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Abstract: This study simulated the canopy reflectance of spring wheat at five distinct growth stages
(jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought,
mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model,
and it identified the wavelength range most sensitive to drought. Additionally, the efficacy of
5 mainstream satellites (Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2) and 20 commonly
utilized remote sensing vegetation indicators (NDVI, SAVI, EVI, ARVI, GVMI, LSWI, VSDI, NDGI,
SWIRR, NDWI, PRI, NDII, MSI, WI, SRWI, DSWI, NDREI1, NDREI2, ZMI, and MTCI) in drought
monitoring was evaluated. The results indicated that the spectral response characteristics of spring
wheat canopy reflectance vary significantly across the growth stages. Notably, the wavelength ranges
of 1405–1505 nm and 2140–2190 nm were identified as optimal for drought monitoring throughout
the growth period. Considering only the spectral bands, MODIS band 7 was determined to be
the most suitable satellite band for monitoring drought in spring wheat at different growth stages.
Among the 20 indices examined, WI, MSI, and SRWI, followed by LSWI and GVMI calculated using
MODIS bands 2 and 6 as well as bands 8 and 11 of Sentinel-2, demonstrated superior capabilities
in differentiating drought scenarios. These conclusions have important implications because they
provide valuable guidance for selecting remote sensing drought monitoring data and vegetation
indices, and they present insights for future research on the design of new remote sensing indices for
assisting drought monitoring and the configuration of remote sensing satellite sensors.

Keywords: canopy spectral response; drought monitoring; PROSAIL; spring wheat

1. Introduction

Drought is a natural disaster caused by a deficiency in precipitation over a period in
a certain area. Agricultural drought is a type of drought disaster that occurs worldwide
and affects a large population [1]. It has a tremendous impact on agriculture, which is a
fundamental sector of human society [2]. In the context of the ongoing climate change,
numerous studies have indicated an increase in the frequency and severity of future drought
disasters [3,4]. Wheat is a pivotal staple crop worldwide. It plays a crucial role in satisfying
over 20% of the caloric and protein requirements of the global population [5]. China is
the largest producer and consumer of wheat globally and confronts water scarcity as the
primary constraint on wheat yield within its extensive arid and semi-arid regions [6]. The
development of a drought monitoring approach that can be applied effectively to different
growth stages of wheat is of significant importance.

Drought can reduce crop vitality, relative leaf water content, and chlorophyll content.
This, in turn, affects photosynthesis and causes a series of variations in crop physiological
and biochemical parameters. This ultimately alters the characteristics of the crop reflectance
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spectra. Numerous laboratory and field control experiments have been conducted to
investigate the spectral responses of various crops under water stress. This has yielded
valuable information from the characteristics of the reflectance spectra [7–9]. However,
the impact of drought on agriculture is related to factors such as the severity of crop
drought, crop type, and crop growth stage. The remote sensing observation data were also
influenced by the band settings and observed geometric angles. Collecting crop spectral
data from laboratories or on-site under different growth stages, drought scenarios, and
observation conditions requires a considerable amount of time, money, and labor. In
addition to laboratory and on-site observations, radiative transfer models can simulate crop
canopy spectral information under different drought scenarios. Among these, the PROSAIL
model has gained significant recognition and widespread use among researchers [10]. A
few studies have examined the response of canopy reflectance to variations in the water
status and other stresses using the PROSAIL model [11–13]. Compared with measurement
data, simulation data based on radiation transfer models are inexpensive, have a large data
volume, and can comprehensively consider different drought degrees, growth stages of
crops, and observation geometric conditions.

Vegetation indices derived from satellite images have been widely used to estimate
agricultural drought [14–16], although some of them may not have been originally designed
specifically for drought monitoring. On the one hand, with the development of new sensors,
new remote sensing drought indices are being developed continuously [1]. On the other
hand, agricultural drought is influenced by many factors including the climatic conditions,
crop characteristics, and cultivation conditions. An increasing number of researchers
are coupling meteorological and remote sensing data to develop comprehensive drought
indices that improve the accuracy of drought monitoring [17,18]. Various vegetation indices
are frequently used as input variables to construct comprehensive drought indices [19,20].
Therefore, evaluating the capability of existing vegetation indices to reflect drought can
provide methodological guidance for drought monitoring and a reference for designing
new drought indices. Many previous studies have evaluated the capability of vegetation
indices to monitor drought by analyzing the correlation between these indices and related
indices that reflect drought, such as meteorological drought indices (SPI, SPE, etc.), soil
moisture, and leaf moisture content [21,22]. Most researchers select vegetation indices
calculated using specific satellites for evaluation [23,24]. However, owing to the differences
in the band settings of different satellites, the values of a vegetation index calculated using
different satellites vary [25–27]. Additionally, the capability of the same vegetation index
to respond to different drought intensities at different crop growth stages may differ. To
summarize, there is currently a deficiency of systematic evaluations of the vegetation
index drought monitoring capabilities that consider band settings, crop growth stages, and
drought severity.

