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Abstract: Demand for food and water are increasing while the extent of arable land and accessible
fresh water are decreasing. This poses global challenges as economies continue to develop and the
population grows. With agriculture as the leading consumer of water, better understanding how
water is used to produce food may help support the increase of Crop Water Productivity (CWP;
kg/m3), the ratio of crop output per unit of water input (or crop per drop). Previous large-scale
CWP studies have been useful for broad water use modeling at coarser resolutions. However,
obtaining more precise CWP, especially for specific crop types in a particular area and growing
season as outlined here are important for informing farm-scale water management decision making.
Therefore, this study focused on California’s Central Valley utilizing high-spatial resolution satellite
imagery of 30 m (0.09 hectares per pixel) to generate more precise CWP for commonly grown and
water-intensive irrigated crops. First, two products were modeled and mapped. 1. Landsat based
Actual Evapotranspiration (ETa; mm/d) to determine Crop Water Use (CWU; m3/m2), and 2. Crop
Productivity (CP; kg/m2) to estimate crop yield per growing season. Then, CWP was calculated
by dividing CP by CWU and mapped. The amount of water that can be saved by increasing CWP
of each crop was further calculated. For example, in the 434 million m2 study area, a 10% increase
in CWP across the 9 crops analyzed had a potential water savings of 31.5 million m3 of water. An
increase in CWP is widely considered the best approach for saving maximum quantities of water.
This paper proposed, developed, and implemented a workflow of combined methods utilizing cloud
computing based remote sensing data. The environmental implications of this work in assessing
water savings for food and water security in the 21st century are expected to be significant.

Keywords: crop water productivity; evapotranspiration; water savings; remote sensing; crop produc-
tivity; Google Earth Engine; crop water use; food security

1. Introduction

Water availability and its role in agriculture is becoming ever more crucial to the
health of our nations, economies, and the natural environment. Water scarcity has become
a worldwide concern in recent decades, and is expected to further increase due to socio-
economic and climatic changes [1]. As the global population continues to climb in the 21st
century, demand for food and water is accelerating whereas availability of sustainable
arable land and accessible fresh water are declining. Food and water security for the
estimated 10 billion people by 2050 and 12 billion people by 2100 will require a major
shift in how land and water are used to produce food [2]. This looming problem may
be mitigated by increasing agricultural Crop Water Productivity (CWP), or the ratio of
crop yield over water consumed, to produce more food with less water [3]. Growing
food demands and increasing standards of living have raised global water use 8-fold from
around 500 to 4000 km3/yr from 1900–2010 [4]. In the last century water use grew at
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almost twice the rate of population increase [5]. Having accessible fresh water to grow
enough food to feed the planet in the 21st century has become increasingly challenging as
the world’s population added one billion people since 2007 and two billion since 1994 [6]
reaching 8 billion in 2022 [7]. The need for irrigated food production is projected to increase
by more than 50% by 2050; however, the amount of water withdrawn by agriculture can
increase by only 10% with current infrastructure and availability [2].

With demand for agricultural products expected to exceed production by 2050, address-
ing the needs of an increasing global population coupled with decreased water availability
presents a significant challenge. A solution to address this problem is to increase crop
production while decreasing water consumption by sustainably improving CWP. A better
understanding of the variables that affect CWP including crop water use may support
production of more crops with less water. Several studies have been done to calculate
Actual Evapotranspiration (ETa) using remote sensing (e.g. Wong et al. [8], Schauer and
Senay [9], Senay et al. [10], He et al. [11], Semmens et al. [12]). As these studies and others
demonstrate great capabilities in Evapotranspiration and water use analysis, few provide
sufficient data on crop yield per unit of water used. Remote sensing based CWP studies
that can distinguish various crops from diverse fields are still in the nascent stage, espe-
cially using higher spatial resolution data such as Landsat [13–15]. However, the potential
usefulness for such studies is great given the ability of high-resolution remote sensing to
capture field level CWP and assess different crops in different growing seasons.

Due to a steadily increasing demand for water during the last few decades, water
scarcity has become a threat to the sustainable development of society [16]. Globally,
agriculture comprises approximately 70–90% of human freshwater use [4,17,18]. Better
quantification of agricultural water use relative to crop yield may help improve how water
is used to produce food at field and regional extents. Establishing a framework to better
understand CWP is important for rapidly changing agricultural regions shifting from lower
value annual crops to higher value and more water-intensive perennials. For example,
in the Central Valley of California (CVC) row crops have been increasingly shifted to
longer-lived drought intolerant cropland such as orchards in recent years [19]. CWP studies
with remote sensing data that can be tracked over time to adapt to changing agricultural
practices may support improved understanding of the impacts of crop changes on CWP.

