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Abstract: The traditional leveling, total station, and global navigation satellite system (GNSS) and
the new differential interferometric synthetic aperture radar (DInSAR) and terrestrial laser scanning
(TLS) systems have their own advantages and limitations in the deformation monitoring of mining
areas. It is difficult to obtain accurate deformation information only using single-source measurement
data. In this study, we propose an LOS deformation correction method for DInSAR in mining areas by
fusing ground data without control points. Based on free space data, small deformations at the edges
of mining influence areas accurately obtained using DInSAR. By combining leveling/GNSS and TLS
methods, it was possible to obtain large deformations in central areas without the need for control
points located outside the mining influence range. For overcoming the non-uniform coordinates of
the “space–ground” data and the limited overlap of the effective measurement ranges, the subsidence
prediction model was employed to assist in its fusion. In addition, in LOS deformation correction, we
retained the non-full cycle phase of DInSAR and replaced the full cycle phase with the one from the
data fusion. Engineering experiments have shown that the correction results preserve the differences
in the LOS deformations at the edge areas of the mine influence range, and they recover the lost
LOS deformations at the center areas. Using the difference in the LOS deformation before and after
correction as the verification indicator, the maximum absolute value of the errors after correction was
143 mm, which was approximately 6.4% of the maximum LOS deformation. In addition, there were
still two errors that were large (−112 mm and −89 mm, respectively), and the absolute values of
errors were not more than 75 mm. For all errors, the mean absolute value was 36 mm. Compared
with 399 mm before correction, the error was reduced by 91%. This study provides technical support
and theoretical reference for deformation monitoring and control in mining areas.

Keywords: data fusion; LOS deformation; mining subsidence; DInSAR; terrestrial laser

1. Introduction

China, being the largest coal producer and consumer globally, holds approximately
76% and 66% of the primary energy production and consumption, respectively [1]. Heavy
deformations are caused by high-intensity, large-scale, and rapid coal mining, resulting
in significant damage to surface infrastructure and the ecological environment. Further-
more, they negatively impact the safety and wellbeing of the residents in the surrounding
areas [2–4]. While new mining technologies, such as separation pouring mining and
“mining-pouring-keeping” collaborative mining, offer some control over deformation [5,6],
they have limited applicability and impose additional production burdens. Rapid sub-
sidence, large deformation gradients, and a wide range of influences remain common
occurrences in coal mining. Consequently, conducting deformation monitoring assumes
great importance, as it provides vital production guidance for mining areas and aids in
mitigating and forecasting damage [7].

The traditional deformation monitoring methods in mine areas are achieved through
leveling, total station, and the global navigation satellite system (GNSS). These approaches
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typically require laying observation lines along the trend and tendency direction of the
working faces. While this provides high accuracy, it requires establishing control points out-
side the mining influence areas as the starting points, which demands significant resources
in terms of manpower and materials, and it is difficult to maintain them completely over
an extended period [8]. In recent years, new measurement technologies, such as interfero-
metric synthetic aperture radar (InSAR) and terrestrial laser scanning (TLS), have emerged
for deformation monitoring [9,10]. InSAR enables the acquisition of surface deformation
information and can separate surface deformations through interference processing [11].
Differential interferometric synthetic aperture radar (DInSAR), as an extension of InSAR,
has become a mature method for monitoring deformations in mining areas [12–14]. How-
ever, incoherence arises due to large deformation gradients, causing notable discrepancies
between the obtained line-of-sight (LOS) deformations and the actual values in the non-
edge areas of the mining influence ranges. With the advancements in light detection and
ranging, TLS has proven effective in achieving high-precision deformation monitoring that
is largely unaffected by deformation gradients [15]. TLS possesses peculiarities when uti-
lized for deformation monitoring in mining areas, namely, the need to scan from one station
to another and the limited scanning range within a single station. While the deployment
of measuring stations multiple times allows for their application in large-scale scenarios,
obtaining deformation indicators within a mining area necessitates a combination of feature
points, significantly limiting the measurement range [16].

