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Abstract: Winter wheat is a major food source for the inhabitants of North China. However, its
yield is affected by drought stress during the growing period. Hence, it is necessary to develop
drought-resistant winter wheat varieties. For breeding researchers, yield measurement, a crucial
breeding indication, is costly, labor-intensive, and time-consuming. Therefore, in order to breed a
drought-resistant variety of winter wheat in a short time, field plot scale crop yield estimation is
essential. Unmanned aerial vehicles (UAVs) have developed into a reliable method for gathering crop
canopy information in a non-destructive and time-efficient manner in recent years. This study aimed
to evaluate strategies for estimating crop yield using multispectral (MS) and hyperspectral (HS)
imagery derived from a UAV in single and multiple growth stages of winter wheat. To accomplish
our objective, we constructed a simple linear regression model based on the single growth stages of
booting, heading, flowering, filling, and maturation and a multiple regression model that combined
these five growth stages to estimate winter wheat yield using 36 vegetation indices (VIs) calculated
from UAV-based MS and HS imagery, respectively. After comparing these regression models, we came
to the following conclusions: (1) the flowering stage of winter wheat showed the highest correlation
with crop yield for both MS and HS imagery; (2) the VIs derived from the HS imagery performed
better in terms of estimation accuracy than the VIs from the MS imagery; (3) the regression model that
combined the information of five growth stages presented better accuracy than the one that considered
the growth stages individually. The best estimation regression model for winter wheat yield in this
study was the multiple linear regression model constructed by the VI of ‘(b1 − b2)/(b3 − b4)’ derived
from HS imagery, incorporating the five growth stages of booting, heading, flowering, filling, and
maturation with r of 0.84 and RMSE of 0.69 t/ha. The corresponding central wavelengths were
782 nm, 874 nm, 762 nm, and 890 nm, respectively. Our study indicates that the multiple temporal VIs
derived from UAV-based HS imagery are effective tools for breeding researchers to estimate winter
wheat yield on a field plot scale.

Keywords: UAV; multiple temporal; hyperspectral imagery; field plot scale; vegetation index; yield
estimation

1. Introduction

Wheat (Triticum aestivum L.), as the third largest cereal crop in the world, plays an
important role in world food production and food security strategies. According to the
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Food and Agriculture Organization of the United Nations (FAO), more than 220 million
ha are sown with wheat, with over 770 million tons of wheat being produced in 2021 [1].
China accounts for over 23 million ha of wheat crop and is responsible for nearly 18%
(about 137 million tons) of all wheat produced worldwide [1]. Wheat is a major food source
for the people in North China. The North China Plain is one of China’s primary wheat-
growing areas (mainly winter wheat). However, in this region, winter wheat becomes more
vulnerable to drought stress due to the continental monsoon climate, leading to decreased
output. Groundwater irrigation is one main source of water supply during the winter
wheat growth season of the North China Plain, but it is severely restricted according to the
sustainable development policy. Thus, in order to fulfill the dual purpose of food security
protection and water conservation, it has become necessary to breed drought-resistant
varieties of winter wheat to maintain production. As the ultimate detection target, the crop
yield becomes an important selection parameter of winter wheat breeding. However, in the
empirical breeding process, yield can only be measured after the crop growth cycle, which
is costly, labor-intensive, and time-consuming for the breeding researchers. Therefore,
establishing a method that could estimate winter wheat yield on a field plot scale within a
short time would help them in selecting drought-resistant varieties.

Satellite remote sensing data have been widely applied for non-destructive crop yield
estimation over various large-scale regions (from local to national, continental, and global)
since the 1970s [2,3]. The yield estimation models based on these data have demonstrated
reasonable crop yield estimation accuracy in the large-scale regions based on satellite im-
agery and have been widely used due to their convenience and simplicity [2–8]. However,
for breeding researchers, the application of satellite data in yield estimation is often ham-
pered by the high spatial heterogeneity within the small areas of breeding fields, missing
data during critical crop growth stages, and high costs due to the coarse spatial resolution
and fixed passing time and band setting.

In recent years, the development of sensor technologies in unmanned aerial vehicles
(UAVs) has promoted their application for data acquisition [9]. Compared to satellite
remote sensing, UAV remote sensing has an improved spatial, spectral, and temporal
resolution and is associated with lower costs and greater flexibility and versatility [10],
making UAVs increasingly popular in precision agriculture [11,12]. Previous studies have
reported the relationship between crop yield and crop phenotypic parameters such as plant
height, leaf nitrogen content, leaf area index, above-ground biomass, and so on [13–16].
UAV platforms have exerted a beneficial effect in the retrieval of a wide array of crop
characteristics that are associated with yield [17–20], and their use can help meet breeding
researchers’ requirements regarding crop yield estimation on a small plot area scale within
a short amount of time.

Furthermore, vegetation indices (VIs) derived from UAV-mounted multispectral (MS)
and hyperspectral (HS) sensors have been widely used to estimate crop yield [21,22]. Duan
et al. developed a method based on VIs that were derived from UAV multispectral data
to correlate with rice phenotyping and estimate grain yield [13]. García-Martínez et al.
estimated corn grain yield by combining vegetation indices, canopy cover, and plant
density using multispectral and RGB images acquired via the use of UAVs [23]. Ramos
et al. proposed a random forest algorithm that performed well in tests with a ranking-
based strategy that focused on predicting maize crop yield using UAV-based multispectral
vegetation indices [24]. However, the application of UAV-mounted hyperspectral sensors
for agricultural monitoring is limited by the weight of imaging systems and the complexity
of image processing [25,26]. As a result, they have rarely employed by breeding researchers
in the study of crop breeding. Moreover, the VIs used in previous studies have been mostly
derived from limited growth stages within the crop growing season, which may increase the
risk of missing critical spectral features in other growth stages [27,28]. Therefore, estimating
crop yield through combining UAV-mounted HS sensor-based VIs in several critical crop
growing stages could be helpful to integrate critical spectral features throughout the crop
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growing season and lead to a higher estimation accuracy, which would be beneficial to
breeding researchers.

