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Abstract: This paper presents a deep framework EddyDet to automatically detect oceanic eddies in
Synthetic Aperture Radar (SAR) images. The EddyDet has been developed using the Mask Region
with Convolutional Neural Networks (Mask RCNN) framework, incorporating two new branches:
Edge Head and Mask Intersection over Union (IoU) Head. The Edge Head can learn internal texture
information implicitly, and the Mask IoU Head improves the quality of predicted masks. A SAR
dataset for Oceanic Eddy Detection (SOED) is specifically constructed to evaluate the effectiveness
of the EddyDet model in detecting oceanic eddies. We demonstrate that the EddyDet is capable of
achieving acceptable eddy detection results under the condition of limited training samples, which
outperforms a Mask RCNN baseline in terms of average precision. The combined Edge Head and
Mask IoU Head have the ability to describe the characteristics of eddies more correctly, while the
EddyDet shows great potential in practice use accurately and time efficiently, saving manual labor to
a large extent.

Keywords: oceanic eddy detection; deep learning; Mask RCNN; SAR; edge enhancement

1. Introduction

Oceanic eddies are coherent rotating structures of water that are globally dispersed
in the ocean [1–3]. The horizontal spatial scales of eddies can range from a few hundred
meters to a few hundred kilometers [4,5]. Eddies that possess a diameter smaller than the
initial baroclinic Rossby radius of deformation are classified as submesoscale eddies, while
those surpassing this radius are identified as mesoscale eddies. These phenomena can
travel great distances before fading away, contributing significantly to the transport and
mixing of momentum and tracers across the world’s oceans [6–12]. Furthermore, eddies
can manifest along shipping pathways and in offshore areas, thereby impacting human
marine activities [13]. Therefore, oceanic eddy study has significant research value in the
realms of physical oceanography and ocean exploitation [3,14,15].

Oceanic eddy detection plays a critical role in promoting the progress of eddy sci-
ence [16,17]. Accurate detection of oceanic eddies is beneficial for monitoring the dynamics
of eddies on physical properties, transport, circulation, evolution, decay, and their impact
on other ocean processes [18–21]. However, oceanic eddies can be highly variable due to
the influence of ocean currents, sea surface winds, and bottom topography [9,22], making
their detection a more difficult task.

Oceanic eddy information was gathered through in situ measurements in the early
days [5]. With advancements in satellite sensors, the detection of eddies has become feasible
by analyzing abundant remote sensing data like satellite altimetry and Synthetic Aperture
Radar(SAR) [4,5,17], or satellite-derived parameters, such as Sea Surface Temperature
(SST) [23,24], Ocean Color/Chlorophyll (CHL) [25,26], and Sea Surface Height (SSH) [14].
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There is a risk of false positives when using SST and CHL products, since various other
ocean phenomena can also affect sea surface temperature and surface ocean color [27].
SSH products utilize extensive spatiotemporal interpolation to fill in gaps between satellite
tracks, leading to reduced resolution and uncertainty in undersampled regions [28].

Satellite altimetry has proven to be a robust and effective tool for the worldwide
detection, characterization, and tracking of mesoscale eddies [9,29]. Nonetheless, studies
focusing on smaller phenomena such as submesoscale eddies require remote sensing data
with higher spatial resolution. In this regard, SAR is a preferred sensor due to its capability
of providing high spatial resolution and sensitivity of radar signals to natural surfactants on
the water surface [4,30–34]. Moreover, SAR images can capture oceanic eddy information
under all day and all weather conditions. Therefore, SAR is an ideal and irreplaceable data
source for submesoscale eddy detection.

In the previous study, three traditional methods were developed and widely applied
for oceanic eddy detection: the Okubo-Weiss (O-W) [35–37], Vector-Geometry (V-G) [38,39],
and Winding-Angle (W-A) algorithms [40–42]. The O-W method needs to manually select
suitable thresholds for specific regions. The V-G method needs to scan oceanic data
point by point, identify potential vorticity core points, and further filter them based on
vortex geometric characteristics, which is very time-consuming. The W-A method tends to
detect eddies with larger boundaries and sometimes exhibits sharp and anomalous eddy
boundaries [43]. All of these traditional approaches require the definition of eddies as
regions that satisfy specific constraint conditions. The morphological structure of oceanic
eddies tends to vary under different oceanic conditions [22], making it challenging to
establish a universal threshold or fixed constraint condition in advance. Consequently,
traditional eddy detection algorithms often encounter issues such as missed detection, false
detection, and limited generalization capability.