The existing measurement methods in mining areas have their respective advantages
and limitations. Fusing the characteristics of the measurement data is currently challenging,
and it is a highly sought-after research topic for accurately determining deformations. In
previous studies, an advantageous method was to use “measurement data + subsidence
prediction model” [17–19]. However, in some areas of mining influence ranges, there is a lack
of deformation constraints, leading to significant discrepancies between the obtained results
and the actual deformations. Moreover, these measurements cannot accurately reflect the dif-
ferences under the same deformation magnitudes. Nevertheless, based on local deformations
in measurement data, it is possible to calculate the deformations for an entire mining influence
range, which is the main reason why this method has been widely used [20–23]. Despite
the efforts of some scholars to incorporate subsidence prediction models that better align
with mining mechanisms, single-measurement data still struggle to overcome their inherent
limitations and improve the accuracy of deformation determination. Recently, Yan et al. [24]
proposed a “space-sky-ground” integrated collaborative monitoring framework in mining
areas, and Jiang et al. [25] discussed the possibility of integrating other source measurement
data with space data. These scholars have attempted to fuse other source measurement data
in order to obtain high-precision deformation information, providing innovative research
directions for deformation monitoring in mining areas [24–26].

With this background, this study proposes an LOS deformation correction method for
DInSAR in mining areas by fusing ground data without control points. Based on free space
data, small deformations at the edge of mining influence areas can be accurately obtained
using DInSAR. By combining leveling/GNSS and TLS methods, it is possible to obtain large
deformation information in central areas without the need for control points located outside
the mining influence ranges. For overcoming the non-uniform coordinates of “space–ground”
data and the limited overlap of effective measurement ranges, the subsidence prediction
model was employed to assist in the fusion. In addition, in the LOS deformation correction,
we retained the non-full cycle phase (NFCP) of the DInSAR and replaced the full cycle phase
(FCP) with that of the data fusion. This helped to retrieve the large deformations lost in the
DInSAR and preserve the differences in the small deformations.

The remaining content of this article is organized as follows: Section 2 describes the
method used to correct the LOS deformations of the DInSAR. Then, in Section 3, we present
the engineering experiments under the thick loose layer conditions that were used to verify the
method. Discussions are provided in Section 4, and the conclusions are presented in Section 5.
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2. Methods
2.1. Measurement of the Ground Data

In the ground data measurements of this method, leveling/GNSS and TLS were
employed as the measurement approaches, and subsidence and horizontal displacements
were used as the measurement indicators.

To calculate these indicators, it was imperative to have points with the same names.
Consequently, the measurements required the artificial feature points (AFPs) and natural
feature points (NFPs) to be combined. The detection of AFPs, which were embedded
in the ground, was only possible when the scanning instrument was in close proximity,
and they are typically measured through leveling/GNSS. The rural areas of China are
predominantly characterized by coal mining activities. The infrastructure in the village,
such as ground surfaces, brick–concrete buildings, streetlights, and tree trunks, could be
used as the scanning objects and provided the most NFPs. Therefore, the NFPs were
primarily measured using TLS.

As shown in Figure 1, the NFPs in the measurement scenario were mainly divided
into three categories [27–30]:

1. Grid nodes generated from the ground point clouds (for calculating subsidence)
2. Corner points of building doors, windows, and walls (for calculating subsidence and

horizontal displacements)
3. Circle centers within cross-sections of the electric poles and tree trunks (for calculating

horizontal displacements)
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image, (c) a class 1 NFP, (d) a class 2 NFP, and (e) a class 3 NFP.

For the class 1 NFPs, after using cloth simulation filtering to obtain ground point
clouds, the distance-weighted interpolation method could be used to calculate the eleva-
tion coordinates [31,32] with Equation (1). For the class 2 NFPs, the three-dimensional
coordinates could be manually selected multiple times to determine the mean [33]. For
the class 3 NFPs, the point clouds of the power poles and tree trunks perpendicular to the
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ground could be manually selected and the plane coordinates could be obtained by solving
Equation (2) using the least squares method.

Z = ∑ ZGP ·
1/Dis

∑ 1/Dis
(1)

where ZGP is the elevation set of ground points within the neighborhood of grid nodes and
Dis is the set of distances from these ground points to the grid nodes.

(XTP − X)2 + (YTP −Y)2 = R2, (2)

where (X, Y) is the plane coordinate of the center of the cross-section circle and (XTP, YTP)
is the plane coordinate set of the individual electric pole or tree trunk point clouds.

