). The S1 manipulation scenario (small triangles) represented the condition of artificially
masked EVI observations during the rapid green-up and senescing periods; the S2 manipulation
scenario (big circles) represented the case with missing EVI observations around the date of the
maximum EVI. All growing season Landsat EVI observations were applied to evaluate algorithm
accuracy (e,f,g). Different letters in (h,i) indicate that, at the 0.05 level, the difference of the population
means was significantly different with the null hypothesis (mean1 −mean2 = 0, one-way ANOVA).
The 95% error bars were added to the LTDG_DL S1 and S2 simulations. The inset in (h) shows the
calculation modes of the EVI increment and decline slopes. EVI: Enhanced Vegetation Index; obs.:
observation; pred.: prediction; LTDG: the Light- and Temperature-Driven Growth model; DL: the
Double-Logistic function; LTDG_DL: the LTDG and DL fusion algorithm.
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Figure 6. Reconstruction of daily Landsat EVI data using the LTDG, DL, and LTDG_DL methods
in paddy rice (a,i), potato (b,j), bean (c,k), cabbage (d,l), radish (e,m), orchard (f,n), ginseng (g,o),
and codonopsis (h,p) in the Haean basin. EVI: Enhanced Vegetation Index; T: date of seedling
Transplanting; S: Seedling emergence date; H: Harvest date; LTDG: the Light- and Temperature-
Driven Growth model; DL: the Double-Logistic function; LTDG_DL: the LTDG and DL fusion
algorithm. The 95% error bars indicted by grey areas were added to the LTDG_DL simulations.

The comparisons of Landsat EVI observations and simulations revealed that the RMSE
values for DL, LTDG, and LTDG_DL were 0.12, 0.07, and 0.07, respectively (Figure 7a–c).
The corresponding R2 values were 0.67, 0.75, and 0.75, respectively. In the Tpeak_EVI

estimation, the RMSE and R2 values were 4.9 d and 0.53 for DL, 2.68 d and 0.68 for LTDG,
and 2.03 d and 0.76 for LTDG_DL (Figure 7d). In 2009, the average EVI increment slope
across eight crop types in the LTDG_DL simulations was approximately 0.007, which was
85% higher than that of the DL simulations (Figure 7e), consistent with the findings shown
in Figure 5h,i. There were no significant differences in the EVI decline slope between the
two methods. Similarly, in 2010, the LTDG_DL yielded an EVI increment slope that was
72% higher than that of the DL method (Figure 7f).
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Figure 7. Comparisons between Landsat EVI observations and predictions using the DL (a), LTDG (b),
and LTDG_DL (c) methods in randomly selected crop pixels in the Haean basin. Evaluations in
estimation of Tpeak_EVI by the three methods are presented in plot (d). Different letters in (e,f) indicate
that, at the 0.05 level, the difference of the population means was significantly different with the null
hypothesis (mean1 −mean2 = 0, one-way ANOVA). The dashed line was the 1:1 line (a–c) and the
solid lines were the linear regression fits. LTDG: the Light- and Temperature-Driven Growth model;
DL: Double-Logistic function; LTDG_DL: the LTDG and DL fusion algorithm; pred.: prediction; obs.:
observation; EVI: Enhanced Vegetative Index; Tpeak_EVI: the timing of peak EVI.

Figure 8 displays the reconstructed EVI images on the Landsat EVI observation dates
in the Haean basin by LTDG_DL. During the period from 145 to 169 DOY in 2009 and
2010, most agricultural lands were dry, while some fields were flooded and prepared for
rice seedling transplantation. Seeding emergence did not occur before 160 DOY, causing
most agricultural pixels on 132, 140/145, and 156/161 DOY in 2009 and 2010 to appear red
(indicating low EVI). On 161 and 169 DOY in 2009, light green pixels were noticeable at
the western part of the Haean valley, which are cultivated lands for potato. Potato pixels
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became deep green on 185 DOY and returned to light green again on 225 DOY, matching
the potato field phenology [3]. Orange dominated the paddy pixels on 177 DOY, then
shifted to light yellow on 185 DOY and, finally, turned green on 225 DOY. On 257 DOY,
light green and yellow colors indicated senescing canopies. Green colors were observed
in upland fields around 217 DOY, which corresponded to the date of maximum canopy
growth potential. The LTDG_DL well preserved the spatial details in the EVI time series of
various crops in 2010.
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4.3. Performance of the LTDG_DL Algorithm in Regional Agricultural Landscapes of
Shandong Province