For this study, motivated by the need to boost the efficiency of winter wheat breeding,
we aimed to evaluate yield estimation among various winter wheat breeding cultivars
using multi-temporal vegetation indices derived from UAV-mounted multispectral and
hyperspectral sensors. To accomplish this objective, we (1) investigated the correlation
between the winter wheat yield and 19 UAV-based multispectral VIs and 17 band com-
bination types of hyperspectral data at single growth stages and multiple growth stages,
respectively, and (2) identified the best VI and the best time for estimating winter wheat
yield using UAV data.

2. Materials and Methods
2.1. Experimental Setup

The experimental site was set up at the Dry-Land Farming Institute of Hebei Academy
of Agricultural and Forestry Sciences (DFI) at Hengshui City, Hebei Province, China
(37◦54′15.63′′N, 115◦42′29.32′′E, World Geodetic System 1984) (Figure 1). The area has a
semi-arid temperate and monsoonal climate characterized by four distinct seasons, with an
average yearly temperature of 13.3 ◦C and a yearly precipitation of 497.1 mm.
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Figure 1. Experimental site field map. All cultivars were randomly distributed in each irriga-
tion group.

The experimental site design included eleven winter wheat cultivars: C1 (Chang8744),
C2 (Shimai22), C3 (Luyuan472), C4 (Shimai15), C5 (HengH1603), C6 (Xinmai28), C7 (Ji-
mai418), C8 (Shannong28), C9 (Nongda212), C10 (Heng4399), and C11 (Jimai22). Each culti-
var was then split into seven different irrigation groups and three repeats
(1.5 m × 6 m in size) according to a randomized block design. All cultivars were planted on
15 October 2020 at a density of 375 plants/m2. A base fertilizer, pure nitrogenous fertilizer
(225 kg/ha), P2O5 (112.5 kg/ha), and K2O (112.5 kg/ha) were applied before sowing. No
additional fertilizers were used for the growth of the winter wheat discussed in this study.
The irrigation date of each irrigated sub-plot is shown in Table 1. The irrigation volume of
each time was 750 m3/ha. The total precipitation during the 2020–2021 growing season in
the site was 43.9 mm.

Table 1. The irrigation date and corresponding growth stages of different irrigated sub-plots in the
study.

Irrigation Group Irrigation Date (d/m/y) Growth Stage Total Irrigation Volume (m3/ha)

A
3 April 2021 Jointing stage

15003 May 2021 Flowering stage
B None -- 0
C 29 November 2020 Overwintering stage 750
D 10 March 2021 Regreen stage 750
E 3 April 2021 Jointing stage 750
F 10 April 2021 Jointing stage 750
G 18 April 2021 Booting stage 750
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2.2. Data Acquisition
2.2.1. Ground Truth Data

All winter wheat cultivars were harvested on 8 July 2021. The yield of each sub-plot
was weighted and normalized to a moisture content of 13% and is expressed as ‘t/ha’.
According to the experimental design, 231 samples were measured, while 17 measurements
were eliminated as outliers, including 6 plots of Repeat 1, 4 plots of Repeat 2, and 7 plots of
Repeat 3. The statistics of measured winter wheat yield are outlined in Table 2. The mean
measured grain yield values under different irrigation groups and winter wheat cultivars
are shown in Figure 2. Winter wheat yield differences across different irrigation groups and
different cultivars were assessed using a one-way analysis of variance after checking the
normality assumption at 0.05 probability level (Table 3). There were significant differences
among the different irrigation groups and different winter wheat cultivars. The grain yield
of irrigation group B was lower than other irrigation groups, and group A had the highest
yield. The C6 cultivar showed the poorest yield, while C9 performed best.

Table 2. Descriptive statistics of measured winter wheat yield (t/ha).

Parameter Number of
Samples Minimum Maximum Mean Standard

Deviation
Coefficient of

Variation

Grain yield 214 46.46 11.24 8.58 1.28 14.97%
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Figure 2. Mean measured winter wheat yield value under different irrigation groups (a) and different
cultivars (b).

Table 3. Results of our one-way analysis of variance of winter wheat yield for different irrigation
groups and cultivars at 0.05 probability level.

F-Value p-Value

Different irrigation groups 13.73 0.00
Different winter wheat cultivars 9.84 0.00

2.2.2. Multi-Sensor UAV Data

UAV images derived from multispectral (MS) and hyperspectral (HS) sensors were
employed in this study (Figure 3). The UAV campaign was conducted under low wind
speed and clear sky conditions between 10:00 a.m. and 2:00 p.m. local time to reduce the
influence of atmospheric and solar radiation. The overlap percentages in the forward and
lateral flying directions of both UAVs were 80% and 70%, respectively. The acquisition
dates and details corresponding to the growth stages regarding both UAVs are shown in
Table 4.
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Table 4. The details of UAV multispectral and hyperspectral imagery acquisition in the study.

Acquisition Date (d/m/y) Growth Stage

UAV imagery

18 April 2021 Booting stage
28 April 2021 Heading stage
12 May 2021 Flowering stage
21 May 2021 Filling stage
2 June 2021 Maturation stage

The DJI P4 Multispectral (DJI Technology Co., Ltd., Shenzhen, China) was used to
collect multispectral images, including 5 sensors of blue, green, red, red-edge, and near-
infrared with wavelengths of 456 nm (±16 nm), 560 nm (±16 nm), 650 nm (±16 nm),
730 nm (±16 nm), and 840 nm (±26 nm), respectively. The sensors used a 1/2.9 inch
complementary metal-oxide-semiconductor (CMOS). The field of view was 62.7◦, the focal
length was 5.74 mm, the f-number was f/2.2, and focus was kept at the infinite point (∞).
The MS images were obtained at a flight height of 50 m with an accuracy of flight altitude
of 0.1 m, and the corresponding ground pixel resolution was 1.6 cm. The MS orthomosaic
maps were generated using Pix4D mapper (Pix4D SA, Lausanne, Switzerland).