In recent years, an increasing number of studies have been conducted on the detection
of eddies using SAR data [17,27,33,44–46]. Among them, several studies have utilized
deep learning approaches to automatically detect eddies in SAR images. Huang et al. [27]
presented a deep neural network called DeepEddy to acquire the characteristics of ocean
eddies using convolutional neural networks (CNN) with Principal Component Analysis
(PCA) filters. The primary emphasis of their model was on the eddy classification task.
Zhou et al. [46] proposed a Multifeature Fusion Neural Network (MFNN) detector, which
was built on ResNet-50 [47] and Atrous Spatial Pyramid Pooling (ASPP), for the purpose of
detecting various oceanic phenomena, including eddies. It is noteworthy that the MFNN
model does not provide identification for individual instances of eddies. Xia et al. [17]
and Khachatrian et al. [45] employed YOLO-based networks [48] to detect the bounding
boxes of eddies. However, compared to pixel-wise masks that provide detailed information
for each object instance, the limited information provided by bounding boxes may not be
sufficient for various downstream tasks, such as eddy parameter inversion.

At present, the development of an end-to-end model that can automatically identify
and segment individual objects within an image at the pixel level shows great promise.
Furthermore, the lack of properly labeled data poses a significant challenge in the automatic
detection of oceanic eddies.

This paper introduces a new oceanic eddy detection network called EddyDet, which
aims to identify and segment individual eddies accurately. Unlike existing deep learning
techniques for SAR eddy detection, our approach takes into account the crucial role of
learning the internal edge information of the eddies. Additionally, we place emphasis
on enhancing the quality of instance segmentation masks to contribute to performance
improvement.

The organization of the remaining sections in this paper is as follows. In Section 2, we
introduce the data collection and the dataset construction process. The EddyDet architecture
and experimental results are shown in Section 3. The discussion and insights are presented
in Section 4, and the conclusions are presented in Section 5.



Remote Sens. 2023, 15, 4752 3 of 18

2. Dataset

At present, there are no existing open datasets specifically designed for SAR eddy
detection, primarily because procuring and interpreting SAR data can be challenging. To
tackle this issue, we initially construct a SAR dataset for Oceanic Eddy Detection, namely
SOED, aimed at facilitating the study of automated eddy detection.

2.1. Data Collection

The data used for SOED is obtained from Sentinel-1A SAR data in the C band. The
data are collected from the Western Mediterranean Sea between October 2014 and January
2015, specifically around 06:00 UTC and 18:00 UTC. The study area’s location is depicted in
Figure 1.

Figure 1. The Western Mediterranean Sea. The region of interest is delineated by the red line. All the
SAR images used in the SOED were selected from this area. ©ESA 2015.

The Mediterranean Sea, with its intricate circulation characterized by significant
variability at the meso- and submesoscale, is an ideal area to study for understanding
global-scale processes [49]. The Western Mediterranean Sea is impacted by a combination of
factors, including the interaction between inflowing Atlantic waters and the Mediterranean
Sea, as well as the intricate bathymetry and configuration of the coastline. These factors
collectively give rise to diverse types of eddies and result in the formation of eddy structures
exhibiting distinct spatial and temporal characteristics. Compared with the Gulf Stream
and Agulhas Current which have been extensively studied, there have been limited studies
focusing on investigating submesoscale eddies within the Western Mediterranean Sea.

The original SAR data are sourced from ESA’s Sentinels Scientific Data Hub and is
in level 1 product format. For further information regarding the processing level, please
refer to [50]. In our study, we downloaded all SAR images in the form of Ground Range
Detected (GRD) products, obtained through Interferometric Wide (IW) or Extra Wide (EW)
swath mode. On the sea surface, the cross-polarized channels (HV and VH) often exhibit
significantly reduced levels in comparison to the co-polarized channels (VV and HH) [51],
occasionally approaching the noise floor of the SAR system [52]. As a result, our dataset
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exclusively comprised co-polarized SAR data for its construction. In the SOED, the majority
of eddies fall into the submesoscale category (with a selected radius of 15 km [4]).