The overarching goal of this study is to better understand, model, map, and monitor
agricultural CWP of some of the leading world crops using remote sensing. This study
aims to provide a set of methodologies to calculate ETa and CWP with Google Earth Engine
(GEE) at 30 m resolution. Our approach was to develop a suite of methods utilizing various
data sets including ground based meteorological data and local agricultural statistics for
a benchmark study location as a test of concept. Major research questions to answer
include: What is the CWP of world staple crops and high-water consuming crops, how
does CWP vary between crops, and how much water can be potentially saved by increasing
CWP? Major objectives of this paper include to establish methods for ETa and CWP
modeling, mapping, and monitoring. In the future this benchmark study site may be used
to provide insight to scale up to larger areas and greater time-series leveraging the power
of cloud computing.

2. Materials and Methods
2.1. Study Area

The area of study is within the CVC, a narrow (50–110 km) north–south trending,
elongated (640 km) alluvial valley with a highly irrigated agriculture industry estimated to
be worth over $50 billion [20]. As variation in weather and growing/irrigation practices
can vary across the valley, we chose a CVC county-scale region for analysis. We used
geospatial datasets containing overlapping Landsat images with low cloud cover in close
proximity to weather stations to provide ground data. We focused on the southern CVC,
which has a hotter and drier climate relative to its northern section and thus more heavily
irrigated crops. Therefore, the region centered around the California Irrigation Manage-
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ment Information System (CIMIS) Firebaugh/Telles weather station number 7 (Latitude:
36.851222, Longitude: −120.59092) was chosen (Figure 1). This station at an elevation of
56 m [21] and approximately 61 km west of Fresno surrounded by mostly low gradient
agricultural land collects inputs utilized in our modeling approach. This area, with its
diverse row, paddy, orchard, and vineyard crops, is ideal for assessing commonly-grown
and water-intensive crops of interest. The zone of study is 1135.54 km2 in area (373 km2

cropland) with a perimeter of 135.26 km that comprises about 1.25 million pixels in Landsat
8 imagery at 30 m resolution.

Figure 1. Select crop type Cropland Data Layer (CDL) map. Study area map displaying almonds,
cotton, winter wheat, pistachios, grapes, barley, rice, corn, and walnuts within the Central Valley
of California centered around Firebaugh, California for 2016. Data inset map displays Fresno
County highlighted.

All analyses were performed in our study area predominantly in Fresno County
within the greater San Joaquin Watershed (SJW). The SJW contains various land use types
including cropland, pasture-based livestock farming, and forests. Major crops grown in the
SJW include nuts, vegetables, cotton, fruits, and field crops. The soils are mostly clay loams
to fine sandy loams [22]. The SJW has a typical Mediterranean climate, with cool, rainy
winters and hot, dry summers. Its annual average rainfall ranges from 200 to 300 mm with
the majority of rainfall during November to April with little from May to October [23]. With
its variable climatic conditions, the CVC is highly dependent on irrigation demanding 80%
of California’s complex water allocation system delivering almost five times the amount
of surface water than the annual average state runoff can support [24]. Several irrigation
districts provide water to users through irrigation canals and aqueducts in the SJW. With
sparse surface water and increased stress on the water supply system due to prolonged
drought, many farmers have turned to limited groundwater sources [23].

2.2. Meteorological Data

Meteorological data provided by the CIMIS weather station network were used to
derive Reference Evapotranspiration (ETo) to aid in calculations of crop water use. CIMIS
was established by the California Department of Water Resources and the University of
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California Davis in 1982 to provide weather information for irrigation management [25].
This system provides over 145 automated weather stations that collect and store climato-
logical data around California. Integral to this study, the CIMIS network also calculates
and disseminates standardized ETo updated on a daily basis. CIMIS methods for ETo
calculation use hourly equations as described by Allen et al. [26] that are summed over
24 h computing daily ETo (mm/d) [27]. These daily ETo (mm/d) values derived from
grass reference measurements were taken from dates corresponding with each Landsat
image analyzed.