A DJI M600 Pro (DJI Technology Co., Ltd., Shenzhen, China) equipped with a Pika
L hyperspectral camera (Resonon, Inc., Bozeman, MT, USA) was used to capture the
hyperspectral images discussed in the study. The hyperspectral camera has 150 bands
in a spectral range of 400–1000 nm with a spectral resolution of 4 nm. The HS images
were acquired at a flight height of 50 m with an accuracy of flight attitude of 0.5 m, and
the corresponding ground pixel resolution was 3.0 cm. SpectrononPro (Resonon, Inc.,
Bozeman, MT, USA) and ENVI 5.3 (Esri Inc., Redlands, CA, USA) were used to generate
HS orthomosaic maps.

2.3. Vegetation Indices Calculation

The average of a 0.8 m × 4 m image area was used for band reflectance value cal-
culation for each sub-plot. The area was approximately in the center of each sub-plot to
eliminate the effect of the marginal areas of each sub-plot and other neighboring sub-plots.
The extracted images are herein referred to as UAV images.

A large number vegetation indices have been proposed for grain yield estimation. A
total of 19 MS VIs that were previously used for crop yield and yield-related phenotypic
characteristic estimation were calculated, with average reflectance being derived from UAV
MS images [3,18], and the 19 indices are shown in Table 5.

Additionally, for various spectral bands of the UAV HS sensor, the HS VIs minimized
the spectral redundance, which was usually found in the hyperspectral data and also
promoted the computational optimization [29,30]. Therefore, 17 prevalent formulas, com-
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posed of two, three, or four spectral bands using function of sum, difference, ratio, double
difference, normalized difference, and hybrid, were regarded as the HS VIs and employed
in the study [31]; the 17 formulas are shown in Table 6. Band iteration was applied to all
hyperspectral bands in each formulation.

Table 5. Multispectral vegetation indices used in the study.

Multispectral Vegetation Index Formulation Reference

Difference vegetation index DVI = G− B [32]
Ratio vegetation index RVI = NIR

R [33]
Green chlorophyll index GCI = NIR

G − 1 [34]
Red-edge chlorophyll index RECI = NIR

RE − 1 [34]
Normalized difference vegetation index NDVI = NIR−R

NIR+R [35]
Green normalized difference vegetation index GNDVI = NIR−G

NIR+G [36]
Green-red vegetation index GRVI = G−R

G+R [33]
Green-blue vegetation index GBVI = G−B

G+B [37]
Normalized difference red-edge NDRE = NIR−RE

NIR+RE [38]
Normalized difference re-edge index NDREI = RE−G

RE+G [39]
Simplified canopy chlorophyll content index SCCCI = NDRE

NDVI [40]
Enhanced vegetation index EVI = 2.5× NIR−R

1+NIR−2.4×R [41]
Two-band enhanced vegetation index EVI2 = 2.5× NIR−R

NIR+2.4×R+1 [42]
Optimized soil adjusted vegetation index OSAVI = NIR−R

NIR−R+L (L = 0.16) [43]
Modified chlorophyll absorption in reflectance index MCARI = [(RE− R)− 0.2× (RE−G)]× RE

R [44]
Transformed chlorophyll absorption in reflectance index TCARI = 3×

[
(RE− R)− 0.2× (RE−G)× RE

R

]
[45]

MCARI/OSAVI MCARI/OSAVI [44]
TACRI/OSAVI TACRI/OSAVI [45]

Wide dynamic range vegetation index WDRVI = a×NIR−R
a×NIR+R (a = 0.12) [46]

Note: ‘R’, ‘G’, ‘B’, ‘RE’, and ‘NIR’: the average value of the red, green, blue, red-edge, and near-infrared bands of
the UAV-derived multispectral images, respectively.

Table 6. Band combinations of the UAV-derived hyperspectral images used in the study.

Number Band Combination Number Band Combination

1 b1 + b2 10 (b1 − b2)/b3
2 b1 − b2 11 (b1 + b2)/b3
3 b1/b2 12 (b1 + b2)/(b3 + b2)
4 b1/(b1 + b2) 13 (b1 − b2)/(b3 + b2)
5 b1/(b1 − b2) 14 (b1 + b2)/(b3 − b2)
6 (b1 − b2)/(b1 + b2) 15 (b1 − b2)/(b3 − b2)
7 b1 + b2 − b3 16 (b1 − b2) + (b3 − b4)
8 b1/(b2 + b3) 17 (b1 − b2)/(b3 − b4)
9 b1/(b2 − b3)

Note: ‘b1’, ‘b2’, ‘b3’, and ‘b4’: the average value of each band of the UAV-derived hyperspectral
images, respectively.

2.4. Yield Estimation Model

Two repeats (Repeat 1 and Repeat 2) were employed for all cultivars to construct the
winter wheat yield estimation model from each vegetation index. Pearson’s correlation
coefficient (r) was used to demonstrate the yield estimation accuracy by comparing the yield
measured in the field and estimated yield from the regression models below using Student’s
t-test at a 95% confidence level. After excluding the outliers described in Section 2.2.1,
144 samples were used to establish the yield estimation model in the study.

The most commonly used remote-sensing based approaches for crop yield estimation
involve the use of empirical statistical models, which demonstrate the relationship between
yield and canopy spectrum characteristics in an intuitive way. Therefore, the simple linear
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regression function (SLR) was used to analyze the relationship between winter wheat yield
and vegetation indices in individual growth stages (Equation (1)).

y = a× x + b1 (1)

where y represents the winter wheat yield; x represents the vegetation index values at the
booting, heading, flowering, filling, or maturation stages; and a and b1 are parameters
calculated from a least-squares fitting method.