The initial eddy annotations were provided by Annika Buck, which were further
corrected through visual detection by us. The visual interpretation methods are extensively
described in [5]. Following [53], the manifestation of eddies is exclusively attributed to
two mechanisms: wave damping caused by surface films [54] and surface roughening
resulting from wave-current interaction [55]. Eddies that become discernible due to surface
films are referred to as “black” eddies, appearing as dark areas or lines. On the other hand,
eddies that become visible due to wave-current interaction mechanisms are termed “white”
eddies, manifesting as bright curved lines [53]. It should be emphasized that only “black”
eddies are included in the SOED.

The resultant manual annotations are composed of the following essential eddy param-
eters: positional data (center coordinate), geometric details (one auxiliary coordinate at the
outer boundary, maximum and minimum diameter), attribute information (rotation direction,
type denoted as “black” or “white”), and SAR imaging particulars (date and time).

Following [5], the center of the eddy in this study is determined by considering the
(optical) center of the spiral SAR image feature. The boundary of the eddy is defined based
on the outermost features that can be attributed to the spiral feature. By examining the
SAR image, the outermost characteristics or structures associated with the spiral feature
are identified and used to define the boundary of the eddy.

2.2. Dataset Construction

Utilizing the collected data, we outline a customized procedure for constructing our
dataset. To begin, we preprocess all the downloaded SAR images using the Sentinel
Application Platform (SNAP) Toolbox, which has been developed by the European Space
Agency (ESA).

Following the application of the orbit file and radiometric calibration, we proceed
with geocoding and land masking operations on the SAR images. Based on the manually
annotated data, we extract SAR image subsets from SNAP with varying numbers of eddy
instances, using the acquired eddy coordinate information. Next, we utilize contrast-limited
adaptive histogram equalization [56] to enhance the SAR image subsets.

We deliberately avoid applying any speckle filters on SAR images to preserve the
maximum amount of information. To convert the manual annotations, we employ self-
designed Python scripts to automatically transform them into the Common Objects in
Context (COCO) format [57]. This format is employed for storing bounding box and
pixel-wise classification data, and it is extensively utilized in the field of computer vision.

The SOED is specifically developed for the instance segmentation task [58]. It com-
prises a set of 160 training images and 40 testing images, which collectively contain 260
and 62 eddy instances, respectively. Notably, the eddies included in the SOED have a wide
range of diameters varying from 1.3 km to 15.87 km. In Figure 2, we provide information
on the total geospatial coverage of all the eddies and sub-SAR images used in this paper.

The dimensions of SAR sub-images range from approximately 600 × 600 to
1200× 1200 pixels. Figure 3 illustrates the size distribution of all the eddies. These statistics
provide information on the proportions and sizes of the bounding boxes used to encapsu-
late the eddy instances in the dataset. Based on the distributions, the majority of eddies in
the SOED exhibit a nearly circular shape and vary in size from 100× 100 to 600× 600 pixels.
In Figure 4, we present three sets of eddy samples along with their original SAR images and
COCO format annotations. Different colors are assigned to distinguish between different
eddy instances.
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Figure 2. Total geospatial coverage of eddies and sub-SAR images used in this Study. The distribution
of the center coordinates of all eddies in our dataset is represented by black dots. The rectangular
frames of different colors depict the spatial positions of the entire SAR images, with references to the
respective figures. The small solid rectangles of different colors indicate the positions of the sub-SAR
images. Red colors correspond to the information presented in Figure 4(a–c), blue colors to that in
Figure 6(a–f), and green colors to that in Figures 7–10.©GEBCO 2023.

Figure 3. Data statistics of the eddy samples in the SOED: (a) the distribution of the ratio between
the width and height of the bounding boxes; (b) the distribution of the width and height of the
bounding boxes.
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Figure 4. Three pairs of eddy samples in SOED: original SAR images on the left and their correspond-
ing annotations on the right. We assign different colors for each eddy instance. These eddy samples
exhibit variations in terms of shape structure, scale, and direction. SAR images ©ESA 2014–2015.