Compared to TLS, which would require the presence of NFPs in the village, the AFPs
widened the applicability of the leveling/GNSS. However, traditional leveling/GNSS typically
requires setting up two or more control points outside the mining influence range as starting
points, followed by measuring the AFP coordinates from the edge area to the center area. This
approach is costly, time-consuming, and requires a large deployment volume of AFPs, which
are difficult to preserve effectively over time. Therefore, in this study, the starting point was
located in the village and converted to the TLS station coordinate system.

As shown in Figure 2, in addition to scanning objects with the NFPs, a scanning
instrument should also be placed near the AFPs. At the same time, more than four target
spheres should be placed near the scanning instrument to assist in merger and coordinate
conversion. When an AFP is deployed on exposed ground, three-dimensional coordinates
can be manually selected directly from the scanning point cloud. When there is vegetation
coverage at the AFP deployment site, the target sphere can be erected above the AFP, with
the plane coordinates of the AFP as its plane coordinates. Based on the ground points,
distance-weighted interpolation is performed using Equation (1) to obtain the elevation
coordinates. After obtaining the three-dimensional coordinates of the two AFPs and taking
them as the starting points, the leveling instrument is used to measure the elevation
coordinates and the GNSS receiver is used to measure the plane coordinates.
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In two adjacent measurements, based on Equations (3) and (4), the measurement index
can be calculated by taking the difference of the coordinates of the feature points with the
same name.

W(X, Y) = ZSec − ZFir, (3)

where ZFir and ZSec are the elevation coordinates of the feature points in the first and second
phases, respectively.

U(X, Y, ϕ) = (XSec − XFir) · cos
(

ϕ +
π

2

)
+ (YSec −YFir) · cos(ϕ), (4)

where (XFir, YFir) and (XSec, YSec) are the plane coordinates of the feature points for the
first and second phases, respectively, and ϕ is the vector direction for the horizontal
displacement, which is usually the trend or tendency of the working face.

2.2. Fusion of the “Space–Ground” Data

To establish the correction benchmark of an LOS deformation for the complete mining
influence range, the subsidence prediction model is used for the fusion of “space–ground”
data. In this section, the used subsidence prediction model and data fusion background
and steps are described in sequence.

2.2.1. BPM-EKTF Subsidence Prediction Model

In this study, the BPM-EKTF subsidence prediction model was used for the subsequent
processing [21]. This model integrates the Boltzmann function prediction method (BPM) and the
exponential Knothe time function (EKTF), taking the single-day mining range of the working
face as the basic unit. Under the condition that the mining information and model parameters
are known, the theoretical deformation of any point within the mining influence range can be
obtained. When the working face is not fully mined, the subsidence and horizontal displacement
(along the ϕ directions) are calculated using Equations (5) and (11), respectively.

W(x, y, t) = ∑t−1
i=0 W(x, y, i) · f (t− i), (5)

where (x, y) is the ground coordinate in the working face coordinate system, t is the number
of mining days, and W (x, y, i) is the final subsidence of the ground caused by the basic
unit mined on day i. In fact, the final deformation is not instantaneous, and the subsidence
of the basic unit on day t must be calculated using the time function.

W(x, y, i) =
1

W0
·W0(x− v · i + v) ·W0(y), (6)

where v is the mining speed of the working face.

W0 = m · q · cosα, (7)

where m is the thickness of the coal seam, q is the subsidence factor, and α is the dip angle
of the coal seam.

W0(x) =
W0

1 + e−(x−S1)/R
− W0

1 + e−(x−l−S2)/R
, (8)

where R = H/tanβ is the main influence radius, H is mined depth, β is the major influence
angle, S1 and S2 are the deviations in the inflection points, and l is the length of the working
face along the trend direction.

W0(y) =
W0

1 + e−(y−S3)/R
− W0

1 + e−(y−L−S4)/R
, (9)
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where S3 and S4 are the deviations in the inflection points.

f (t− i) =
(

1− e−c·(t−i)
)k

, (10)

where c and k are the time influence coefficients, respectively.