2.3. Cropland Data

The Cropland Data Layer (CDL) from the U.S. Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS) [28] was used to select almonds, cotton,
winter wheat, pistachios, grapes, barley, rice, corn, and walnuts (Figure 1). The CDL is
a comprehensive, raster-formatted, georeferenced, crop specific land cover classification
product that utilizes orthorectified imagery to geospatially identify field crop types [29].
This remote-sensing based annual product has provided conterminous coverage of the
U.S. at 30 m resolution since 2010 [30,31]. The food and fiber crops present in the study
area in various amounts were chosen to be representative of world staple and prominent
high-water consuming crops.

2.4. Landsat Satellite Sensor Data

Monitoring change in agricultural systems is vital for understanding food production,
water conservation, climate change, and evaluating major environmental challenges [31,32].
This can be completed more efficiently by analyzing large agricultural areas with satellite-
based remote sensing. Landsat 8 Tier 1 Collection 1 Surface Reflectance images imported
and processed via the GEE cloud-based image catalog were used for analysis. The imagery
contains five visible and near-infrared (VNIR) bands and two short-wave infrared (SWIR)
bands processed to orthorectified surface reflectance, as well as two thermal infrared (TIR)
bands processed to orthorectified brightness temperature pre-processed by the United
States Geological Survey (USGS). These data have been atmospherically corrected using
the Landsat Surface Reflectance Code algorithm and includes a cloud, shadow, and snow
mask produced using the C Function of Mask algorithm as well as a per-pixel saturation
mask [33]. To select viable images a filter was applied in GEE to select 18% or less overall
cloud cover for all Landsat 8 images covering the study area in 2016. This atmospheric
threshold was established by examining images to maximize cloudless scenes of cropland
areas at this location. Images were then visually inspected for cloud-free coverage of study
area croplands. To provide more accurate raster ETa maps, 15 cloud-free Landsat 8 images
from 2016 were utilized for ETa analysis in this study.

2.4.1. Growing Season and NDVI

The growing season of each crop was determined based on Normalized Difference
Vegetation Index (NDVI), a widely recognized remote sensing index to monitor crop
health and phenology. As cropping patterns change in the CVC, 2016 was chosen due to
the diversity of both annual row and perennial tree crops present in the relatively small
agricultural study area at this time. Next, as California experienced a drought considered
to be one of the worst in state history from 2012–2016 [34,35], CWP was of great concern as
agricultural drought impacts in California were often buffered by local groundwater [36].
Moreover, a GEE time-series yearly rainfall analysis from 2000–2021 using the Climate
Hazards group Infrared Precipitation with Stations (CHIRPS) [37] was performed over the
CVC. From this assessment, 2016 was chosen on being the maximum CVC year of annual
precipitation between 2012–2016 to not reflect extreme drought conditions yet to still be
within the moderate 25–75% percentile range from 2000–2021.

To determine NDVI of select crop types, data points were manually input to pinpoint
nine crop types [28] within the study area as separate geometries in GEE. Then, GEE
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time-series image processing of NDVI at these points spanning the 2016 Landsat 8 image
collection at 18% or less cloud cover was performed. In this analysis, NDVI represents
the ratio of the difference between the near-infrared (NIR) and red bands divided by the
sum of the NIR and red bands utilzing Equation (1) where ρnir and ρr are measured surface
reflectance values of NIR and red spectral bands [38].

NDVI =
ρnir − ρr

ρnir + ρr
(1)

Year-round NDVI data specific to each crop type from 19 Landsat images with at
least one image per month were produced. Whereas only 15 cloud free images were used
for per pixel ETa calculation, more images could be used for NDVI yearly analysis as
points of selection for each crop could be selected outside of sparsely cloudy areas. These
measurements were used to determine substantial increases and decreases in NDVI to
demarcate the beginning and ending of each growing season for subsequent ETa, Crop
Water Use (CWU), and CWP calculations. The growing season for cotton, winter wheat,
grapes, barley, rice, and corn was estimated to be 15 May–15 November, 15 January–15
May, 15 March–15 November, 15 January–15 May, 15 May–15 November, and 15 April–
15 September, respectively. As these Landsat 8 images providing daily ETa values were
scattered throughout the year, to estimate growing season, the start and end date was
rounded either to the 1st or 15th of the month depending on which date the image was
closer to. The growing season was considered year-round for tree nut crops including
almonds, pistachios, and walnuts.