Remote Sens. 2023, 15, 4752 7 of 18

3. Methodology

The existing Mask RCNN and Edge Enhancement model [59] has demonstrated its
effectiveness in automatic oceanic eddy detection. The training process of this model
consists of two steps. Firstly, edge features are extracted from the original images. Sub-
sequently, both the detection results and original images are utilized for training deep
learning networks.

However, this approach can be seen as a straightforward method to incorporate prior
knowledge into deep learning. Other phenomena such as oil spills can also lead to the
appearance of dark lines on SAR images. Therefore, it is crucial to develop more adaptable
and efficient approaches for integrating prior knowledge.

The manual annotations of eddies are determined by the expert, considering the
linear structure and morphological characteristics of the dark regions or lines observed
in SAR images. However, it is extremely hard to annotate all of these dark pixels as prior
knowledge to help the model learn. We observe that the internal dark areas or lines of
eddies are highly related to the eddy boundaries. If we enhance the importance of the
boundary pixels, it can help the model focus more on the intern texture morphology of
eddies and corresponding learn better features through implicit learning. Additionally,
it has been proved that focusing on mask equality improves the performance of instance
segmentation tasks [60].

Inspired by the multi-task learning strategy in [61], we present an EddyDet model,
which simultaneously learns boundary information and mask qualities. Our model is
designed to emphasize instance boundaries [62] and mask scoring [60]. In this section, we
will provide a detailed introduction to the EddyDet.

3.1. System Architecture
3.1.1. The Overall Architecture

Figure 5 illustrates the comprehensive structure of EddyDet, comprising five compo-
nents: an FPN Backbone Network, an RCNN Head, a Mask Head, an Edge Head, and a
Mask IoU Head. We adopt a standard segmentation approach, where an object detection
module is employed to conduct object-wise segmentation on Region of Interests (ROIs).

First, the SAR images are processed through the FPN backbone network to extract
feature maps at various levels. ROI Align is utilized to obtain the ROIs from the region
proposals generated by the RPN and the multi-level feature maps. Next, we conduct pro-
posal classification, bounding box regression (using the RCNN head), and mask prediction
(using the mask head). Then, the predicted masks are passed to the Mask IoU Head and
the Edge Head to estimate the Mask IoU and identify boundary edges, respectively. Finally,
during the testing phase, the predicted Mask IoU is utilized to rescore the predicted masks.

Similar to the Mask RCNN [63], EddyDet also employs a multi-task learning approach.
In addition to the existing tasks, we introduce two extra tasks, namely boundary learning
and mask IoU regression, to enhance feature learning. Inspired by the functional design
in Mask RCNN, we incorporate the loss functions for these new tasks. The overall loss is
denoted as:

LEddyDet = LRPN + LRCNN + LMask + αLEdge + βLMask−IoU (1)

where LRPN , LRCNN , LMask represent the standard losses in the Mask RCNN for the RPN
module, RCNN Head, and Mask Head, respectively. The term LEdge corresponds to the
loss of the Edge Head, and LMask−IoU denotes the loss of the Mask IoU Head. Our goal is to
minimize the loss function containing these five components to achieve good performance.
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Figure 5. Network architecture of EddyDet. It consists of five parts: an FPN Backbone Network,
an RCNN Head, a Mask Head, an Edge Head (labeled as pink dotted box), and a Mask Intersection
over Union (IoU) Head (labeled as blue dotted box). The input SAR image is processed by the FPN
Backbone Network to generate Regions of Interest (RoIs) and RoI features using RoIAlign. The RoI
features are then passed to both the RCNN Head and the Mask Head. The Edge Head takes the
predicted mask and its corresponding ground truth as input and compares their similarity after
applying edge filters. The RoI features and the predicted mask are concatenated and inputted into
the Mask IoU Head to obtain the Mask IoU value for the eddy class. During training, the binary mask
and its corresponding ground truth are used as the Mask IoU target. During testing, the Mask IoU
value is utilized to calibrate the scores.

3.1.2. The Edge Head

For the Edge Head, we employ edge detection filters such as Sobel and Laplacian as
identity kernel convolutions. Specifically, we utilize a kernel size of 3 for these convolutions.