U(x, y, t) = ∑t−1
i=0 U(x, y, i) · f (t− i), (11)

U(x, y, i) =
1

W0

(
U0(x− v · i + v) ·W0(y) · cosϕ + U0(y) ·W0(−v · i + v) · sin ϕ

)
, (12)

U0(x) = W0 ·
B
R
· e−x/R(

1 + e−x/R
)2 −W0 ·

B
R
· e−(x−l)/R(

1 + e−(x−l)/R
)2 , (13)

where B is the horizontal displacement factor and l is the length of the working face along
the trend direction.

U0(y) = W0 ·
B
R
· e−y/R(

1 + e−y/R
)2 −W0 ·

B
R
· e−(y−L)/R(

1 + e−(y−L)/R
)2 , (14)

where L is the length of the working face along the tendency direction.
When the mining of the working face is completed, the subsidence and horizontal

displacement are calculated using Equations (15) and (16), respectively.

W(x, y, t) = ∑T
i=0 W(x, y, i) · f (t− i), (15)

U(x, y, t) = ∑T
i=0 U(x, y, i) · f (t− i), (16)

where T is the time when the working face mining is completed.

2.2.2. Data Fusion Backgrounds and Steps

Surface deformation is a gradual process, and the maximum deformation cannot be
achieved instantly. The newer the mining basic unit, the shorter the impact time on the
surface. Consequently, during the advancing process of the working face, there is usually
an asymmetry phenomenon where the deformation on one side of the advancing direction
of the mined working face is always smaller than that on the opposite side [34,35].

In ground data, surface deformations near building clusters are obtained. However,
in most engineering scenarios, it is difficult to ensure the presence of a building near
both the mining and the stopping lines of the working face. It is common to only obtain
deformations within a local range on one side of the already-mined working face. Discrete
and small-scale ground data combined with the subsidence prediction model can be used to
obtain the theoretical deformations within the complete mining impact ranges. However, in
the advancement direction, the lack of data on one side of the already-mined working face
makes the obtained theoretical deformations inconsistent with the asymmetry phenomenon.
To establish the correction benchmark of an LOS deformation, it is not feasible to only
combine ground data with subsidence prediction models.

For space data, DInSAR is the most commonly used and mature way to obtain defor-
mations. However, the characteristic of large deformation gradients in mining areas makes
the obtained deformation highly accurate only at the edges of the mining influence areas. By
combining the accurate deformation of an edge area with the subsidence prediction model,
the theoretical deformation obtained will conform to the asymmetry phenomenon. However,
due to the lack of constraints on large deformations in non-edge regions, the maximum
deformations in the center areas of a mining influence range cannot reach the ideal value.
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At the same time, considering that “space–ground” data coordinates are not uniform
and an effective measurement range has a low overlap, this study combined mining subsi-
dence prediction models to fuse “space–ground” data for the establishment of correction
benchmarks. The fusion steps are shown in Figure 3. According to the basic principle of
mining subsidence, in the model parameters q, tanβ, B, θ, S1, S2, S3, S4, c, and k, c and k play
major roles in the asymmetry phenomena. Considering that, in ground data, it is usually
only possible to obtain deformation information within a local range on one side of a mined
working face, solving c and k from the space data provides greater credibility. Similarly,
and for to the same reason, the deviations in the inflection points S1, S2, S3, and S4 should
also be solved using space data.
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Firstly, based on the above, the swarm intelligence algorithm was used as the solver,
and the LOS deformation obtained from the DInSAR in the space data was used to solve
the model parameters. Secondly, we fixed S1, S2, S3, S4, c, and k and solved the subsidence
and horizontal displacement obtained from the ground data. Thirdly, the model parame-
ters solved based on the space and ground data were combined to predict the theoretical
subsidence, north–south horizontal displacement, and east–west horizontal displacement
during the satellite follow-up period. According to the LOS projection principle, the rela-
tionship between the LOS deformation, subsidence, and horizontal displacement can be
obtained using Equation (17). Finally, these subsidences and horizontal displacements were
transformed into theoretical LOS deformations, and the fusion of the “space–ground” data
was completed. There were differences between the three-dimensional deformations (sub-
sidence + horizontal displacement) and the LOS deformations, and Equations (18) and (19)
were used as the fitness functions of the solver, respectively.