In addition, the multiple linear regression function (MLR), which was used to combine
the vegetation indices among the multiple growth stages to estimate crop yield, is presented
in Equation (2).

y = a1 × x1 + a2 × x2 + a3 × x3 + a4 × x4 + a5 × x5 + b2 (2)

In this equation, y represents the winter wheat yield; x1, x2, x3, x4, and x5 represent the
vegetation index values at the booting, heading, flowering, filling, and maturation stages,
respectively; and a1, a2, a3, a4, a5, and b2 are parameters calculated from a least-squares
fitting method.

2.5. Validation of the Crop Yield Estimation Model

After eliminating outliers, 70 samples of Repeat 3 for all cultivars were used to validate
the regression model using root mean square error (RMSE) and mean absolute percentage
error (MAPE). The RMSE and MAPE equations are presented in Equations (3) and (4).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (4)

In these equations, yi is the crop yield measured in the field of sample i, ŷi is the crop
yield predicted by the estimation models of sample i, and n is the number of valid samples.

3. Results
3.1. Winter Wheat Yield Estimation using Vegetation Indices from Individual Growth Stages

The relationships between winter wheat yield and the 19 multispectral vegetation
indices at five different growth stages are displayed based on correlation coefficients in
Table 7. According to Table 7, although the vegetation indices showed various relation-
ships with yield at different growth stages, there was no multispectral vegetation index
that significantly correlated with winter wheat yield at a single stage (r > 0.70). Most
multispectral vegetation indices showed lower correlations with winter wheat yield at
the booting, heading, and maturation stages than at the flowering and filling stages. The
‘NDRE’ vegetation index at the flowering stage had the best correlation with winter wheat
yield (r = 0.67; RMSE = 0.92 t/ha) (Figure 4a).

The highest correlation with winter wheat yield at each individual growth stage for
each band combination type of the UAV hyperspectral images are shown in Table 8. Similar
to the multispectral vegetation indices, the correlation coefficients between winter wheat
yield and the hyperspectral vegetation indices were higher at the flowering and filling
stages than at the booting, heading, and maturation stages. No VIs showed a significant
correlation with grain yield at the early growth stages of booting and heading. Unlike the
multispectral vegetation indices, the band combinations of the hyperspectral images at the
flowering stage exhibited more significant correlations with yield than that at the filling
stage. Moreover, all VIs, excluding ‘b1 + b2’, were significantly correlated with yield at
the flowering stage (r > 0.70). The band combination type of ‘(b1 − b2)/(b3 − b4)’ showed
the best correlation with grain yield throughout the whole growth period among all VIs.
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Hence, the best performance in terms of yield estimation with hyperspectral-based VIs,
according to the simple linear regression model used in the present study, was achieved by
the VI of ‘(b1 − b2)/(b3 − b4)’ at the flowering stage, with an r value of 0.80 and RMSE of
0.75 t/ha (Figure 4b), and the corresponding central wavelengths of ‘b1’, ‘b2’, ‘b3’, and ‘b4’
were 838 nm, 722 nm, 710 nm, and 970 nm.

Table 7. Correlation coefficient (r) and RMSE between winter wheat yield and each multispectral
vegetation index at the five different growth stages (n = 144).

Multispectral
Vegetation Index

Growth Stages

Booting Heading Flowering Filling Maturation

r RMSE
(t/ha) r RMSE

(t/ha) r RMSE
(t/ha) r RMSE

(t/ha) r RMSE
(t/ha)

DVI 0.26 1.21 0.31 1.18 0.12 1.24 0.48 1.10 0.43 1.13
RVI 0.36 1.16 0.44 1.12 0.56 1.03 0.61 0.98 0.44 1.12
GCI 0.07 1.24 0.25 1.21 0.63 0.97 0.56 1.03 0.34 1.17

RECI 0.01 1.25 0.35 1.17 0.67 0.93 0.66 0.93 0.33 1.18
NDVI 0.37 1.16 0.46 1.11 0.57 1.02 0.64 0.96 0.49 1.09

GNDVI 0.10 1.24 0.28 1.20 0.64 0.96 0.61 0.98 0.36 1.16
GRVI 0.14 1.24 0.21 1.22 0.24 1.21 0.49 1.09 0.49 1.09
GBVI 0.21 1.22 0.22 1.22 0.26 1.20 0.39 1.15 0.39 1.15
NDRE 0.00 1.25 0.36 1.16 0.67 0.92 0.67 0.93 0.33 1.18
NDREI 0.16 1.23 0.14 1.24 0.48 1.10 0.52 1.07 0.28 1.20
SCCCI 0.09 1.24 0.26 1.20 0.48 1.09 0.37 1.16 0.16 1.23

EVI 0.38 1.15 0.47 1.10 0.16 1.23 0.12 1.24 0.04 1.25
EVI2 0.37 1.16 0.45 1.11 0.57 1.02 0.63 0.96 0.47 1.10

OSAVI 0.16 1.24 0.33 1.20 0.44 1.13 0.54 1.06 0.16 1.23
MCARI 0.21 1.22 0.14 1.23 0.20 1.22 0.48 1.10 0.47 1.10
TCARI 0.03 1.25 0.09 1.24 0.08 1.24 0.19 1.22 0.53 1.06

MCARI/OSAVI 0.21 1.22 0.14 1.23 0.20 1.22 0.48 1.10 0.47 1.10
TACRI/OSAVI 0.03 1.25 0.09 1.24 0.08 1.24 0.19 1.22 0.53 1.06

WDRVI 0.37 1.16 0.45 1.12 0.57 1.03 0.63 0.97 0.45 1.11

Note: The best results in terms of the r and RMSE values derived from the use of the simple linear regression
functions for each growth stage are in bold typeface.
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Table 8. The highest correlation coefficient between winter wheat yield and each band combination
type of hyperspectral sensor images at five different growth stages (n = 144).