The Sobel operation consists of two filters: one for the horizontal direction and one for
the vertical direction. These filters are employed as a first-order gradient operation. They
can be expressed as:

Sx =

 1 0 −1
2 0 −2
1 0 −1

, Sy =

 −1 −2 −1
0 0 0
1 2 1

 (2)

The Edge Head loss function LEdge based on the Sobel operator can be written as follows:

LEdge =
1
n

n

∑
i=1

(‖m̂i ∗ Sx −mi ∗ Sx‖2
F + ‖m̂i ∗ Sy −mi ∗ Sy‖2

F) (3)

where n denotes the number of training samples within the Mask Head (considering a
threshold of IoU 0.5 between the proposal box and the corresponding ground truth), m̂i
represents the predicted mask and mi signifies the matched ground-truth, ‖ · ‖F denotes
the Frobenius norm.
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The Laplacian operator serves as a second-order gradient operator that identifies edges
in an image by examining zero crossings. The Laplacian value L(x, y) of an image with
pixel values I(x, y) is mathematically represented as:

L(x, y) =
∂2 I(x, y)

∂x2 +
∂2 I(x, y)

∂y2 (4)

The discrete Laplacian can be computed by convolving the image with the following
kernel:

L =

 0 1 0
1 −4 1
0 1 0

 (5)

In our experimental setup, we use an alternative version of the Laplacian operator
that incorporates diagonal direction elements in the kernel:

L =

 1 1 1
1 −8 1
1 1 1

 (6)

The Edge Head loss function LEdge based on the Laplacian operator is then formulated as:

LEdge =
1
n

n

∑
i=1

(‖m̂i ∗ L−mi ∗ L‖2
F) (7)

where n denotes the number of training samples in the Mask Head. m̂i represents the
predicted mask, mi corresponds to the matched ground-truth mask, and ‖ · ‖F denotes the
Frobenius norm.

In the field of image processing, it is common practice to apply smoothing methods like
Gaussian smoothing before applying detection filters to reduce noise. However, we have
found that utilizing Gaussian smoothing does not yield beneficial results. One possible
reason is that it also resulted in the loss of important features and details in the eddy
structures. As a result, we have chosen to abandon the utilization of Gaussian smoothing.

3.1.3. The Mask IoU Head

For the Mask IoU Head, we employ a combination of ROI feature maps and the
predicted mask as inputs. These inputs undergo four convolutions with a kernel size
of 3, followed by three fully connected layers. Finally, we obtain the Mask IoU value.
To determine the Mask IoU target for each instance, we calculate the IoU between the
binary mask and the corresponding matched ground truth. We utilize the L2 loss for
regressing the Mask IoU, which is defined as:

LMask−IoU =
1
n

n

∑
i=1

(
∣∣ ˆmioui −mioui

∣∣2) (8)

where n represents the number of training samples in the Mask Head, ˆmioui denotes the
predicted mask IoU by the Mask IoU Head, and mioui represents the corresponding Mask
IoU target.

Following the scoring system [60], we further break down the mask scoring tasks into
two components: mask classification and mask IoU regression, defined as:

scoremask = scorecls · scoreiou (9)

where scorecls denotes the classification score in the RCNN Head and scoreiou represents
the Mask IoU value in the Mask IoU Head. We use scoremask as the final confidence score to
rank the top-k target masks.
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3.2. Evaluation Metrics

We use three COCO evaluation metrics [57] to report the oceanic eddy detection
results, which are Average Precisions (AP) calculated at a specific IoU threshold. They are
widely used for assessing the performance of object detection models.

AP serves as a measure of accuracy in object detection by computing the area under
the precision-recall curve. This metric effectively summarizes the model’s capability to
accurately identify objects across different confidence levels.

AP0.5 denotes the average precision calculated at a specific IoU threshold of 0.5. IoU
quantifies the overlap between the predicted bounding box and the ground truth bound-
ing box.

AP0.75 is similar to AP0.5, but employs a higher IoU threshold of 0.75. This metric
imposes stricter criteria, necessitating higher precision in object detection.

These metrics offer a quantitative assessment of object detection model performance,
effectively gauging their ability to detect objects and differentiate them from the back-
ground. Higher values of AP, AP0.5, and AP0.75 indicate superior performance in object
detection tasks.