Seasonal trajectories of the reconstructed Landsat EVI in four representative fields in
Shandong are displayed in Figure 9a–d. The DL method successfully captured the Landsat
EVI observations during the spring and summer seasons, demonstrating a high R2 of 0.92
and a low RMSE of 0.05, as depicted in Figure 9e. Similar results were obtained with the
LTDG_DL method, as shown in Figure 9g. However, the prediction accuracy declined
when using the LTDG simulations, as evidenced in Figure 9f. For the summer crops, the EVI
increment slope for the LTDG_DL method was approximately 0.008, while it was around
0.006 for the DL simulation, as indicated in Figure 9h. Statistical analysis revealed significant
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differences in the EVI increment slope between the LTDG_DL and DL methods, consistent
with the findings in Figures 5h,i and 7e,f. Notably, the LTDG_DL simulation exhibited
a higher value in the EVI increment slope of approximately 57% than the DL simulation
of the spring crops, as illustrated in Figure 9i. However, no significant differences were
observed in the EVI decline slope between the two methods in either the spring or summer
crops. In comparison to the DL method, the LTDG_DL method accurately captured the
growth pattern of the EVI during the vegetative stage of the spring/summer crops and
produced consistent seasonal EVI trajectories (Figure 9a–d). This can be attributed to the
superior performance of the LTDG_DL method in estimating the EVI increment slope and
its ability to combine the advantages of the DL and LTDG methods.
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Figure 9. Comparisons in the reconstruction accuracy of daily Landsat EVI data among the DL, LTDG,
and LTDG_DL methods in randomly selected crop pixels (a–d) in Shandong Province. Comparisons
in EVI observation and predictions by the three methods are presented in plots (e–g). Different
letters in (h,i) indicate that, at the 0.05 level, the difference of the population means was significantly
different with the null hypothesis (mean1 −mean2 = 0, one-way ANOVA). The dashed line was the
1:1 line (e–g) and the solid lines were the linear regression fits. LTDG: the Light- and Temperature-
Driven Growth model; DL: Double-Logistic function; LTDG_DL: the LTDG and DL fusion algorithm;
pred.: prediction; obs.: observation; EVI: Enhanced Vegetative Index.

The results of the LTDG_DL EVI reconstruction in Shandong, where crops were grown
under various environmental conditions including rainfed, irrigation, fertilization, and no
fertilization, yielded a relatively small RMSE of 0.03 ± 0.02 (mean ± SD) for the spring
crops (reversed funnel boxplot in Figure 10) and an RMSE of 0.06 ± 0.02 for the summer
crops (small waist gourd boxplot in Figure 10). Approximately 75% of the spring crop
pixels had an RMSE less than 0.05. The RMSE range of the summer crops exhibited a
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distribution shaped like a small-waisted gourd, with 50% of crop pixels having an RMSE
less than 0.05 and 25% of pixels having an RMSE ranging from 0.05 to 0.09. The relatively
large RMSE in the 25% of pixels was primarily due to the abnormal EVI observational
values (approximately 0.01) on 220 DOY of those pixels when the crops grew vigorously.
The abnormal low EVI values were not considered outliers and were not removed during
the process of calculating the pixel RMSE. LTDG_DL effectively captured the crop seasonal
EVI trajectories and spatial features in the double-cropping systems (Figure 10).
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5. Discussion

The predictive capability of the DL model varied depending on the quantity and
temporal distribution patterns of the Landsat EVI. The DL model performed poorly in
protecting key Landsat EVI observations in experimental fields with irregular temporal
distributions. The DL model was sensitive to noise data in the Landsat EVI observations,
confirming the previous findings by Liu et al. [28]. The EVI slope during the rapid expan-
sion of the crop canopies in the vegetative growth stage was significantly lower than the
expected conditions, indicating a mismatch between the DL-reconstructed Landsat EVI
time series and the crop growth trajectory.