Band Combination

Growth Stages

Booting Heading Flowering Filling Maturation

r RMSE
(t/ha) r RMSE

(t/ha) r RMSE
(t/ha) r RMSE

(t/ha) r RMSE
(t/ha)

b1 + b2 0.45 1.11 0.31 1.18 0.67 0.93 0.60 1.00 0.44 1.12
b1 − b2 0.57 1.02 0.61 0.99 0.73 ** 0.86 0.75 ** 0.83 0.66 0.93
b1/b2 0.57 1.03 0.61 0.99 0.75 ** 0.82 0.75 ** 0.83 0.65 0.95

b1/(b1 + b2) 0.57 1.03 0.61 0.99 0.75 ** 0.82 0.74 ** 0.83 0.65 0.95
b1/(b1 − b2) 0.56 1.04 0.56 1.03 0.74 ** 0.84 0.70 0.90 0.68 0.91

(b1 − b2)/(b1 + b2) 0.57 1.03 0.61 0.99 0.75 ** 0.82 0.74 ** 0.83 0.65 0.95
b1 + b2 − b3 0.60 1.00 0.65 0.95 0.76 ** 0.81 0.70 0.89 0.70 0.88
b1/(b2 + b3) 0.61 0.99 0.67 0.93 0.79 ** 0.77 0.76 ** 0.82 0.72 ** 0.86
b1/(b2 − b3) 0.60 0.99 0.65 0.95 0.76 ** 0.80 0.74 ** 0.84 0.73 ** 0.85
(b1 − b2)/b3 0.60 1.00 0.65 0.95 0.78 ** 0.78 0.75 ** 0.83 0.73 ** 0.86
(b1 + b2)/b3 0.61 0.99 0.67 0.93 0.78 ** 0.77 0.76 ** 0.82 0.73 ** 0.86

(b1 + b2)/(b3 + b2) 0.60 1.00 0.65 0.95 0.78 ** 0.79 0.75 ** 0.83 0.72 ** 0.86
(b1 − b2)/(b3 + b2) 0.60 1.00 0.65 0.95 0.78 ** 0.79 0.75 ** 0.83 0.72 ** 0.86
(b1 + b2)/(b3 − b2) 0.60 0.99 0.65 0.95 0.77 ** 0.80 0.73 ** 0.85 0.73 ** 0.85
(b1 − b2)/(b3 − b2) 0.57 1.02 0.61 0.99 0.76 ** 0.80 0.77 ** 0.79 0.68 0.91
(b1 − b2) + (b3 − b4) 0.64 0.96 0.66 0.94 0.79 ** 0.77 0.76 ** 0.81 0.73 ** 0.85
(b1 − b2)/(b3 − b4) 0.65 0.95 0.68 0.92 0.80 ** 0.75 0.78 ** 0.78 0.75 ** 0.83

Note: ‘b1’, ‘b2’, ‘b3’, and ‘b4’: the average value of each band of the UAV hyperspectral images, respectively.
** indicates significance at p-value < 0.01. The best results in terms of the r and RMSE values derived from the use
of the multiple linear regression functions for each growth stage are in bold typeface.

3.2. Winter Wheat Yield Estimation with Vegetation Indices Combining Multiple Growth Stages

The multiple linear regression models (Equation (2)) were employed to further in-
vestigate the relationship between winter wheat yield and the multi-temporal spectral
vegetation indices.

The correlation coefficients between winter wheat yield and the multispectral vegeta-
tion indices at the five growth stages were determined via the use of the multiple linear
regression models, and the results are presented in Figure 5. The results show that the
vegetation indices combining multiple growth stages presented a higher correlation than
the indices did at the individual growth stages. According to Figure 5, the MLR models
combining multispectral vegetation indices of ‘DVI’, ‘RECI’, ‘GBVI’, ‘NDRE’, ‘MCARI’,
‘TCARI’, ‘MCARI/OSAVI’, and ‘TCARI/OSAVI’ across the five growth stages showed a
significant correlation with winter wheat yield (r > 0.70). The optimal fit of the MLR model
for winter wheat yield estimation based on the multispectral vegetation indices in this
study was found at the index of ‘NDRE’ (r = 0.75; RMSE = 0.83 t/ha) (Figure 6a).
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Figure 6. Relationship between measured winter wheat yield and estimated winter wheat yield
calculated using multiple linear regression models based on the multispectral vegetation index
of ‘NDRE’ (a) and the hyperspectral band combination of ‘(b1 − b2)/(b3 − b4)’ (b) combining five
growing stages (n = 144). The red line is the fitted line between measured yield and estimated yield.

The best correlation coefficients of each band combination type of the UAV hyper-
spectral images including the five growth stages with winter wheat yield are shown in
Figure 7. Comparing Table 8 and Figure 7, all band combination types demonstrated better
regression accuracy of grain yield estimation based on multiple growth stages compared
to when the growth stages were only considered singularly. According to Figure 7, all
hyperspectral band combinations except ‘b1 + b2’ presented a significant correlation with
winter wheat yield when combining the five growth stages. The optimal MLR model for
winter wheat yield estimation was based on the combination type of ‘(b1 − b2)/(b3 − b4)’,
with r of 0.84 and RMSE of 0.69 t/ha (Figure 6b), which was significantly higher than the
optimal MLR model of the multispectral vegetation index above. The central wavelengths
of the best hyperspectral band combination, ‘(b1 − b2)/(b3 − b4)’, were 782 nm, 874 nm,
762 nm, and 890 nm, respectively.