LOS = W · cos(θINC)−UNS · sin(θINC) · cos
(
θAZI − 3·π

2
)

−UWE · sin(θINC) · sin
(
θAZI − 3·π

2
) , (17)

where W is the subsidence, UNS and UWE are the horizontal displacements in the north–
south and east–west directions, respectively, and θINC and θAZI are the incident angle and
azimuth angle of the satellite, respectively.

Fun =
∑|WP −WM|

NW
+

∑|UP −UM|
NU

, (18)

where WP and WM are the predicted and measured subsidences, respectively, UP and UM
are the predicted and measured horizontal displacements, respectively, and NW and NU
are the numbers of the subsidences and horizontal displacements.

Fun =
∑|LosP − LosM|

NL
, (19)
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where LosP and LosM are the predicted and measured LOS deformations, respectively, and
NL is the number of the LOS deformation values.

2.3. LOS Deformation Correction of the DInSAR

When using DInSAR, the recovered deformation phase (DP) based on the phase
unwrapping can be used to calculate an LOS deformation using Equation (20). However,
in practical applications, when the deformation gradients of adjacent pixels are too large,
phase unwrapping can lead to FCP losses, resulting in accurate DInSAR results only at
the edge areas of a mining influence range [36,37]. Within a full mining impact range, to
achieve precise monitoring, it is necessary to correct the LOS deformation of the DInSAR.

LOS =
λ

2
· 1

2 · π · φDEF, (20)

where λ is the radar wavelength and ΦDEF is the DP.
In the previous section, the “space–ground” data were fused to obtain the theoretical

LOS deformation within the complete mining impact range, but the subsidence prediction
model is only a theoretical model, and the predicted theoretical deformation differed from
the actual deformation to some extent. Therefore, this theoretical deformation was only
used as a correction benchmark.

It should be noted that, in solving the model parameters, the time interval was the
number of mining days. In the LOS deformation correction, the single-phase DInSAR result
was the basic unit, and the time interval was the satellite follow-up period. This was also
the reason why the fusion results were the theoretical LOS deformations during the satellite
follow-up period.

After transforming the theoretical LOS deformation to the DP using Equation (20),
it and the one of DInSAR values could be split into two parts: an FCP and an NFCP.
Compared to the DInSAR, the FCP of the data fusion had lower credibility and the NFCP
had higher credibility. The essence of LOS deformation correction is to retain the NFCP of
the DInSAR and replace the FCP with that of the data fusion.

As shown in Figure 4, when correcting, we first converted the theoretical LOS deforma-
tions of the data fusion into the DPs. Second, we divided the DPs of the data fusion and the
DInSAR into FCPs and NFCPs, and the results were obtained using Equations (21) and (22).
Third, after replacing ΦBn

FCP with ΦAn
FCP, the corrected DP was obtained using Equation (23).

When a deformation did not exceed λ/2, there was no need to correct it. Thus, we added
an additional phase recovery step. Finally, after the DPs during the follow-up period were
accumulated and converted into LOS deformations, the correction was completed.

φAn = φAn
NFCP + φAn

FCP, (21)

where ΦAn
NFCP and ΦAn

FCP are the NFCP and FCP, respectively, of the DInSAR during the n-th
satellite follow-up period.

φBn = φBn
NFCP + φBn

FCP, (22)

where ΦBn
NFCP and ΦBn

FCP are the NFCP and FCP, respectively, of the data fusion during the
n-th satellite follow-up period.

φDEF = φAn
NFCP + φBn

FCP. (23)
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3. Engineering Experiment
3.1. Experimental Area and Data

The experimental area was located in the Huainan Mining Area, Anhui Province,
China, which is one of the five largest mining areas in China. The proven reserves are up
to more than 40 billion tons, and the surface is rich in thick, loose layers. As shown in
Figure 5, the mining on the working face started on 9 July 2019, with a mining direction
of northwest to southeast and a mining speed of approximately 3.4 m/day. Compared to
ZhaiMiao Village in GuQiao Town, which is located on the west side of the working face
and has NFPs, there is farmland directly above the working face, and the AFPs need to be
buried for monitoring. During the period of 9 July 2019 to 2 November of the same year,
the “space–ground” data were used to obtain the surface deformations caused by mining.
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Figure 5. Overview of the experimental area.