In this study, we focused on spring wheat using a radiative transfer model (PROSAIL)
to simulate canopy reflectance at five distinct growth stages (jointing, booting, heading,
flowering, and postulation) and four drought scenarios (ranging from no drought to
mild, moderate, and severe drought conditions). We analyzed the response of spring
wheat canopy reflectance to variations in water conditions across different wavelengths.
The specific objectives of our research were as follows: (1) to identify the most suitable
wavelength range for monitoring drought and reveal the relationship between spring
wheat canopy spectra and drought, (2) to evaluate the capability of five mainstream remote
sensing satellites to monitor spring wheat drought from a spectral perspective, and (3) to
assess the capability of 20 commonly used vegetation indicators to reflect drought and
verify their applicability based on actual satellite images. This study provided valuable
insights into the selection of remote-sensing drought monitoring data and indices.
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2. Materials and Methods
2.1. Radiative Transfer Model PROSAIL

The PROSAIL model is a widely employed tool for canopy spectral simulation. It
integrates the PROSPECT and SAIL models [10]. SAIL simulates the spectral reflectance of
the canopy. It requires inputs such as leaf reflectance ρl and transmittance τl derived from
PROSPECT, the canopy structure parameters, the observed geometric parameters, and the
soil reflectance ρs [8].

To simulate the wheat canopy reflectance spectra across five growth stages under four
drought scenarios, it was necessary to input various physiological parameters of wheat at
different growth stages, soil background spectra under different drought scenarios, and
diverse observational geometric parameters into the PROSAIL model. Among the different
input parameters, the chlorophyll a + b content (Cab), dry matter content (Cm), leaf area
index (LAI), and equivalent water thickness (EWT) primarily correspond to the wheat
growth period and drought scenarios. We generated the input values for Cab, Cm, LAI,
and EWT based on field control experiment data obtained from Ge et al. in 2017 [28]. Using
Cab as an example, for the mild drought scenario, we first calculated the mean of all the
observed Cab values under mild and moderate drought conditions within a specific growth
period. We then calculated the mean of all the Cab values observed under non-drought
and mild drought conditions. After that, these two calculated values were used as the
upper and lower limits of the 99% confidence interval of the normal distribution. Finally,
20 Cab values were randomly generated from the normal distribution. Using a similar
methodology, we generated input values for Cab, Cm, LAI, and EWT for the five growth
stages and four drought scenarios. The soil spectrum was set using the default settings of
the PROSAIL model, and a soil brightness factor ALFA was introduced to represent the
variation of soil water content [29]. The other input parameters were established based on a
review by Berger et al. in 2018 [30]. Using the aforementioned parameter settings (Table 1),
we generated 4200 spectral reflectance curves for each growth stage.

Table 1. PROSAIL input parameters (except Cab, Cm, LAI, and EWT).

Parameter Symbol Units Value

Total carotenoid content Ccx (µg/cm2) 12
Brown pigments Cbp / 0.5

Leaf inclination distribution LIDF (◦) 55
Hot spot parameter Hot (m/m) 0.25

Soil brightness factor ALFA(rsoil) / 0.5–1.5
Sun zenith angle tts (◦) [30:90:30]

Viewing (observer) zenith angle tto (◦) [0:90:30]
Relative azimuth angle between sun and sensor psi (◦) [0:45:360]

2.2. Analysis of the Response Pattern of Different Wavelength Range and Satellite Bands
to Drought

Analysis of variance (ANOVA) is a statistical method employed to assess the signifi-
cance of differences in sample means across two or more groups. In this study, we utilized
the F-value obtained using variance analysis (Equation (1)) to quantify the distinctions
in wheat reflectance spectra at specific wavelengths under different drought scenarios. A
higher F-value indicates a larger disparity between two or more groups of samples. This,
in turn, indicates that the reflectance at a particular wavelength is more responsive to
variations in water conditions.

F =

Sa
fa
Se
fe

(1)

where Sa represents the variance between groups. It indicates the variability in reflectance
among different drought levels at a specific wavelength (1 nm). Se represents the within-
group variance. It reflects the variability in reflectance within a particular drought level at
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the same wavelength. fa denotes the intergroup degrees of freedom for reflectance under
different drought levels, and fe represents the degrees of freedom within the group.

A variance analysis was conducted on the simulated canopy reflectance values within
the spectral range of 400–2500 nm, with intervals of 1 nm, under different drought scenarios.
The F-values were computed for each wavelength to identify the wavelength range that
exhibited the highest sensitivity to variations in water conditions. Additionally, to compare
the responses of different bands of the five mainstream satellite sensors (Table 2) to water
conditions during the different growth stages of spring wheat, we calculated the average
F-value within the designated band range of the five satellite sensors. This analysis enabled
us to identify the satellite sensors and their corresponding bands that demonstrated the
highest sensitivity to drought stress. Two sets of comparative analyses were conducted.
The first set calculated the variance analysis statistic F1 (or F1 mean) between the wheat
reflectance datasets at different wavelengths (or bands) under the no-drought and severe
drought scenarios. Meanwhile, the second set calculated the variance analysis statistic F2
(or F2 mean) between the wheat reflectance datasets at different wavelengths (or bands)
across the four drought levels.