Remote Sens. 2023, 15, 4800 11 of 19 
 

 

winter wheat yield when combining the five growth stages. The optimal MLR model for 
winter wheat yield estimation was based on the combination type of ‘(𝑏 − 𝑏 )/(𝑏 − 𝑏 )’, 
with r of 0.84 and RMSE of 0.69 t/ha (Figure 6b), which was significantly higher than the 
optimal MLR model of the multispectral vegetation index above. The central wavelengths 
of the best hyperspectral band combination, ‘(𝑏 − 𝑏 )/(𝑏 − 𝑏 )’, were 782 nm, 874 nm, 
762 nm, and 890 nm, respectively. 

 
Figure 7. The highest correlation coefficient between winter wheat yield and each band combination 
type for the hyperspectral sensor images when the five growth stages were considered to be com-
bined (results based on the use of the multiple linear regression models) (n = 144). 

3.3. Validation of the Regression Models for Winter Wheat Yield Estimation 
The validation of the regression models for winter wheat yield estimation was con-

ducted by using the independent dataset of ‘Repeat 3’ (n = 70). 

3.3.1. Validation of the Simple Linear Regression Model at a Single Growth Stage 
The RMSE and MAPE of the simple linear regression models at individual growth 

stages based on the multispectral vegetation indices and hyperspectral band combination 
types are shown in Table 9 and Table 10, respectively. The VI of ‘NDRE’ derived from the 
UAV-derived multispectral images at the flowering stage, which achieved the best corre-
lation with grain yield, showed the lowest RMSE of 0.84 t/ha and a MAPE of 8.38%. For 
the VIs calculated based on the UAV-derived hyperspectral images, the best RMSE (0.78 
t/ha) and MAPE (7.24%) were achieved by ‘(𝑏 − 𝑏 )/(𝑏 − 𝑏 ) ’ at the flowering stage. 
Moreover, these two indices achieved the best correlation with crop yield for the UAV-
derived multispectral and hyperspectral images at all individual growth stages consid-
ered in this study, respectively. The validation of the estimated winter wheat yield (esti-
mated via the use of two simple linear regression models) based on these two indices at 
the flowering stage is illustrated in Figure 8. 

Table 9. RMSE and MAPE for winter wheat yield estimation with different multispectral vegetation 
indices at each individual growth stage (n = 70). 

Multispectral  
Vegetation Index 

Growth Stages 
Booting Heading Flowering Filling Maturation 

RMSE 
(t/ha) 

MAPE  
RMSE 
(t/ha) 

MAPE  
RMSE 
(t/ha) 

MAPE  
RMSE 
(t/ha) 

MAPE  
RMSE 
(t/ha) 

MAPE  

DVI 1.35 14.09% 1.39 14.62% 1.31 13.44% 1.15 11.15% 1.36 13.94% 
RVI 1.24 13.28% 1.10 11.43% 1.00 9.93% 0.97 9.99% 1.17 12.12% 
GCI 1.34 13.87% 1.22 12.71% 0.96 9.34% 1.03 10.52% 1.22 12.44% 

RECI 1.35 13.94% 1.21 12.45% 0.91 8.58% 0.87 8.69% 1.19 12.05% 

Figure 7. The highest correlation coefficient between winter wheat yield and each band combination
type for the hyperspectral sensor images when the five growth stages were considered to be combined
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3.3. Validation of the Regression Models for Winter Wheat Yield Estimation

The validation of the regression models for winter wheat yield estimation was con-
ducted by using the independent dataset of ‘Repeat 3’ (n = 70).
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3.3.1. Validation of the Simple Linear Regression Model at a Single Growth Stage

The RMSE and MAPE of the simple linear regression models at individual growth
stages based on the multispectral vegetation indices and hyperspectral band combination
types are shown in Tables 9 and 10, respectively. The VI of ‘NDRE’ derived from the UAV-
derived multispectral images at the flowering stage, which achieved the best correlation
with grain yield, showed the lowest RMSE of 0.84 t/ha and a MAPE of 8.38%. For the VIs
calculated based on the UAV-derived hyperspectral images, the best RMSE (0.78 t/ha) and
MAPE (7.24%) were achieved by ‘(b1 − b2)/(b3 − b4)’ at the flowering stage. Moreover,
these two indices achieved the best correlation with crop yield for the UAV-derived multi-
spectral and hyperspectral images at all individual growth stages considered in this study,
respectively. The validation of the estimated winter wheat yield (estimated via the use of
two simple linear regression models) based on these two indices at the flowering stage is
illustrated in Figure 8.

Table 9. RMSE and MAPE for winter wheat yield estimation with different multispectral vegetation
indices at each individual growth stage (n = 70).

Multispectral
Vegetation Index

Growth Stages

Booting Heading Flowering Filling Maturation

RMSE
(t/ha) MAPE RMSE

(t/ha) MAPE RMSE
(t/ha) MAPE RMSE

(t/ha) MAPE RMSE
(t/ha) MAPE

DVI 1.35 14.09% 1.39 14.62% 1.31 13.44% 1.15 11.15% 1.36 13.94%
RVI 1.24 13.28% 1.10 11.43% 1.00 9.93% 0.97 9.99% 1.17 12.12%
GCI 1.34 13.87% 1.22 12.71% 0.96 9.34% 1.03 10.52% 1.22 12.44%

RECI 1.35 13.94% 1.21 12.45% 0.91 8.58% 0.87 8.69% 1.19 12.05%
NDVI 1.24 13.22% 1.08 11.32% 0.99 9.91% 0.95 9.74% 1.15 12.01%

GNDVI 1.33 13.83% 1.20 12.48% 0.95 9.23% 0.96 9.78% 1.21 12.36%
GRVI 1.36 14.08% 1.37 14.37% 1.24 12.91% 1.09 11.33% 1.23 12.93%
GBVI 1.36 14.10% 1.40 14.58% 1.25 12.72% 1.19 11.82% 1.36 13.92%
NDRE 1.35 13.93% 1.20 12.38% 0.84 8.38% 0.85 8.47% 1.18 12.00%
NDREI 1.34 13.88% 1.28 13.30% 1.17 11.97% 1.12 11.52% 1.31 13.57%
SCCCI 1.38 14.11% 1.28 13.13% 1.13 11.22% 1.13 11.54% 1.35 13.96%