Introduction to the ground data: The first measurement date was 9 July 2019, and the
last measurement date was 25 October 2019. The measurement area and AFP positions are
shown in Figure 5, and a total of five AFPs were deployed. The terrestrial laser scanner was
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an HD HS-650, the Dumpy level was a KLidar DL07, and the GNSS receiver was an HD
V200. Starting from approximately 70 m away from the mining line, three TLS stations were
set up along the mining direction, and the distance between each station was approximately
35 m. The distance between the AFPs as the starting points was approximately 15 m, and
the distance between the remaining AFPs was approximately 50 m. CloudCompare was
used to measure the subsidence and horizontal displacement calculations.

Introduction to the space data: From 9 July 2019 to 25 October 2019, 10 SAR images
obtained from the Sentinel 1 satellite were employed. The main parameters of the SAR
images used in the experiment are listed in Table 1. The DInSAR, which was implemented
by GMTSAR, was used to obtain the LOS deformation measurement indicator, in which the
precision orbital POD files, which were released 21 days after the SAR imaging, were used
to attenuate the orbital phase error. The DEM used in the DInSAR was the 30 m resolution
provided by NASA, and it was used to remove the reference terrain phase. The GACOS
files provided by Newcastle University were used for the generic atmospheric correction.

Table 1. Main parameters of the SAR images.

Number Date Orbital Direction Polarization
Mode Model Incidence

Angle

1 09 July 2019 Ascending VV IW 36~37
2 21 July 2019 Ascending VV IW 36~37
3 02 August 2019 Ascending VV IW 36~37
4 14 August 2019 Ascending VV IW 36~37
5 26August 2019 Ascending VV IW 36~37
6 07 September 2019 Ascending VV IW 36~37
7 19 September 2019 Ascending VV IW 36~37
8 01 October 2019 Ascending VV IW 36~37
9 13 October 2019 Ascending VV IW 36~37

10 25 October 2019 Ascending VV IW 36~37

3.2. Results and Analysis of the Correction

Based on the geological mining experience of the site, 22 NFPs in the scanning area
were selected for calculation measurement indexes. A total of 25 large deformations were
obtained by combining the three AFPs (excluding the starting point), as shown in Figure 6.
As shown in Figure 7, we plotted the LOS deformation of the DInSAR in the space data; a
few monitoring points had low coherence and no deformation was obtained, so we plotted
them after completing the distance-weighted interpolation.
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In the data fusion, a differential evolution algorithm was used as a model parameter
solver [38]. Based on the correction benchmark established by the fusion (as shown in
Figure 8), the corrected LOS deformation during the satellite follow-up period was obtained,
as shown in Figure 9. In combination with Figure 6, it can be seen that before and after
the correction, the trend of the central area of the mining influence area gradually moved
to the southeast and the mining of the working face had not changed. However, after the
fusion, the LOS deformation in the center area reached the maximum value under the
geological and mining conditions. In addition, the deformation after fusion conformed to
the asymmetry phenomenon in the advancing process of the working face, and it retained
the difference in the LOS deformation at the edge of the deformed basin.
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Figure 9. LOS deformations after correction in the space data.

For verifying the correction accuracy, two observation lines were laid along the trend and
tendency of the working face, as shown in Figure 5. After the three-dimensional deformations
of the AFPs were converted to LOS deformations, the differences between the measurement
values and the correction values were used as the indexes for verification. Since the coordinates
of the AFPs and the DInSAR monitoring points were not uniform, four DInSAR monitoring
points adjacent to each AFP were selected, and the corrected LOS deformations of the AFPs
were obtained using the distance-weighted interpolation method. The coherence of the
monitoring points in the rectangular region was low and the LOS deformation was not
obtained, and so the AFPs in the region did not participate in the verification.

The accumulated LOS deformations and the correction accuracy are shown in Figure 10.
Using the differences in the LOS deformations before and after the correction as the verifi-
cation indicators, the maximum absolute value of the errors after correction was 143 mm,
which was approximately 6.4% of the maximum LOS deformation. In addition, there were
still two large errors (−112 mm and −89 mm), and the absolute values of the errors were
not more than 75 mm. For all errors, the mean absolute value was 36 mm. Compared with
the value of 399 mm before the correction, the error was reduced by 91%.