2.4.2. Land Surface Temperature Data from Thermal Bands

Land Surface Temperature (LST) derived from TIR imagery acquired from satellites
such as Landsat has successfully been used to estimate evapotranspiration over a range of
spatial scales [12]. LST (oC) maps were produced from instantaneous Landsat 8 thermal
band values collected at the time of overpass to aid in ETa calculation. To determine image
thermal properties, the TIR Band 10 (B10) containing brightness temperature was selected
to provide less image noise relative to TIR Band 11. While originally collected with a
resolution of 100 m/pixel, B10 has been resampled using cubic convolution to 30 m with a
wavelength of 10.6–11.2 µ and a scale of 0.1 [33].

2.5. Methods for Workflow

The methods for this research are outlined in Figure 2.
ETa has become a standard measurement for water resource users and managers to

accurately determine consumptive water use over large spatial and temporal extents. This
measurement represents a major component in the water cycle as most water consumption
can be derived via ETa as water returns to the atmosphere via evaporation from the surface
and transpiration from plants. ETa is an ideal measurement for remote sensing as it occurs
throughout the day making it optimal for polar orbiting satellites such as Landsat that
have a single site visit per day during daylight hours. Methods for determining CWP were
based on daily ETa calculated for each Landsat 8 image analyzed are described below.
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Figure 2. Crop Water Productivity (CWP) methodology flowchart. Order of operations utilized in this
CWP analysis. Crop Yield, Crop Area, and Crop Productivity were based on a single annual value
per crop type. ETf, ETo, ETa were derived as daily values throughout the year. ETf and ETa values
were calculated per pixel from Landsat 8 images. ETo was acquired from CIMIS data corresponding
to Landsat 8 image overpass dates. CWP, CWU, and Economic CWP values were derived from
these previous datasets. ETa = Actual Evapotranspiration, ETo = Reference Evapotranspiration,
ETf = Evaporative Fraction, CIMIS = California Irrigation Management Information System [21],
CDL = Cropland Data Layer [28].

2.5.1. Step 1: Reference Evapotranspiration (ETo)

Reference Evapotranspiration (ETo) represents the amount of water used by a specific
reference crop, usually a well-watered grass with known measurements [39]. ETo charac-
terizes the rate of evapotranspiration from a hypothetical reference crop with an assumed
crop height of 0.12 m, a fixed surface resistance of 70 s/m, and an albedo of 0.23 [40]. We
acquired daily grass reference ETo from 19 CIMIS weather stations throughout the southern
CVC corresponding to each Landsat image date analyzed [28]. ETo (mm/d) data was
then Kriging interpolated to produce raster maps for each Landsat image date analyzed
throughout 2016 to aid in ETa calculation.

2.5.2. Step 2: Evaporative Fraction (ETf)

Evaporative Fraction (ETf) is the ratio of latent heat to total available energy over
land surfaces to infer daily energy balance information based on midday remote sensing
measurements [41]. To determine ETf, LST maps were produced from instantaneous
thermal values at the time of image acquisition for pixel selection based on methods from
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Senay et al. [42]. This included a Hot Pixel (Th) from non-vegetated land, a Cold Pixel (Tc)
from cropland, and a Pixel X (Tx) representing the LST of any pixel for analysis. Hot and
Cold Pixels were selected based on the 94th–95th and 5th–6th percentile temperature ranges
of a LST histogram. Maps of these were overlaid to select pixels between these designated
temperature ranges to produce per pixel ETf (unitless) maps at the time of overpass with
Equation (2) for each image analyzed.

ETf =
Th − Tx

Th − Tc
(2)

where:
ETf = Evaporative Fraction, 0–1 (unitless);
Tc = Land Surface Temperature of cold pixel (°C;)
Th = Land Surface Temperature of hot pixel (°C);
Tx = Land Surface Temperature of any pixel (°C).

2.5.3. Step 3: Actual Evapotranspiration (ETa) and Crop Water Use (CWU)

ETa was calculated based on the Simplified Surface Energy Balance (SSEB) model
(Equation (3)) [42]. This was determined per pixel by multiplying a ETo map (mm/d)
by an ETf (unitless) map, producing an ETa (mm/d) raster map (Figure 3). This model
was selected as a test of concept for our methodology as SSEB has been well established
worldwide in various environments allowing scalability for the diverse and complex CVC
cropping patterns. This model provides a framework for ETa monitoring in irrigated
croplands suitable for this study with highly irrigated and variable crop fields allowing
flexibility for local conditions. However, we acknowledge there are more advanced versions
of SSEB based remote sensing ETa models such as Senay et al. 2013 [43], 2018 [44], 2022 [45],
and 2023 [46].