Table 2. Band information of satellites analyzed in this study.

Blue Green Red NIR SWIR

Sentinel-2 Band2:
458–523 nm

Band3:
543–578 nm

Band4:
650–680 nm

Band8:
785–900 nm

Band8a:
855–875 nm

Band11:
1565–1655 nm

Band12:
2100–2280 nm

Landsat 8 Band2:
450–510 nm

Band3:
530–590 nm

Band4:
640–670 nm

Band5:
850–880 nm

Band6:
1570–1650 nm

Band7:
2110–2290 nm

MODIS Band3:
459–479 nm

Band4:
545–565 nm

Band1:
620–670 nm

Band2:
841–876 nm

Band5:
1230–1250 nm

Band6:
1628–1652 nm

Band7:
2105–2155 nm

Worldview-2 Band2:
450–510 nm

Band3:
510–580 nm

Band5:
630–690 nm

Band7:
770–900 nm

Band8:
860–1040 nm

/

GF-2 Band2:
450–520 nm

Band3:
520–590

Band4:
650–690

Band5:
730–890 nm /

2.3. Evaluation of Remote Sensing Vegetation Indices for Drought Monitoring Based on Simulated
Spectral Data

In this study, we selected 20 vegetation indices (Table 3) and evaluated their effec-
tiveness for drought monitoring. These indices commonly utilize two bands that exhibit
sensitivity to drought scenarios. The red, blue, near-infrared, and shortwave infrared bands
are employed frequently. The calculations were divided into two parts. In the first part, we
stringently adhered to the band requirements specified in the vegetation index equations
and utilized the canopy spectra generated with the PROSAIL model to compute the indices
without considering the real band settings of the satellite sensors. In the second part of
the calculation, we considered the specific band settings of different satellites. We first
converted the simulated reflectance at various wavelengths to reflectance values within the
specific band range of each satellite using the sensor’s spectral response function. Then,
we calculated the vegetation indices. The satellites involved in the evaluation include
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Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2. These are likely to be the primary
satellite remote sensing data sources for scientific research in the next five years [31].

Table 3. List of vegetation indices used in this study.

No Index Formula Reference

1 Normalized Difference Vegetation Index
(NDVI) NDVI = NIR − RED

NIR + RED [25]

2 Soil-Adjusted Vegetation Index (SAVI) SAVI = NIR − RED
NIR + RED + 0.5 (1 + 0.5) [26]

3 Enhanced Vegetation Index (EVI) EVI = 2.5 NIR − RED
NIR + 6RED − 7.5BLUE + 1 [32]

4 Atmospherically Resistant
Vegetation Index (ARVI) ARVI = NIR − 2RED + BLUE

NIR + 2RED − BLUE [33]

5 Global Vegetation Moisture Index (GVMI) GVMI = (NIR + 0.1) − (SWIR + 0.02)
(NIR + 0.1) + (SWIR + 0.02)

[34]

6 Land Surface Water Index (LSWI) LSWI = NIR − SWIR
NIR + SWIR [35]

7 Visible and Shortwave infrared Drought Index
(VSDI)

VSDI =
1− [(SWIR− BLUE) + (RED− BLUE) [36]

8 Normalized Difference Greenness Vegetation
Index (NDGI) NDGI = NIR − GREEN

NIR + GREEN [37]

9 Shortwave Infrared Ratio (SWIRR) SWIRR = SWIR1
SWIR2 [38]

10 Normalized Difference Water
Index (NDWI) NDWI = R860 − R1240

R860 + R1240
[39]

11 Photochemical Reflectance Index (PRI) PRI = R531 − R570
R531 + R570

[27]

12 Normalized Difference Infrared
Index (NDII) NDII = R850 − R1650

R850 + R1650
[40]

13 Moisture Stress Index (MSI) MSI = R1600
R820

[41]
14 Water Index (WI) WI = R900

R970
[42]

15 Simple Ratio Water Index (SRWI) SRWI = R858
R1240

[43]
16 Disease Water Stress Index (DSWI) DSWI = R802 + R547

R1657 + R682
[44]

17 Normalized Difference Red Edge
Index1 (NDREI1) NDREI1 = R790 − R720

R790 + R720
[45]

18 Normalized Difference Red Edge
Index2 (NDREI2) NDREI2 = R750 − R705

R750 + R705 ∗ R445
[46]

19 Zarco-Tejada and Miller Index (ZMI) ZMI = R750
R710

[47]

20 MERIS Terrestrial Chlorophyll
Index (MTCI) MTCI = R754 − R709

R709 − R681
[48]

Note: ‘RED’, ‘GREEN’, ‘BLUE’, ‘NIR’, and ‘SWIR’ represent the red, green, blue, near-infrared, and shortwave
infrared bands, respectively, of different satellites. Rx represents the reflectance at x nm.