Remote Sens. 2023, 15, 4862 13 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 10. Accumulated LOS deformations and the correction accuracy: (a) LOS deformations be-
fore correction; (b) LOS deformations after correction; and (c) LOS deformations and correction ac-
curacies. 

4. Discussion 
4.1. Simulation Experiment Verification of the Data Fusion 

In this study, the subsidence prediction model was used for the fusion of the “space–
ground” data. In the LOS deformation simulation of the full mining influence area, the 
above BPM-EKTF subsidence prediction model was used. In order to simulate the incon-
sistency between the real surface deformation and the theoretical deformation predicted 
by the model, the LOS deformation was the combination of the two theoretical predicted 
deformations, and the combination ratio was 9:1. The relevant parameters are shown in 
Table 2. And, simulated LOS deformation is shown in Figure 11. 

Table 2. Relevant parameters in simulation experiment. 

Working Face and Geology 
Subsidence Prediction Model 

 A B 
Trend length =600 m Subsidence factor =0.85 

Tendency length =300 m Tangent of major influence angle =1.8 =2.0 
Mined velocity =3.4 m/day Horizontal displacement factor =0.3 
Mined depth =400 m Angle of maximum subsidence =87° 

Thickness of the coal seam =4.3 Deviation of inflection point =0 m 
Dip angle of the coal seam =5° Time influence factor c = 0.3 and k = 5 

The existence of phase loss makes it possible for the Sentinel 1 satellite to have confi-
dence only when the absolute value of an LOS deformation does not exceed 27.73 mm 
during the satellite follow-up period. In the space data simulation, only those values larger 
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4. Discussion
4.1. Simulation Experiment Verification of the Data Fusion

In this study, the subsidence prediction model was used for the fusion of the “space–
ground” data. In the LOS deformation simulation of the full mining influence area, the
above BPM-EKTF subsidence prediction model was used. In order to simulate the incon-
sistency between the real surface deformation and the theoretical deformation predicted
by the model, the LOS deformation was the combination of the two theoretical predicted
deformations, and the combination ratio was 9:1. The relevant parameters are shown in
Table 2. And, simulated LOS deformation is shown in Figure 11.

Table 2. Relevant parameters in simulation experiment.

Working Face and Geology
Subsidence Prediction Model

A B

Trend length =600 m Subsidence factor =0.85
Tendency length =300 m Tangent of major influence angle =1.8 =2.0
Mined velocity =3.4 m/day Horizontal displacement factor =0.3
Mined depth =400 m Angle of maximum subsidence =87◦

Thickness of the coal seam =4.3 Deviation of inflection point =0 m
Dip angle of the coal seam =5◦ Time influence factor c = 0.3 and k = 5

The existence of phase loss makes it possible for the Sentinel 1 satellite to have con-
fidence only when the absolute value of an LOS deformation does not exceed 27.73 mm
during the satellite follow-up period. In the space data simulation, only those values larger
than −27.73 mm were selected for each period. Moreover, for simulating the data error, a
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random number ranging from −2 mm to 2 mm was added. In the ground data simulation,
we deployed 21 simulated NFPs/AFPs along the trend from −50 m to 250 m on the left
side of the working face mining line. For simulating the data error, random numbers
ranging from −20 mm to 20 mm were added to the simulated subsidence and horizontal
displacements of the NFPs and AFPs, respectively.
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(mm), (c) LOS deformations (mm), and (d) LOS deformations along the tendency (mm).

In this section, the LOS deformation differences between the fusion data and the
simulation are used as the verification indexes. Combining the single-source data with the
subsidence prediction model, the LOS deformations in the mining influence area could also
be obtained. Therefore, verification indexes using only the space or ground data are also
given. As can be seen in Figure 12, when only the space data were used, the errors were
symmetrical along the direction of the working face. However, without the constraint of a
large deformation in the non-edge region, the maximum absolute value of the errors was
approximately 522 mm, which seriously deviated from the simulated LOS deformation.
When using only the space data, due to the missing deformation on one side of the mined
face, the theoretical deformation predicted by the model did not comply with the basic
principles of the mining subsidence. Although the errors had decreased, the maximum
absolute value was still as high as 383 mm. After fusion, the errors were symmetrical along
the direction of the working face. The errors were effectively reduced, with a maximum
absolute value of approximately 140 mm. Compared with the absolute mean errors of only
using the space and ground data (37 mm and 29 mm, respectively) the mean absolute error
after the data fusion was 16 mm, which reduced the errors by 56% and 45%, respectively.
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In addition, we also discussed the extension possibilities of the application scenarios and
the correction strategies.
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4.2. Possibility Analysis of the Method Extensions