Image analysis was performed utilizing GEE cloud computing of Landsat images
to produce ETa (mm/d) raster maps at 30 m resolution for 15 images spanning 2016
(Figure 4). Crop specific ETa was then determined by overlaying a CDL crop type map
to generate 115,000 evenly spaced points across the image. Values from these points
were then extracted to export a dataset designating both ETa and crop type per point.
From this, ETa was averaged per crop for each image to provide daily ETa (mm/d) per
crop per image. For January and May, cloud free Landsat 8 images were not available to
produce a complete per pixel study area ETa map. Therefore, January and May ETa were
interpolated based on a ratio of calculated ETa/NDVI per crop from each image analyzed
based on crop specific NDVI analysis selected from cloud free points in January and May
images. This ratio was then averaged over the less than a year growing seasons for cotton,
winter wheat, grapes, barley, rice, and corn. For the tree crops almonds, pistachios, and
walnuts considered to have year-round growing seasons, the ETa/NDVI ratio to estimate
January and May ETa was determined by averaging three-month intervals of ETa/NDVI
closest to the corresponding interpolated month. This per crop growing season ETa/NDVI
ratio was then multiplied by respective January and May NDVI per crop to estimate a
daily ETa (mm/d) to represent May and January allowing for ETa estimation per month
throughout 2016.

Daily ETa values calculated from this study were utilized to extrapolate total CWU
(m3) and CWU per area (m3/m2). Out of the 15 Landsat images used in this study, February,
April, July, August, and September had two images per month. Therefore, the two ETa
values per month were averaged to provide a daily average crop ETa (mm/d) per month.
For months with only one cloud free image available or an interpolated ETa, the ETa
calculated that month was used to represent daily crop ETa (mm/d) for that month. Next,
ETa (mm/d) was converted to mm/month by multiplying by days per month. Then, ETa
(m/month) was multiplied by crop area (m2) to produce total CWU (m3) per month. If the
crop growing season started or ended approximately at the month halfway mark (cotton,
winter wheat, grapes, barley, rice, and corn), total CWU (m3) for that month was divided
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by half. Then, the monthly total CWU (m3) of each crops respective growing season was
summed to estimate total CWU (m3) per crop. The total CWU (m3) was then divided by
crop area (m2) to produce CWU per area (m3/m2).

ETa = ETf ∗ ETo (3)

Figure 3. Actual Evapotranspiration (ETa) map production process. Per pixel ETa (mm/d) maps at
30 m resolution produced from image processing by multiplying Evaporative Fraction (ETf) (unitless)
by Reference Evapotranspiration (ETo) (mm/d).

Figure 4. Actual Evapotranspiration (ETa) study area map. Example of per pixel ETa (mm/d) map
from a Landsat 8 image [33] for 7 August 2016. Higher ETa displayed in red and lower ETa in blue at
30 m resolution.

2.6. Methods for Calculating Crop Productivity (kg/m2)

Crop Productivity (CP), a measure of crop yield (kg) per area (m2) (Equation (4)) was
used to determine CWP. CP (kg/m2) was calculated from the California Department of
Food and Agriculture (CDFA) [47,48] published 2016 ratio of crop yield per crop area
and then scaled to the study area. This statewide ratio (kg/m2) was then multiplied
by crop area (m2) to estimate crop yield within the study area (Table 1). Similar to crop
estimation methods of Cai and Sharma [15] who used district level statistical data to linearly
extrapolate yield for water productivity, the accuracy is bounded by a satisfactory range as
census data is governed by accepted state and national standards [15,48].
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Crop Productivity (kg/m2) =
Crop Yield (kg)
Crop Area (m2)

(4)

Table 1. Crop Productivity (CP) (kg/m2) data. CP and yield (kg) estimated for nine commonly-grown
and water-intensive crops in the Central Valley of California study area. Based on CDFA yield per
area data for 2016 [48].