The evaluation index used in this study is the silhouette coefficient. It serves as a
measure for assessing the quality of clustering [49] and ranges between −1 and 1. A value
close to 1 indicates that a sample is well-separated from other clusters, a value of zero
indicates that a sample does not have a clear assignment to any specific category, and
a value of −1 implies that a sample has been assigned incorrectly to a cluster [50]. The
formula used to compute the silhouette coefficient for sample i is as follows:

S(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

where a(i) is the average distance between sample i and the other samples within the same
cluster, and b(i) is the minimum average distance between sample i and the samples in
all the other clusters. The overall silhouette coefficient for the clustering outcome was
obtained by calculating the average silhouette coefficient across all the samples. Prior
research has indicated that a silhouette coefficient exceeding 0.5 signifies a reasonable
distinction between clusters [50].
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2.4. Evaluation of Remote Sensing Vegetation Indices for Drought Monitoring Based on Real
Satellite Data

To test the credibility of the conclusions obtained from the simulation results, we
selected four vegetation indices and tested their drought monitoring capabilities using
real MODIS and Sentinel-2 satellite image data. Two of the vegetation indices were iden-
tified using simulation results as having strong drought monitoring capabilities, while
the other two were identified as having poor drought monitoring capabilities. Specifi-
cally, we selected two typical spring wheat planting areas in northern China for testing:
Gansu Province and Baoji City, Shaanxi Province (Figure 1). Gansu Province is the main
spring wheat planting area and has been facing the challenge of agricultural drought
for decades [51]. In particular, a severe drought event occurred in 2011 [52]. The plant-
ing area of spring wheat in Baoji City in 2016 was 187,000 hectares, with a total yield of
838,158 tons [53]. In 2016, a drought event occurred in Shaanxi province, including Baoji
city [54].
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Figure 1. Geographical location of the testing area.

The data (Table 4) used in testing include 20 MOD09A1 images in Gansu Province
from March to July 2011, 4 Sentinel-2 1C-level images of the Baoji city from March to June
2016,the soil moisture data obtained from the ChinaCropSM1 km dataset (which is a fine
1 km daily soil moisture dataset for dryland wheat and maize across China) [55], and the
spatial distribution of spring wheat obtained from Luo’s work on the harvest areas for
three staple crops in China [56].

The data processing process is as follows: first, atmospheric correction of the Sentinel-2
Level-1C data was conducted using Sen2Cor. Second, resampling of the Sentinel-2 images
is processed, and all band resolutions are 10 m. Subsequently, in each testing area, we
extracted soil moisture data from spring wheat pixels and sorted them from high to low
according to soil moisture. Then, we calculated their 4 corresponding vegetation indices and
selected the pixels with the highest 1% soil moisture and the pixels with the lowest 1% soil
moisture. After that, the contour coefficients of the four vegetation indices corresponding
to these two parts of pixels for each image were calculated.
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Table 4. Data used for testing.

Data Source Location Resolution Acquisition Time Application

20 MOD09A1
images

National
Aeronautics and

Space
Administration

(NASA)

Gansu Province 250 m March to July 2011 Calculate
vegetation index

4 Sentinel-2
1C-level images

European Space
Agency (ESA)

Baoji City,
Shaanxi Province 10 m March to June 2016 Calculate

vegetation index

ChinaCropSM1 [55]
Gansu Province
and Baoji City,

Shaanxi Province
1 km March to July 2011 and

March to June 2016

Assist in selecting
drought and

normal crop pixels

Distribution map
of spring wheat [56]

Gansu Province
and Baoji City,

Shaanxi Province
1 km March to July 2011 and

March to June 2016
Assist in selecting

crop pixels

3. Results
3.1. Spring Wheat Spectra Simulation and Analysis

Figure 2 illustrates the simulated canopy reflectance spectra across the five growth
stages and four drought scenarios. The response of canopy reflectance to drought varied
among the main growth stages. The influence of water conditions on the vegetation canopy
reflectance within 0.4–2.5 µm encompasses both primary and secondary effects [57]. The
former signifies direct variations in canopy reflectance owing to alterations in the water
status, while the latter denotes the modifications in physiological parameters resulting
from moisture variations, which subsequently affect the vegetation canopy reflectance.