This study proposed an LOS deformation correction method using DInSAR in a mining
area by fusing the ground data without control points. However, due to experimental
limitations, the extensible aspects of this method have not been described. Therefore, we
discussed the following two aspects:

• Extension of the application scenarios

In the ground data, it was challenging to find points with the same name in the
elevation from the cylinder, causing the tree trunks to be applied only for extracting the
horizontal displacement. Additionally, most of the tree trunks were not suitable due to
the requirement of being perpendicular to the ground. This was the reason why the data
acquisition methods could not be used where building clusters did not exist. In recent
research, Sun et al. [39] extracted the cross-sectional information of the tank, including
the circle’s center within each cross-section. As shown in Figure 13, both the tree trunk
and the tank belonged to cylinders. By utilizing this approach, the circle centers within
various cross-sections could be used to fit a straight line that represented the inclination
of a tree trunk. When combined with the ground point cloud, the circle center where the
tree trunk connected with the ground could be determined, allowing for the simultaneous
calculations of the subsidence and horizontal displacement. Consequently, the application
scenarios of this method were extended.
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• Extension of the correction strategies

In the LOS deformation correction, the missing large deformation in the DInSAR was
recovered by replacing the FCP of the DInSAR with that of the data fusion. Recovering
the lost FCP by unwrapping is a more systematic approach. To recover the lost LOS
deformation, Jiang et al. [40] converted the theoretical deformation obtained by the “LOS
deformation of DInSAR + subsidence prediction model” into a wrapped DP, and they
removed it from the interferometric phase and unwrapped it again. Jiang et al. [26] adopted
the same approach to extract large-gradient three-dimensional displacements in mining
areas. However, they only used single-source space data. As shown in Figure 14, applying
this approach to the method in this paper by utilizing the fused “space–ground” data may
obtain better results.
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5. Conclusions

In this study, we proposed an LOS deformation correction method for DInSAR in
mining areas by fusing ground data without control points. Based on free space data, small
deformations iat the edge areas of the mining influence area were accurately obtained
using DInSAR. By combining the leveling/GNSS and TLS methods, it was possible to
obtain large deformations in the central area without the need for control points located
outside the mining influence range. For overcoming the non-uniform coordinates of the
“space–ground” data and the limited overlap of the effective measurement ranges, the
subsidence prediction model was employed to assist in the fusion. In addition, in the LOS
deformation correction, we retained the non-full cycle phase of the DInSAR and replaced
the full cycle phase with that of the data fusion.

Engineering experiments showed that the correction results preserved the differences
in the LOS deformations at the edge areas of the mine influence range, and we recovered
the lost LOS deformation at the center area. Using the differences in the LOS deformations
before and after correction as the verification indicators, the maximum absolute value of
the errors after correction was 143 mm, which was approximately 6.4% of the maximum
LOS deformation. In addition, there were still two large errors (−112 mm and −89 mm),
and the absolute values of the errors were not more than 75 mm. For all the errors, the
mean absolute value was 36 mm. Compared with the 399 mm value from before correction,
the error was reduced by 91%.

In the discussion, the fusion of the “space–ground” data was verified based on the
simulation experiments, and the LOS deformation differences between the fusion data
and the simulation were used as the verification indexes. After fusion, the errors were
symmetrical along the direction of the working face, and the errors had been effectively
reduced, with a maximum absolute value of approximately 140 mm. Compared with
the absolute mean error of only using the space and ground data (37 mm and 29 mm,
respectively), the mean absolute error after the data fusion was 16 mm, which reduced the
errors by 56% and 45%, respectively. In addition, we discussed the extension possibilities
of the application scenarios and the correction strategies.
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