The GF-SG is widely recognized for its superior performance in reconstructing the
Landsat EVI compared to previous Landsat–MODIS fusion algorithms [32]. Our study
revealed that a significant proportion of agricultural pixels, ranging from 10% to 45%,
were identified as invalid due to low Corj_(x,y) values (see Figure S4a,b in the Supporting
Information S4). This issue is particularly prevalent in highly fragmented landscapes, where
there is spatiotemporal incompatibility between the EVI time series of the targeted Landsat
pixel and neighboring re-sampled MODIS pixels. The spectral response of the near-infrared
wavelength band, which varies across different landscapes, was identified as a critical factor
influencing MODIS–Landsat spatiotemporal comparability [57]. Recently, Sun et al. [5]
proposed a crop-type-based Crop Reference Curve (CRC) approach, wherein they extracted
NDVI time series from MODIS 250 m pure crop pixels identified using the Cropland Data
Layer (CDL), and used these data to fit Landsat-like observations. Specifically, they selected
MODIS candidate curves within a given crop type to match the Landsat observations in
pixels where the same crop type was grown. However, it is important to note that land
use and land cover data layers in most countries and regions do not accurately register the
spatial distributions of crop types. Additionally, the Landsat–MODIS fusion algorithms
cannot be applied in years and areas where MODIS products are unavailable. Therefore,
there is a pressing need to develop a new algorithm that can address these limitations and
enhance the reliability of reconstructed daily Landsat EVI data in mosaic and fragmented
agricultural landscapes.

5.1. Superiority of the LTDG_DL Algorithm

The LTDG_DL algorithm differs from the Landsat–MODIS spatiotemporal fusion
methods. These fusion algorithms are commonly employed to extract valuable auxiliary
information from MODIS data and to align MODIS time series with Landsat observa-
tions [5,32]. The primary auxiliary information utilized by LTDG_DL is the daily ground
meteorological factors Rs and Tair. Global gridded daily data for Rs and Tair throughout
the year can be freely obtained from satellite-derived products such as GLDAS and the
Modern-Era Retrospective analysis for Research and Applications (MERRA) datasets. The
foundation of the LTDG_DL algorithm is based on the biophysical mechanisms of growth
driven by light and temperature [42,46], which comprehensively consider climatic factors
that influence crop growth and development trajectory on a daily basis. It was assumed that
changes in the Landsat EVI during different seasons were related the growth of the crop
canopy, which is strongly regulated by ambient light, temperature, and soil water content,
as sensed by the plants. This assumption is supported by the close correlation between
the LAI and EVI, with the EVI capturing more than 80% of the seasonal variations in the
LAI [43,45]. Numerous studies have been conducted utilizing VI time series curves derived
from remotely sensed data for detecting crop phenology. Satellite EVI time series curves
have been found to be closely linked to crop phenology [58], with small RSME values
ranging from 1.6 (silking stage) to 5.6 (dent stage) d for maize and from 2.5 (beginning of
maturity) to 5.3 (beginning of seedling emergence) d for soybean [59], 10.0 d in the estima-
tion of the paddy rice establishment date in Italy, India, and the Philippine [60], 8.1–14.7 d
in the estimation of the Start of Season (SoS) in single rice, early rice, late rice, spring wheat,
and summer maize, and 7.9–13.9 d in the estimation of the End of Season (EoS) among
those crops [61]. The start of the growing season identified by the satellite EVI time series
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typically lagged behind the actual conditions by approximately 10 d, while there was a
notable correspondence in the timing of the flowering stage between the satellite results
and field observations. This suggests that the EVI growing slope derived from the satellite
EVI time series should be sufficiently high in order to obtain better estimations of the timing
of the flowering stage. The algorithm validations through field experiments, as well as in
the Haean basin and Shandong Province, indicated that the LTDG_DL algorithm outper-
formed in predicting the EVI growth slope and Tpeak_EVI and safeguarding the Landsat
EVI observations. The results demonstrated that the LTDG_DL algorithm, integrating the
advantages of a process-based crop model and Landsat EVI observational data, effectively
reconstructed the daily Landsat EVI trajectory to align with the crop growth trajectory as
closely as possible.