The reflectance of the wheat canopy within the visible range of 400–700 nm is predomi-
nantly affected by pigments, particularly chlorophyll [58]. Simulation results from different
growth stages and drought scenarios revealed that during the jointing, booting, and head-
ing stages, the reflectance increased gradually at 600–700 nm, whereas the absorption
valley reduced gradually with intensified water stress. This phenomenon occurs primarily
because of the absorption of chlorophyll under normal conditions, thereby resulting in a
low-reflectance valley within the 600–700 nm range of the wheat canopy spectrum. How-
ever, under limited water availability, the EWT and other physiological parameters tend to
vary, including a reduction in the chlorophyll content. This indirect consequence of water
shortage results in an increase in reflectance within the 600–700 nm range. Conversely,
during the subsequent growth stages, the increase in reflectance within the 600–700 nm
range is less significant. This is consistent with the observations of Gates [58] in his investi-
gation of Quercus alba. During the early growth stages, when the chlorophyll levels are
low and a water deficit occurs, the reflectance peak at 550 nm and absorption valley at
680 nm are more vulnerable to disappearance. However, as plants develop, chlorophyll
gradually accumulates. Previous studies have indicated that chlorophyll accumulation is
significantly influenced by the light intensity and temperature, which fluctuate as crops
grow [59]. Consequently, the chlorophyll content increases gradually with plant growth.
This eventually results in the gradual appearance of reflectance features at 550 nm and
680 nm, whereas the plant develops a certain level of tolerance to water shortage.

In the near-infrared (NIR) range of 800–1100 nm, the reflectance depends primarily on
the cellular structure of the plant leaves rather than on the chlorophyll content [60]. The
canopy reflectance under drought scenarios during the five growth stages was similar to or
marginally lower than that under the non-drought conditions. In the mid-infrared (MIR)
range of 1300–2500 nm, the canopy reflectance increased progressively as the intensity of
the water deficit increased.
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Figure 2. Simulated spectra of spring wheat under different drought scenarios at (a) jointing stage;
(b) booting stage; (c) heading stage; (d) flowering stage; and (e) pustulation stage.

3.2. Evaluation and Analysis of Drought Response of Mainstream Remote Sensing Satellite Bands

Figure 3 shows the results of the variance analysis of the simulated reflectance under
different drought scenarios during the three stages of wheat: jointing, booting, and heading.
The overall trend of the F-value with wavelength variation was similar, with high values
mainly appearing within the ranges of 570–700 nm, 1410–1520 nm, 1730–1860 nm, and
2170–2270 nm. This indicated that the reflectance of the wheat canopy is most sensitive to
drought within these wavelength ranges. A significant decrease in F-value was observed at
approximately 680 nm in the visible light region, thereby indicating a weak response to
drought in this area. This may have been owing to the potential saturation of reflectance
at approximately 680 nm when the chlorophyll content attained a certain threshold [61].
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In the near-infrared and shortwave infrared regions, the sensitive spectral ranges were
observed to be secondary absorption bands rather than the two primary water absorption
regions at 1400 and 1900 nm. This is consistent with a previous study by Tucker [62].
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Figure 4 shows the F-value curves during the subsequent growth stages of wheat,
specifically the flowering and pustulation stages, which exhibited distinct patterns com-
pared with the earlier growth stages. The pronounced response in the secondary water
absorption regions diminished, whereas the F-values in the two primary water absorption
bands at 1400 and 1900 nm became significantly higher. Our research results indicate that
the canopy reflectance at 1900 nm is the most sensitive to variations in the water status.
It aligns with the absorption characteristics of liquid water in the infrared region, which
is consistent with other laboratory studies [8,63]. The F-values in the visible light region
during the flowering and pustulation stages demonstrated a decrease compared with the
jointing, booting, and heading stages.
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To summarize, the wavelength range of 1405–1505 nm displays consistent sensitivity
to water changes throughout the growth period of spring wheat. This makes it the most
suitable wavelength range for monitoring drought conditions in spring wheat. The range
2140–2190 nm is the next most preferred monitoring range. The F-values computed by
considering all four drought scenarios were lower than those obtained by considering
only the non-drought and severe drought scenarios. This aligns with our fundamen-
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tal understanding that higher differences in reflectance are observed under more severe
drought conditions.

3.3. Evaluation of Mainstream Satellites for Monitoring Spring Wheat Drought

Figure 5 demonstrates the results of the variance analysis (i.e., average F-value) of in-
dividual bands from Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2 under different
drought scenarios.
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Throughout all the growth stages, the capability of these five satellites to monitor
spring wheat drought was low within the visible light region. Because of the similarity in
the waveband configurations within this range, the monitoring capabilities of these sensors
are essentially equivalent. The five satellites exhibited the lowest monitoring efficacy
in the near-infrared region. The shortwave infrared region is optimal for tracking the
response of spring wheat to water conditions. However, variations in the number of bands
and wavelength coverage among satellite sensors in the shortwave infrared region result
in distinct monitoring capacities across satellites. Notably, the most effective shortwave
infrared bands for drought monitoring differ during the five growth stages of spring wheat.
Specifically, Sentinel-2 band 12 performs best during the jointing stage; Landsat 8 band
7 performs best during the booting stage; and MODIS band 7 performs best at the heading,
flowering, and filling stages. In general, the capabilities of satellites to distinguish non-
drought conditions from severe drought are better than those for distinguishing between
multiple drought scenarios, which have a similar trend of F-values among different bands.
That is, the capability of satellites to identify drought intensifies as the severity of the
drought increases.