3.3. Experimental Setup

Experiments are conducted using an implementation of the reproduced Mask RCNN
based on the Keras framework with a TensorFlow backend. For the RPN part, we set
five scale {322, 642, 1282, 2562, 5122} anchors at five stages {P2, P3, P4, P5, P6}. According to
the ratio statistics of the SOED, aspect ratios {0.5, 1, 2} are adopted in the workflow. We
assigned equal values of 1 to both hyperparameters α and β in the loss function.

All training work is carried out on an NVIDIA Pascal Titan X GPU. The model is
trained until convergence by using the SGD with a momentum set as 0.9 and a weight
decay set as 0.0001. All weights are initialized by a Xavier initialization. The remaining
configuration for ResNet-50 was performed following [63]. Under this setup, the training
takes up to 2 h. For the testing phase, we use SoftNMS [64] and retain the top-100 score
detections for each image.

3.4. Quantitative Results

A comparison of different detectors on the SOED is shown in Table 1. The Mask R-CNN
framework serves as a state-of-the-art baseline. All the methods use the ResNet-50-FPN as
a backbone. Since COCO evaluation metrics are more strict and comprehensive compared
with precision or recall alone, the current values of eddy detection results are acceptable.

Table 1. Average precisions in percent of different eddy detection methods.

Methods AP AP0.5 AP0.75

Mask RCNN 18.7 35.6 20.1

Mask RCNN and Edge Enhancement 21.0 38.5 22.2

Mask RCNN and only Mask IoU Head 23.3 45.0 25.1

Mask-ES-RCNN 24.8 48.5 27.1

We can see that the EddyDet achieves the best results in all AP evaluation metrics,
namely AP0.5, and AP0.75. Particularly, when evaluating with a less strict criterion like
AP0.5, EddyDet surpasses the baseline by 12.9% and shows an improvement of 10% over
Mask RCNN and Edge Enhancement, respectively. Notably, If we only add the Mask IoU
Head, the eddy detection results are better than the Mask RCNN baseline in terms of all
APs, which verifies the effects of the Mask IoU Head.

The ablation study results of different Edge Heads are presented in Table 2. In our
model, the sober filter outperforms the Laplacian filter, exhibiting a relative improvement
of 0.7% in terms of AP. This outcome can be attributed to the two-filter structure of



Remote Sens. 2023, 15, 4752 11 of 18

the Sobel filter, which allows the utilization of eddy orientation information during the
back-propagation process.

Table 2. Eddy detection results on different design choices of the Mask IoU Head and Edge Head.

Backbone Mask IoU Head Laplace Head Sobel Head AP AP0.5 AP0.75

ResNet-50-FPN

× × × 18.7 35.6 20.1
× X × 22.9 44.9 24.8
× × X 23.6 46.7 25.9
X × X 24.8 48.5 27.1

Our model demonstrates the effectiveness of both the Mask IoU Head (including
the Mask re-score mechanism during the test phase) and the Edge Head, surpassing the
performance of the Mask RCNN baseline. Moreover, combining the Mask IoU Head and
the Edge Head leads to better results compared to using either of them individually. This
observation highlights the benefits of multi-task learning, as it allows the extraction of
valuable representations from the same input images and enables the gradient from both
tasks to influence shared feature maps.

To further explore the impact of different weights for the Edge Head and Mask IoU
Head, we conducted experiments. Notably, we found that the model achieves the optimal
experimental results when both Heads are assigned equal weights.

3.5. Visualization Results

Apart from evaluating the accuracy, the visualization of detected eddy samples pro-
vides a comprehensive assessment of EddyDet’s efficacy. We employed a confidence score
threshold of 0.9 for the predicted eddy mask and applied non-maximum suppression
(NMS) with a 0.1 threshold to remove duplication.

Figure 6 illustrates that EddyDet is able to identify SAR oceanic eddies across a
wide range of scales, rotational directions, and morphological attributes. The model
demonstrates successful eddy detection capabilities even under challenging conditions,
including complex ocean backgrounds and indistinct texture information. These conditions
are often difficult for human experts to identify, making the model’s performance even
more noteworthy.

Figure 6. Cont.
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Figure 6. Acceptable visualization results of EddyDet. Different colors are assigned for different
detected eddy instances.

4. Discussion

The paper presents two main contributions: Firstly, the construction of the SOED facil-
itates research on SAR oceanic eddy detection using deep learning methods. Experimental
results with various deep learning approaches on the SOED demonstrate its potential to
achieve reliable eddy detection results even with limited training samples.