Crop Type Crop Area (m2) Crop Yield (kg) Crop Productivity (kg/m2)

Almonds 158,556,066 40,520,371 0.26
Cotton 108,200,973 20,132,373 0.19
Winter Wheat 84,959,597 44,567,062 0.52
Pistachios 37,588,230 15,799,336 0.42
Grapes 29,242,400 32,948,449 1.13
Barley 8,538,869 3,445,550 0.40
Rice 5,247,748 5,201,005 0.99
Corn 1,497,109 1,738,476 1.16
Walnuts 509,877 249,177 0.49

2.7. Methods for Calculating Crop Water Productivity (CWP)

CWP (kg/m3) is the ratio of Crop Productivity (CP; kg/m2) divided by Crop Water
Use (CWU; m3/m2) (Equation (5)) or total crop yield (kg) divided by total CWU (m3) for a
given area representing the volume of water used to produce a certain amount of crop [49].
Prior to calculating CWP, CWU was calculated for each crop type based on ETa (mm/d),
and CP was estimated from agricultural reports [48]. From this, an average CWP was
calculated for almonds, cotton, winter wheat, pistachios, grapes, barley, rice, corn, and
walnuts by dividing each respective CP by CWU. The estimated 2016 growing season
in the study area for almonds, pistachios, and walnuts was considered year-round with
cotton, wheat, grapes, barley, rice, and corn estimated to be 185, 122, 246, 122, 185, 185 days
respectively.

Crop Water Productivity (kg/m3) =
Crop Productivity (kg/m2)

Water Use (m3/m2)
(5)

2.8. Methods for Estimating Crop Water Savings or Yield Increase by Increasing CWP

Changes in CWP can be used to determine potential crop water savings or yield
increases. For a hypothetical demonstration, the value of CWP (kg/m3) per crop was
increased by 10, 20, and 30%. First, crop yield (kg) was determined by multiplying total
CWU (m3) by CWP per crop. To estimate the amount of water (m3) that could be saved
by increasing CWP and maintaining yield, the original total crop yield was divided by the
CWP value increased at 10, 20, and 30% to provide new total CWU (m3) estimates at each
respective CWP increase. These modified total CWU estimates were then subtracted from
the original total CWU to provide the amount of water that can be saved (m3) by increasing
CWP. Next, to determine potential yield increase while maintaining total CWU (m3), CWP
increased at 10, 20, and 30% was multiplied by the original total CWU (m3) per crop. From
this, the original total crop yield may be subtracted from the increased yield calculated at
each respective CWP increase to provide the amount of yield gained by increasing CWP.

There are three main ways to increase CWP: reduce applied water use while maintain-
ing crop yields, increase crop yield while maintaining CWU, or a combination of decreasing
CWU and increasing crop yield. While CWP analysis can elucidate water savings po-
tential and provide an incentive to increase CWP, a detailed methodology on how to do
so is beyond the scope of our objectives. For broad-scale CWP solutions, a combination
of biological water-saving measures with engineering solutions and agronomic and soil
manipulation may be most successful [50]. Existing agricultural tactics that can be imple-
mented at the farm to national scale include precision agriculture, drip irrigation, organic
soil remedies, buffer strips and wetland restoration, new crop varieties that reduce needs
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for water and fertilizer, perennial grains and tree-cropping systems, paying farmers for
environmental services, soil management practices, and proper plant nutrition [49,51–58].

3. Results
3.1. Crop Type Areas

Results from the nine crops analyzed comprised 38.24% of the 1135.93 km2 area
(Table 2).

Table 2. Table of crop area. Crop area (m2) and percentage of study area for almonds, cotton, winter
wheat, pistachios, grapes, barley, rice, corn, and walnuts [28].

Number Crop Percent of Study Area (%) Area (m2)

1 Almonds 13.96 158,556,066
2 Cotton 9.53 108,200,973
3 Winter Wheat 7.48 84,959,597
4 Pistachios 3.31 37,588,230
5 Grapes 2.57 29,242,400
6 Barley 0.75 8,538,869
7 Rice 0.46 5,247,748
8 Corn 0.13 1,497,109
9 Walnuts 0.04 509,877

All select crop 38.24 434,340,869
All Other 61.76 888,071,759
Total 100 1,135,931,091