3.4. Applicability Analysis of Drought Indices for Spring Wheat Drought Monitoring

Figure 6 illustrates the silhouette coefficients of the 11 vegetation indices calculated
based on specific wavelengths under various drought scenarios. Among these indices,
MSI, WI, NDII, and SRWI generally exhibited higher silhouette coefficients, with at least
three growth periods having coefficients of at least 0.5. In contrast, NDWI, ZMI, and DSWI
showed marginally lower silhouette coefficients, followed by PRI and MTCI. Notably,
NDREI1 and NDREI2 were significantly different from the other indices. These observations
indicate variations in the suitability of diverse vegetation indices for monitoring wheat
drought. Specifically, MSI, WI, and SRWI are generally highly suitable for analyzing spring
wheat droughts. WI is optimal for the jointing and booting stages, whereas MSI is the most
effective index during the pustulation, flowering, and heading stages. Indices such as MSI
and WI are specially designed as indicators of vegetation water content and are optimal for
drought monitoring. For the other indices used to assess the general condition, pigments,
and other biophysical parameters of vegetation were less applicable for distinguishing
droughts. For most of these indices, the silhouette coefficients attained their highest values
during the pustulation stage (0.5–0.8). Except for the jointing stage, the applicability of most
indices (water indicators) for monitoring drought increased as the wheat growth period
progressed. This trend can be attributed to the gradual weakening of the soil background
reflection with crop growth, which results in the emergence of more prominent spectral
features of water in the crop canopy as the leaf area expands [64]. Notably, the silhouette
coefficients of PRI, MCTI, NDREI1, and NDREI2 exhibited distinct patterns compared
with the other indices across growth stages. Specifically, the silhouette coefficients of these
four indices were significantly lower than those of the other indices throughout all the
growth periods. This indicated the weaker discriminative capabilities of these four indices
for identifying spring wheat drought in these stages compared with the other indices.

Figures 7 and 8 depict the efficacy of the satellite-based vegetation index in capturing
variations in water content during the distinct growth stages of spring wheat. The suitability
of different indices for distinguishing drought conditions varied significantly across growth
stages. Moreover, the same index exhibited discrepancies when calculated using different
satellite sensors or during different growth stages. Specifically, conventional vegetation
indices such as NDVI, EVI, SAVI, ARVI, and NDGI demonstrated inadequate performance
across the scenarios. The silhouette coefficient values were below 0.3, which indicated
their limited capability to identify drought conditions. Conversely, custom-designed
indicators for humidity monitoring, such as GVMI, LSWI, VSDI, and SWIRR, exhibit
favorable performances. The vegetation index derived from the bands of the Sentinel-2,
Landsat 8, and MODIS satellites consistently achieved silhouette coefficients above 0.5 in
most cases. Among these indices, LSWI and GVMI based on MODIS bands 2 and 6 as
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well as Sentinel-2 bands 8 and 11 consistently yielded optimal results across the scenarios.
Following these, LSWI and GVMI calculated based on Landsat 8 bands 5 and 6 and Sentinel-
2 bands 8a and 11, respectively, exhibited potential performance. However, Worldview-2
and GF-2 have inadequate monitoring bands in the shortwave infrared region. This renders
them incapable of calculating these indices.
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Among the five growth stages considered, the indices performed most effectively dur-
ing the pustulation stage, followed by the joint stage. In the pustulation stage, GVMI and
LSWI demonstrated exceptional performance, with silhouette coefficients significantly sur-
passing those of the other growth stages (>0.6). Similarly, during the jointing stage, GVMI
and LSWI also exhibited high silhouette coefficients (>0.5) across the band combinations of
Sentinel-2 and MODIS. Furthermore, significant discrepancies in the index performance
were observed during the booting, heading, and flowering stages. The capability of the
better-performing indices, namely, GVMI and LSWI, to discriminate drought conditions
was lower during the booting and flowering stages than during the other growth stages.
This was indicated by the relatively lower silhouette coefficients. Conversely, conventional
vegetation indices predominantly yielded silhouette coefficients of approximately zero
during these stages.