Secondly, the paper introduces the EddyDet model, an extension of the Mask RCNN
framework featuring two new branches. The Edge Head enables implicit learning of
internal texture information, while the Mask IoU Head improves the quality of predicted
masks. When using a multi-task strategy, the Edge Head and Mask IoU Head combination
proves effective on the SOED.

The excellent performance of the EddyDet model demonstrates the feasibility, effec-
tiveness, and strong potential of the deep learning technique for the detection fields of
oceanic phenomena. However, the proposed model is not always very reliable in the
processing of eddy detection tasks, where we generate deeper analyses of the limitations
and corresponding potential solutions.

The first limitation is the small-scale SAR image datasets. Our EddyDet model is
trained and evaluated on the SOED dataset, which comprises only 200 images containing
322 instances of eddies. Even if we were able to collect a larger set of original SAR images,
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labeling all of them would still be challenging due to their complex properties. The limited
size of the labeled SAR dataset restricts the accuracy of the interpretation results.

As depicted in Figure 7, our model fails to detect an eddy due to its unique morpholog-
ical characteristics. The performances can be further improved by increasing the diversity
of SOED or using more realistic settings like few-shot learning [65] and weakly supervised
learning [66].

Figure 7. Failed detection results: undetected eddy due to unusual morphological character. The red
dotted box denotes the range of the missed detected eddy.

Another problem is that the multi-scale features have not been fully exploited in our
model. The multi-scale approach is particularly useful in oceanic eddy detection, since
eddies can vary significantly in size on SAR images. As Figure 8 illustrates, the large
eddy manifests in open surface structures which are hard for current detectors to identify.
While the FPN is already an effective approach, we can explore more effective ways like
multi-scale feature learning [67] to address this problem.

In addition, our model has limited capability in detecting densely packed eddy in-
stances. As shown in Figure 9, adjacent mask predictions will affect each other, which
results in poor mask qualities and erroneous results, see the eddy instance marked in green.
Dynamic refined network [68] and rotated bounding box [69] can be adopted to tackle this
problem. Meanwhile, crossline representation [70] can also be introduced to address the
challenge of background noise and the potential loss of continuous appearance information
within eddies.

Finally, we can also introduce additional modalities and integrate them with SAR
images. For instance, sea surface wind speed emerges as a crucial variable. Low local
surface wind speeds result in low radar backscatter in SAR images, rendering “black”
eddies less detectable. Similarly, high wind speeds cause the disappearance of “black”
eddies as the surface films vanish from the sea surfaces. Therefore, leveraging wind
speed information can expedite and improve the accuracy of oceanic eddy detection in
SAR images.
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Figure 8. Failed detection results: undetected eddy due to its large size.The red dotted box denotes
the range of the missed detected eddy.

Figure 9. Failed detection results: densely packed eddies (see the red dotted box).
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Figure 10 gives typical examples of false alarms. If we observe the internal texture
features of blue and green instances, we can identify that false alarms exhibit connected
black spots (potentially influenced by wind or other natural factors), which can lead to
confusion for the deep learning model. Hence, it is suggested to incorporate supplementary
data such as wind speed in conjunction with SAR images to mitigate the occurrence of
false alarms.

Figure 10. Failed detection results: common false alarms (see the red dotted box).

5. Conclusions

In this paper, a developed EddyDet model for oceanic eddies detection is proposed
and verified. The Edge Head and Mask IoU Head are introduced as two new branches
to build the EddyDet model, with the specific purpose of oceanic eddy detection using
SAR imagery. This multi-task learning strategy made the model focus on internal texture
information of eddy instances and the qualities of predicted masks at the same time.

EddyDet demonstrated superior performance in all APs compared to the Mask RCNN
baseline on SOED. The experimental results confirmed the significance of integrating prior
knowledge into deep learning models, particularly when dealing with small-scale SAR
datasets. This design principle, proven effective in our proposed models, holds the potential
for broader application in target detection tasks in SAR images.

In general, we can expect to gradually improve the intelligent SAR eddy detection
results. Eventually, with the ongoing development of deep learning and remote sensing,
we can bring the manner of oceanic eddy detecting and monitoring to the next level.
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