3.2. Actual Evapotranspiration (ETa) Results

ETa calculated in this study ranged considerably with rice at the highest ETa (4.39 mm/d)
and pistachios at the lowest (1.45 mm/d) (Table 3). Corn, cotton, and almonds had higher
ETa at 4.23, 3.50, and 3.32 mm/d respectively. Barley, winter wheat, and walnuts had lower
ETa at 1.89, 1.82, 1.76 mm/d respectively. Grapes had moderate ETa at 2.68 mm/d. Given
the CDL based crop area [28] and total CWU (m3) per crop derived in this study, a ratio
of CWU per area also determined to asses CWU (Table 3). CWU (m3/m2) also ranged
considerably with almonds representing the highest at 1.21 m3/m2 and winter wheat the
lowest at 0.25 m3/m2. Rice, grapes, and cotton were also higher water consumers per area
with values of 0.91, 0.90, and 0.72 m3/m2 respectively. Corn had a moderate CWU per area
at 0.70 m3/m2. On the lower end were walnuts, pistachios, and barley at 0.64, 0.53, and
0.27 m3/m2 respectively.

Table 3. Table of Crop Water Use (CWU). Table displaying crop area (m2) [28], averaged daily Actual
Evapotranspiration (ETa) (mm/d), total CWU (m3), and CWU per area (m3/m2) by crop type per
growing season.

Crop Type Crop Area ETa Total CWU CWU per Area
(m2) (mm/d) (m3) (m3/m2)

Almonds 158,556,066 3.32 191,968,501 1.21
Cotton 108,200,973 3.50 78,273,341 0.72
Winter Wheat 84,959,597 1.82 21,512,784 0.25
Pistachios 37,588,230 1.45 19,945,161 0.53
Grapes 29,242,400 2.68 26,249,854 0.90
Barley 8,538,869 1.89 2,322,164 0.27
Rice 5,247,748 4.39 4,767,264 0.91
Corn 1,497,109 4.23 1,050,105 0.70
Walnuts 509,877 1.76 328,008 0.64

Total 434,340,869 346,417,181
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3.2.1. Comparison of Actual Evapotranspiration (ETa)

ETa calculated in this study were compared with scientific publications documenting
ETa for the same crops. This resulted in 29 different ETa values from 21 sources (Table 4).
Some sources included either more than one year of study and location or provided ETa
for more than one crop type. Although uncertainties exist in comparing ETa from various
locations and different years, this provides a baseline benchmark for comparison.

Table 4. Actual Evapotranspiration (ETa) compared to scientific publications. Comparison of average
ETa (mm/d) calculated from this study to a literature review of published sources. References,
locations, and available measurement years from each source are listed. Note for USA locations the
state is provided.

Crop Type
This Study From References

ETa Calculated (mm/d) ETa Average Reference
(mm/d) ETa References (mm/d) Location Year (s) References

Almonds 3.32 4.06

4.01 California 2018 [59]
3.30 California 2018 [59]
4.36 California 2016 [60]
4.57 Australia 2008–2009 [61]

Cotton 3.50 4.84 4.76 Arizona 2009 [62]
4.91 Arizona 2011 [62]

Winter wheat 1.82 2.00 1.60 China 1995–2000 [63]
2.40 China 1987–1997 [63]

Pistachios 1.45 4.46
3.73 California 2016 [60]
4.43 California 1984 [64]
5.23 California 2016–2017 [65]

Grapes 2.68 3.23

3.85 Brazil 2002-2003 [66]
1.32 Australia 2010-2012 [67]
4.15 California 2013–2014 [12]
3.60 California 2013–2014 [12]

Barley 1.89 2.49
2.48 Ethiopia 2010 [68]
2.25 Tunisia 2001–2002 [69]
2.74 Czech Republic 2011–2014 [70]

Rice 4.39 4.64

4.05 Philippines 2008–2009 [71]
5.30 India 1994 [72]
6.10 California 2007 [73]
3.10 Bangladesh 2007 [74]

Corn 4.23 4.32

5.77 California 2018 [59]
4.49 California 2018 [59]
3.15 China 1987–1997 [75]
3.87 Colorado 2008–2013 [76]

Walnuts 1.76 4.65
4.89 California 1998 [77]
4.65 California 2011–2016 [77]
4.41 California 2002 [78]

3.2.2. ETa from This Study in Comparison to OpenET

Actual Evapotranspiration (ETa) values calculated in this study, referred to here as
Foley ETa (for naming purposes to note comparison) were compared to OpenET [47]
(Figure 5). OpenET is a remote sensing-based evapotranspiration product that provides
an ensemble monthly evapotranspiration approximating consumptive water use based on
satellite data (including Landsat, Sentinel-2, GOES, and others), weather station networks
and models, and field boundary and crop type datasets [47]. The OpenET ensemble product
integrated from the GEE catalog used in this study is derived from well-established Surface
Energy Balance (SEB) ETa models including ALEXI/DisALEXI [79,80], geeSEBAL [81,82],
METRIC [83–85], PT-JPL [86], SSEBop [43,44], and SIMS [87,88]. This ensemble product is
comparable to Foley ETa as it also utilized grass surface reference ETo from CIMIS data [47].