3.5. Verification Based on Satellite Images

Our simulation results show that LSWI and GVMI based on MODIS bands 2 and 6
and Sentinel-2 bands 8 and 11 exhibit better drought monitoring capabilities compared to
EVI and SAVI. To verify this result, we selected two typical spring wheat planting areas
in Northern China for testing: Gansu Province and Baoji City, Shaanxi Province. In each
testing area, we extracted soil moisture data from spring wheat pixels and sorted them
from high to low according to soil moisture. We calculated their corresponding GVMI,
LSWI, EVI, and NDVI and selected the pixels with the highest 1% soil moisture and the
pixels with the lowest 1% soil moisture, then calculated the contour coefficients of the
four vegetation indices corresponding to these two parts of pixels for each image. The
results are shown in Table 5. In both study areas, the average silhouette coefficients of
GVMI and LSWI were higher than those of NDVI and EVI, which is consistent with our
simulation results. The silhouette coefficients calculated based on Sentinel-2 are lower than
those calculated based on MODIS, mainly because the drought that occurred in 2016 was
lighter than the drought that occurred in 2011 [52,54].
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Table 5. Average silhouette coefficients of four indices throughout the entire growth period of
spring wheat.

LSWI GVMI SAVI EVI

20 MODIS images in Gansu Province 0.44 0.49 0.40 0.39
4 Sentinel-2 images in Baoji City 0.21 0.20 0.11 0.15

4. Discussion
4.1. Comparison with Previous Studies

The investigation presented in this study examined the response features of spring
wheat canopy reflectance to water stress by employing the PROSAIL model simulation.
These observations align with the conclusions of Gausman [63] and Tucker [62], albeit
during distinct growth stages. Notably, Gausman’s experiments identified the absorp-
tion bands at 1400 and 1900 nm as the most responsive to variations in water conditions,
whereas Tucker’s study indicated that minor water absorption bands such as 1.83–1.88 µm
and 2.1–2.35 µm are more suitable for indicating variations in water content. Our study
revealed that in the early growth stages (jointing, heading, and booting), the minor water
absorption bands exhibited heightened sensitivity to drought stress, whereas the major
water absorption bands at 1400 and 1900 nm dominated during the subsequent growth
stages (flowering and pustulation). By isolating the other parameters through the simu-
lations, we attributed this discrepancy to variations in the absolute water content of the
leaves. Specifically, the jointing, heading, and booting stages exhibited EWT values ranging
from 0.009 to 0.015, whereas the EWT values during flowering and pustulation did not
exceed 0.006. A higher absolute water content accentuates the prominence of the minor
water absorption bands, whereas a lower absolute water content places a higher emphasis
on the two major water absorption bands. Consequently, when utilizing reflectance as a
means of monitoring drought stress in wheat or other crops, it is crucial to consider factors
that influence variations in the absolute water content of leaves, such as the growth stage
or physiological discrepancies among different crop types. Thus, it is apparent that the
indiscriminate application of existing conclusions to different crops is ineffective. Analyz-
ing the spectral response characteristics within specific contexts is essential for selecting
appropriate drought monitoring bands to achieve optimal outcomes.

4.2. Contributions

First, this study adopted a different method to evaluate the capability of vegetation
indices to reflect drought. Previous studies commonly employed regression analysis and
correlation coefficient methods to assess the relationship between water status such as
soil moisture and vegetation indices [21,65]. In this study, we used silhouette coefficient
analysis to assess the distinctiveness of vegetation index values under various scenarios.
This approach enabled us to evaluate the suitability of remote-sensing vegetation indices for
monitoring drought incidents in spring wheat. Although regression analysis can capture
variable correlations, it fails to adequately assess the capability of vegetation indices to
distinguish drought incidents under specific application scenarios. Therefore, evaluating
the distinguishability of vegetation indices under different drought intensities is crucial.

Second, our evaluation of the monitoring capabilities of existing remote-sensing
vegetation indices and commonly used satellites can help users select appropriate indices
and satellites for effective drought monitoring. NDVI, a vegetation index widely utilized
in drought monitoring, exhibits weak responses to water deficits, delayed responses, and
low timeliness [66]. These factors render it less optimal. Conversely, vegetation indices
specifically designed to monitor water conditions (MSI, WI, GVMI, and LSWI) demonstrate
better applicability in analyzing water stress. This is because these incorporate the mid-
infrared region, which is highly sensitive to water content variations. Therefore, satellites
equipped with shortwave infrared bands are preferred for drought monitoring. Among
the satellites providing shortwave infrared bands, MODIS Band 7 performed exceptionally
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well. It exhibited a high sensitivity to variations in spring wheat water conditions across all
the five growth stages, particularly during the booting, flowering, and pustulation stages.
Additionally, among the vegetation indices based on specific band combinations of certain
satellites, LSWI with MODIS bands 2 and 6 and GVMI with Sentinel-2 bands 8 and 11
demonstrated superior drought detection capabilities.