EVI 1.23 13.11% 1.10 11.37% 1.37 13.94% 1.35 13.93% 1.35 13.93%
EVI2 1.24 13.24% 1.09 11.33% 0.99 9.90% 0.95 9.79% 1.16 12.03%

OSAVI 1.34 14.35% 1.22 12.63% 1.12 11.34% 1.03 10.55% 1.35 13.95%
MCARI 1.39 14.46% 1.33 13.93% 1.30 13.60% 1.16 11.98% 1.20 12.65%
TCARI 1.35 13.89% 1.33 13.67% 1.35 13.92% 1.29 13.55% 1.19 12.90%

MCARI/OSAVI 1.39 14.46% 1.33 13.93% 1.30 13.60% 1.16 11.98% 1.20 12.65%
TACRI/OSAVI 1.35 13.89% 1.33 13.67% 1.35 13.92% 1.29 13.55% 1.19 12.90%

WDRVI 1.24 13.26% 1.09 11.37% 0.99 9.90% 0.96 9.88% 1.17 12.07%Remote Sens. 2023, 15, 4800 13 of 19 
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mation Combining Five Different Growth Stages 

The RMSE of the multiple linear regression model for winter wheat yield estimation 
based on UAV-calculated multispectral and hyperspectral vegetation indices combining 
five growth stages and the corresponding MAPE are shown in Figure 9. According to Fig-
ure 9a, the lowest MAPE for the multispectral VIs was 8.44% (found at ‘NDRE’; RMSE of 
0.90 t/ha). For the hyperspectral VIs, the lowest MAPE was 6.56%, which was achieved by 
‘(𝑏 − 𝑏 )/(𝑏 − 𝑏 )’, with an RMSE of 0.70 t/ha (Figure 9b). The validation of the esti-
mated winter wheat yield (derived from the use of two multiple linear regression models) 
based on these two indices is illustrated in Figure 10. Similar to the validation of the simple 
linear regression models at the individual growth stages, the RMSE and MAPE were lower 
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line between measured yield and estimated yield.
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Table 10. RMSE and MAPE for winter wheat yield estimation with different band combination types
of the UAV-derived hyperspectral sensor images at each individual growth stage (n = 70).

Band Combination

Growth Stages

Booting Heading Flowering Filling Maturation

RMSE
(t/ha) MAPE RMSE

(t/ha) MAPE RMSE
(t/ha) MAPE RMSE

(t/ha) MAPE RMSE
(t/ha) MAPE

b1 + b2 1.21 12.69% 1.24 13.24% 0.94 9.50% 1.09 11.24% 1.24 12.61%
b1 − b2 1.15 11.43% 1.21 11.94% 0.94 9.20% 0.97 9.80% 1.00 10.34%
b1/b2 1.27 12.58% 1.10 10.95% 0.90 8.84% 0.97 10.05% 0.95 9.71%

b1/(b1 + b2) 1.27 12.59% 1.10 10.94% 0.89 8.77% 0.97 10.04% 0.96 9.65%
b1/(b1 − b2) 2.21 17.83% 1.16 11.81% 0.87 8.79% 1.01 10.03% 0.91 9.26%

(b1 − b2)/(b1 + b2) 1.27 12.59% 1.10 10.94% 0.89 8.77% 0.97 10.04% 0.96 9.65%
b1 + b2 − b3 1.09 11.07% 1.10 10.90% 0.83 7.81% 0.97 9.82% 0.93 9.39%
b1/(b2 + b3) 1.15 11.55% 1.02 10.29% 0.79 7.38% 0.98 10.11% 0.89 8.79%
b1/(b2 − b3) 1.07 10.95% 1.09 10.81% 0.84 8.36% 0.93 9.13% 0.91 9.18%
(b1 − b2)/b3 1.09 11.27% 1.09 10.86% 0.80 7.64% 0.96 9.94% 0.94 9.51%
(b1 + b2)/b3 1.15 11.55% 1.02 10.30% 0.79 7.68% 0.98 10.11% 0.88 8.69%

(b1 + b2)/(b3 + b2) 1.08 11.25% 1.12 10.99% 0.84 7.87% 0.97 9.99% 0.93 9.35%
(b1 − b2)/(b3 + b2) 1.08 11.25% 1.12 10.99% 0.84 7.87% 0.97 9.99% 0.93 9.35%
(b1 + b2)/(b3 − b2) 1.08 11.12% 1.11 10.92% 0.84 8.40% 0.90 9.24% 0.91 9.03%
(b1 − b2)/(b3 − b2) 1.27 12.55% 1.10 10.92% 0.91 9.00% 0.83 8.08% 0.98 9.88%
(b1 − b2) + (b3 − b4) 1.10 11.30% 1.05 10.48% 0.79 7.40% 0.88 8.94% 0.95 10.02%
(b1 − b2)/(b3 − b4) 0.97 9.93% 1.02 10.10% 0.78 7.24% 0.84 8.47% 0.89 8.92%

3.3.2. Validation of the Multiple Linear Regression Models for Winter Wheat Yield
Estimation Combining Five Different Growth Stages