Roy and Yan [26] conducted a study in the Great Plains of North America, analyz-
ing Landsat NDVI data with a rich temporal information (6–9 observations over ma-
jor crop growing seasons). They found that harmonic models were able to fit the an-
nual time series with RMSE values ranging from 0.05 to 0.08. In another study focus-
ing on the Delmarva Peninsula of the USA, where daily Landsat NDVI reconstruction
was performed using 5–9 Landsat observations over major crop growing seasons, the
RMSE of the CRC method was found to be 0.07 [5]. However, when attempting to fit
coarse Landsat NDVI observations with fewer than three observations within ±20 d us-
ing the harmonic modeling method, the resulting RMSE was significantly larger, equal
to or greater than 0.12 [27]. The performance of the LTDG_DL algorithm in captur-
ing the seasonal evolution of various crops in the Haean basin was evaluated, and its
RMSE value was determined to be 0.07 (Figure 7c). The algorithm successfully represented
the non-symmetrical EVI waveform characteristics of paddy rice, winter/spring wheat,
maize, and other upland crops (Figure 6). On the other hand, the GF-SG failed to re-
build daily Landsat EVI data in 10–45% of agricultural pixels in complex landscape areas.
However, LTDG_DL was able to recreate the daily Landsat EVI profile in those pixels
(Figures S4 and S5 in Supporting Information S4). Furthermore, the LTDG_DL algorithm
exhibited high accuracy in reconstructing the spring crop EVI in Shandong Province in
1995, as indicated by an RMSE of 0.03. The algorithm proved to be robust against noise
and irregular Landsat EVI observations over time, enabling the modeling of rapid canopy
changes during the vegetative growth and maturation stages (acceleration/deceleration).
Additionally, The LTDG_DL algorithm demonstrated its capability to reconstruct daily
Landsat EVI data with relatively high accuracy in crop pixels where crop types were un-
known and the Landsat EVI observation density was low at regional scales. To enhance
the reconstruction of Landsat data over cloud-prone, fragmented, and mosaic landscapes,
as well as for the years prior to 2000, LTDG_DL can utilize auxiliary information from
GLDAS2.0 meteorological data and GLC_FCS30 1984–2019 global annual 30 m land use
classification products [62]. This integration is expected to improve the accuracy of the
reconstructed Landsat EVI data.

5.2. Limitations of the LTDG_DL Algorithm

The LTDG_DL algorithm, constrained by Landsat EVI observations, exhibited imper-
fections. It was concerning that, although our approach had advantages in reconstructing
daily Landsat EVI data, it also had some potential drawbacks. The LTDG_DL algorithm
demonstrated high modeling accuracy in rainfed fields in Shandong in 1995, capturing the
constrained EVI trajectory over a prolonged period of stress. Crop growth, affected by vari-
ous environmental factors, exhibits inconsistent responses among different crop types [63].
For instance, the current LTDG_DL algorithm is unlikely to capture sudden changes in
crop status (such as a heatwave). Short-term stress typically has the most-significant im-
pact on crop physiology, leading to a depression in canopy reflectance signals in the red
waveband [64], which subsequently affects satellite EVI observations. Crops experiencing
short-term heat stress usually revert to their initial physiological states once the stress is
alleviated [65]. In situations where the Landsat EVI observation density is extremely low,
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as indicated in Figure 9d, and EVI observations are absent during the flowering stage,
LTDG_DL without considering soil water content and drought effects may overestimate the
EVI if drought impacts are substantial. Moreover, the current LTDG_DL algorithm does not
account for radiation transfer mechanisms, thus failing to capture non-biological singles in
canopy reflectance in the red and near-infrared wavebands due to seasonal variations in
the solar zenith angle.