Third, the analysis results of the drought-sensitive bands in this study would be effec-
tive for developing new remote-sensing drought indices and designing agricultural remote-
sensing monitoring satellite sensors. Our observations highlighted the 1405–1505 nm range
as the most water-sensitive region in spring wheat canopy spectra. This knowledge can
be leveraged to extract and utilize reflectance information within this range to develop
drought indices with improved monitoring capabilities. Notably, the satellites examined in
this study do not have a band covering the 1405–1505 nm region. Rather, the optimized
bands analyzed in Figures 5, 7 and 8 rely on more information within the 2140–2190 nm
range. Even though with new technologies like data fusion enriches the information we can
obtain from the satellite images, given that many in-orbit remote sensing satellites such as
MODIS and Landsat 8 are approaching or have exceeded their service life and considering
the deteriorating drought disasters owing to climate change, there is an increasing demand
for advanced remote sensing satellites with enhanced drought monitoring capabilities.
The conclusions drawn from this study can guide the design of future satellite sensors to
better serve the drought monitoring requirements of crops, particularly spring wheat. In
addition to drought, changes in crop canopy moisture are also affected by diseases and
pests. Mining sensitive bands and using machine learning algorithms to construct pest and
disease monitoring models and vegetation parameter inversion models are also current
research hotspots [67,68]. The research results of this article also have a certain contribution
on the development of disease and pest monitoring methods and parameter inversion
indicating crop growth status.

4.3. Limitations

First, one purpose of this study is to evaluate the capability of monitoring spring
wheat drought using five mainstream remote sensing satellites from a spectral perspective.
The quality of real satellite data is also affected by the temporal and spatial resolution
of the satellite. Using real data for research is difficult to strip away factors other than
spectral settings, such as the impact of spatial resolution. Therefore, we generated extensive
spectral curves using the PROSAIL model for analysis. However, the uncertainty in
setting model parameters should be acknowledged. While selecting the input parameters
for the PROSAIL model, we referred to field experimental records from other studies
and a literature review. Subsequently, numerous parameter sets were generated using
a Gaussian distribution to approximate realistic and complex situations. However, the
representativeness of field experimental data remains limited. This necessitates more
extensive and in-depth observational records and simulation experiments to delineate
the response of the canopy spectra of spring wheat and other crops comprehensively and
accurately under different drought conditions. Some studies have identified a certain
deviation between the results of the PROSAIL model’s forward simulation of crop canopy
spectra and the field reality [69]. This can also impact experimental outcomes. Moreover,
some study pointed out PROSAIL cannot account for row effects leading to uncertainty
in the results of PROSAIL simulations in the direction of zenith observations. Based on
two considerations, we believe that this issue is not significant in our research, but the
row effect still needs to be noted, especially in the early stages of wheat growth. First,
compared to maize and sugar beet, wheat has a smaller row effect [70]. Second, we
conducted simulations at different geometric observation angles, where the solar zenith
angle includes 30◦ and 60◦; the observation zenith angle includes 0◦, 30◦, and 60◦; and the
relative azimuth angle between the sun and sensor includes 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,
and 315◦. Our analysis considers a comprehensive combination of various observation
angles and considers the variability of multiple parameters across different growth stages,
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which can reveal the response pattern of canopy reflectance regardless of certain deviations
on a few simulated results.

Second, this study evaluated only the applicability of satellite drought monitoring
from the perspective of band settings and vegetation indices. It did not consider other
factors such as the spatial resolution, temporal resolution, and swath width. In practical
applications, it is necessary to consider various satellite parameters [71–73]. For example,
the revisit period of Sentinel-2 is eight days, and the spatial resolution of bands is 10 m, 20 m,
or 60 m. The revisit period of Landsat 8 is 16 days, and the spatial resolution of the bands is
30 m (OLI). MODIS can obtain daily surface data. However, its spatial resolution is 250 m,
500 m, or 1000 m. It is necessary to comprehensively consider the actual requirements of
monitoring frequency, monitoring area size, and farmland fragmentation and to select the
most suitable remote sensing satellite for spring wheat drought monitoring.

It should be noted that the analysis of satellite sensors and various indices in this
study was based on the response characteristics of the spring wheat canopy spectra to
variations in water conditions. However, this feature may vary owing to the differences in
the absolute content of crop water under different scenarios. Therefore, the conclusions of
this study may not be applicable to other crop drought monitoring studies. However, the
analysis and implementation methods may be valuable references. In addition, it is of high
significance to consider the diverse values of physiological parameters and the differences
between the growth stages of certain crops.

5. Conclusions

The PROSAIL model was employed to simulate the canopy spectrum of spring wheat
at five growth stages under four drought scenarios. By optimizing the input parameters
and generating extensive reflectance spectra that approximate real-world complexities,
we evaluated the response of canopy spectra at various wavelengths to variations in the
water conditions using variance analysis. Our results indicate that the canopy spectra of
spring wheat are sensitive to variations in the 1405–1505 nm range. Among the mainstream
satellites currently available, MODIS band 7 has emerged as being optimal for monitoring
spring wheat. WI, MSI, and SRWI, followed by LSWI and GVMI calculated using MODIS
band 2 and 6 as well as band 8 and 11 of Sentinel-2, are suitable indices for evaluating
spring wheat drought. The effectiveness of the other indices based on different satellite
bands varies across the different scenarios.
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