The RMSE of the multiple linear regression model for winter wheat yield estimation
based on UAV-calculated multispectral and hyperspectral vegetation indices combining
five growth stages and the corresponding MAPE are shown in Figure 9. According to
Figure 9a, the lowest MAPE for the multispectral VIs was 8.44% (found at ‘NDRE’; RMSE of
0.90 t/ha). For the hyperspectral VIs, the lowest MAPE was 6.56%, which was achieved by
‘(b1 − b2)/(b3 − b4)’, with an RMSE of 0.70 t/ha (Figure 9b). The validation of the estimated
winter wheat yield (derived from the use of two multiple linear regression models) based
on these two indices is illustrated in Figure 10. Similar to the validation of the simple linear
regression models at the individual growth stages, the RMSE and MAPE were lower for
the multiple linear regression model based on the hyperspectral vegetation index than that
based on the multispectral vegetation index. Moreover, comparing the regression models
constructed only by the vegetation indices of an individual growth stage, the regression
models which combined multi-temporal vegetation indices information demonstrated
their robustness in winter yield estimation. The multiple linear regression model based
on the band combination of ‘(b1 − b2)/(b3 − b4)’ from the hyperspectral sensor performed
reasonably well (achieving the highest correlation coefficient and lowest RMSE and MAPE
for winter wheat yield estimation) and could be regarded as the best grain yield estimation
model independent of the photography conditions in this study.
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Figure 10. Validation of the multiple linear regression model estimating winter wheat yield combining
five different growth stages based on ‘NDRE’ (a) and ‘(b1 − b2)/(b3 − b4)’ (b) (n = 70). The red line is
the fitted line between measured yield and estimated yield.

4. Discussion

Currently, NDVI is the most widely used vegetation index for crop yield estimation.
However, because of the characteristics of NDVI, it has significant saturation under a high
vegetation coverage level, thereby affecting estimation accuracy [47–50]. According to
the spectral reflectance characteristics of the plant, the absorption of chlorophyll on the
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red-edge waveband is weaker than that of red band, with the red-edge region having
stronger transmission ability with the crop canopy [51]. The use of a red-edge band rather
than a red band in the vegetation index of NDVI can reduce the saturation phenomenon,
improving crop yield estimation accuracy [51,52]. Additionally, the spectrum of each
irrigation group for the winter wheat cultivator of ‘C9’ at the flowering stage is shown
in Figure 11. According to the figure, there were significant differences among different
irrigation groups at the near-infrared band. Therefore, in this study, vegetation indices
composed of the red-edge and near-infrared bands, both for MS imagery (NDRE) and
HS imagery (‘(b1 − b2)/(b3 − b4)’), demonstrated reasonable robustness in terms of their
winter wheat yield estimation.
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Remote crop yield estimation methods are commonly based on the high correlation
between the crop yield and the vegetation index taken at a specific crop growth stage [50].
The success of the development of a vegetation index is dependent on the use of bands with
different sensitivities to the key parameter that is to be monitored [51]. The potential of
multi-spectrum and hyper-spectrum for winter wheat yield estimation was systematically
compared in this study. The lower yield estimation accuracy based on multispectral
vegetation indices is mostly due to the obvious shortcoming of the limited fixed bands
with a wide resolution. The hyperspectral sensor captured much richer information and is
more sensitive to crop canopy characteristics with the continuous acquisition of reflectance
at narrow wavelengths [45,52]. Additionally, for all vegetation indices calculated from
the UAV-hyperspectral imagery used in this study, with the number of bands including
in the vegetation index, the yield estimation accuracy of winter wheat assumed a rising
tendency. According to the study of Thenkabail et al. [53], four sensitive band combination-
based optimum multiple narrow band reflectance models could explain up to 92% of the
crop biophysical parameter variability. Hence, the four-band combination type based on
hyperspectral imagery achieved a more significant correlation with winter wheat yield than
the vegetation indices derived from multispectral imagery throughout the whole growth
period of winter wheat in this study.
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According to Qader et al., yield estimation models that use VIs from the crop’s critical
growth stage can obtain a higher accuracy across remote sensing data [54]. Our results
regarding winter wheat yield estimation based on singular growth stages confirmed this
and strongly indicated that the flowering stage was a critical period for winter wheat
yield estimation. Some studies have shown that the accumulative vegetation index can
improve the stability of yield estimation and that adding one or more growth stages (except
the critical growth stage) could improve estimation accuracy [28,55,56]. In this study,
the correlation coefficient between crop yield and the hyperspectral vegetation index of
‘(b1 − b2)/(b3 − b4)’ increased from 0.80 to 0.84, and RMSE decreased from 0.75 t/ha to
0.69 t/ha when the booting, heading, filling, and maturation stages were added with the
MLR model in the flowering stage of the simple linear model.

Although the MLR model combining multiple temporal hyperspectral vegetation
indices calculated according to hyperspectral imagery acquired good yield estimation
accuracy for winter wheat, machine learning algorithms have demonstrated the potential
to retrieve crop characteristics using multispectral satellite data, aerial multispectral data,
aerial hyperspectral data, and so on [57–59]. Therefore, future research should aim to
explore machine learning regression models to strengthen crop estimation ability via multi-
ple temporal UAV-derived hyperspectral datasets. Additionally, data fusion approaches
which could integrate UAV data and satellite data-based vegetation index time-series
curves together and improve temporal resolutions will also be investigated in the context
of estimating crop yield in a future study.

5. Conclusions

This study assessed the accuracy of winter wheat yield estimation values based on
UAV-derived multispectral and hyperspectral images from single and multiple growth
stages. The results suggested that the proposed multiple linear regression model, con-
structed by the vegetation index of ‘(b1 − b2)/(b3 − b4)’ with central wavelengths of 782 nm,
874 nm, 762 nm, 890 nm, which were calculated from UAV-based hyperspectral images
using the growth stages from booting to maturation, can be used as a fast and reliable
method for winter wheat yield estimation to contribute to the breeding of drought-resistant
varieties of winter wheat in a field plot scale over a short amount of time. Moreover, the
red-edge and near-infrared bands are recommended for use in the context of crop yield
estimation.

From a longer-term perspective, more in-depth investigations into crop yield estima-
tion (including rice, maize, soybean, and other crops) based on UAV-mounted hyperspectral
datasets (via not only linear regression models but also machine learning algorithms, data
assimilation, and so on) are expected.
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