Determining the landscape-level DOYini was the only parameter that needed to be
determined. The landscape-level DOYini can be defined using either the statistical plant
phenology extraction method or the endmember EVI ensemble combined with prior knowl-
edge method. Previous studies have shown that the seasonal onset, which is equivalent
to DOYini, is often defined as the date when the relatively flat and low EVI phase inter-
sects with the continuously increasing phase of Landsat EVI observations [21,60,66]. The
landscape-level DOYini setting can be determined in crop pixels by identifying the first date
of the minimum EVI during a continuously increasing phase of Landsat EVI observations.
However, accurately determining DOYini using the statistical phenology extraction method
was not possible in pixels with a very low density of Landsat EVI observations. The combi-
nation of the endmember EVI library and the prior knowledge method assists in visually
interpreting the landscape-level DOYini based on the beginning of the consistent increase
phase in the seasonal EVI curves obtained from various crop pixels across a research zone
(Figure S1 in Supporting Information S1). The seasonal EVI observations obtained from
crop pixels were combined to create an endmember EVI library. Knowledge of the crop
growth history of predominant local crops aided in determining the landscape-level DOYini.
The improved reconstruction of Landsat EVI data in Shandong Province and the Haean
basin indicated that the semi-empirical determination of the landscape-level DOYini using
the seedling emergence date of local prevailing crops was highly beneficial. The local
seeding calendar within the specific agroclimatic zone was relatively consistent over long
periods, as indicated by [67,68]. Determining the climate zone suitable for applying the
LTDG_DL method involves a balance between zonal size and the consistency of the local
seedling emergence calendar, which is more feasible at the state/province level where
agroclimatic conditions are comparable.

6. Conclusions

Agricultural ecosystems play a critical role in regulating seasonal variations in carbon
and water fluxes at regional and global scales [69]. The EVI time series data are crucial
input parameters in numerous land surface models developed to simulate vegetation
carbon and water fluxes between the land surface and the atmosphere. Therefore, it is
necessary to improve the reliability of Landsat EVI reconstruction for intensive agricultural
landscapes. In this study, we developed a parameter-constrained LTDG_DL algorithm
and made evaluations in a large range of agricultural systems associated with planting
culture, crop types, and field management. The results suggested that LTDG_DL was
superior in the predictions of the EVI growing slope and the timing of peak EVI and in the
protection of key points in crop pixels with irregular Landsat EVI observations over time.
The parameterization of LTDG_DL can be readily set up at a regional scale.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15194673/s1, Figure S1. The DOYini setting by empirically
loading the onset of the consistent increase phase of Landsat EVI observations in crop pixels. DOYini:
the initial date of seedling emergence/transplanting; obs.: observation. Figure S2. Daily incident
solar radiation and air temperature profiles in Yanhu, China, in 2014, Gimje in the Republic of Korea
in 2014, and Nebraska in the USA in 2002 and 2003. Data were extracted from the Global Land Data
Assimilation System Version 2 (GLDAS2.0). Figure S3. Land use and land change in the Haean basin
in 2009 and 2010. Figure S4. Accumulated percentage of invalid pixels that cannot be identified
by the GF-SG in eight crops and other upland crops in the Haean basin in 2009 and 2010 (Subplots
a and b). Subplots c and d show comparisons of the reconstructed daily Landsat EVI data by the
LTDG_DL and GF-SG algorithms for potato and cabbage pixels. Two potato and cabbage pixels that
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can be detected as valid pixels using the GF-SG algorithm were used in Subplots c and d. Corj_(x,y):
correlation coefficient between the Landsat pixel (x, y) and the neighboring pixels in the local window
of 40 × 40 px centered at pixel (x, y) (j = 1:1600) (Chen et al., 2021 [32]). EVI: Enhanced Vegetative
Index; LTDG: the Light- and Temperature-Driven Growth model; DL: the Double-Logistic function;
LTDG_DL: the LTDG and DL fusing algorithm; GF-SG: the Gap-Filling and Savitzky–Golay filtering
method. Figure S5. Daily Landsat EVI data reconstructed by the LTDG_DL algorithm for crop pixels
where applications of the GF-SG were hindered in the Haean basin. Corj_(x,y): correlation coefficient
between the Landsat pixel (x, y) and the neighboring pixels in a local window of 40 × 40 px centered
at pixel (x, y). EVI: Enhanced Vegetative Index; LTDG: the Light- and Temperature-Driven Growth
model; DL: the Double-Logistic function; LTDG_DL: the LTDG and DL fusion algorithm; GF-SG: the
Gap-Filling and Savitzky–Golay filtering method.
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