To compare Foley ETa (mm/d) from this study to OpenET, the total monthly OpenET
value (mm) was disaggregated by dividing by the number of days in the month. For
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example, the total monthly value for June 2016 was divided by 30 (days) to provide a
daily mm/d value. Then in GEE, 500 randomly selected points within the study area
were utilized to acquire a per-pixel ETa value from OpenET and Foley ETa for each crop
type. Outliers (5.27% of sample) were removed using Cook’s Distance analysis [89] and
linear regression analysis was done on the remaining points in R programming language
for statistical computing [90]. With all crops pooled for June 2016 the R2 value was 0.89
(Figure 5). This coefficient of determination relationship demonstrates a strong statistical
correlation with ETa calculated in this study.

Figure 5. Comparison of calculated Actual Evapotranspiration (Foley ETa) with OpenET. Calculated
ETa from this study referred to as Foley ETa (mm/d) plotted versus OpenET (mm/d) [47] for nine
commonly grown and water intensive crops in the Central Valley of California field site for June 2016.
Note that monthly OpenET in total mm has been disaggregated to mm/d by dividing by days in the
month. The linear regression equation is Foley ETa = 1.04*OpenET + 0.293 with R2 = 0.89.

3.3. Crop Water Productivity Results

An average CWP was determined and mapped for almonds, cotton, winter wheat,
pistachios, grapes, barley, rice, corn, and walnuts for the 2016 growing season (Table 5,
Figure 6). Winter wheat resulted in the highest CWP at 2.07 kg/m3 whereas almonds had
the lowest at 0.21 kg/m3. Corn, barley, and grapes had higher CWP of 1.66, 1.48, and
1.27 kg/m3 respectively. Pistachios, walnuts, and cotton had lower CWP of 0.79, 0.76, and
0.26 kg/m3 respectively. These values provide insight into how much water a crop used to
produce a certain amount of yield in a given area. A higher CWP value indicates the crop is
using less water to produce more yield relative to lower CWP. For example, not taking into
account other factors such as nutritional content, winter wheat has a ten-fold higher CWP
than almonds, suggesting it takes significantly more water to produce the same biomass of
yield of almonds versus winter wheat.
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Table 5. Crop Water Productivity (CWP) by crop type. Average CWP (kg/m3) displayed for nine
crops within the study area for 2016. Total crop yield, total Crop Water Use (CWU), and CWP is
represented for each crops growing season. Total CWU is based on daily average ETa calculated in
this study.

Crop Type Crop Area Yield CWU CWP
(%) (m2) (kg) (m3) (kg/m3)

Almonds 13.96 158,556,066 40,520,371 191,968,502 0.21
Cotton 9.53 108,200,973 20,132,373 78,273,341 0.26
Winter Wheat 7.48 84,959,597 44,567,062 21,512,784 2.07
Pistachios 3.31 37,588,230 15,799,336 19,945,161 0.79
Grapes 2.57 29,242,400 32,948,449 26,249,854 1.26
Barley 0.75 8,538,869 3,445,550 2,322,164 1.48
Rice 0.46 5,247,748 5,201,005 4,767,264 1.09
Corn 0.13 1,497,109 1,738,476 1,050,105 1.66
Walnuts 0.04 509,877 249,177 328,008 0.76

Figure 6. Crop Water Productivity (CWP) map of the study area. Average CWP (kg/m3) for nine
commonly grown and water intensive crops in the Central Valley of California in 2016 by crop type.
Higher CWP displayed in red and lower CWP displayed in blue.

A literature review of CWP documenting the reference, location, and year of measure-
ment was compared to CWP in this study in Table 6. Twenty-six sources providing CWP
were reviewed resulting in 44 CWP values as some sources listed multiple years of study,
locations, and/or crops. This provided at least two different published CWP values per
crop for comparison.



Remote Sens. 2023, 15, 4894 14 of 23

Table 6. Crop Water Productivity (CWP) compared to scientific publications. CWP (kg/m3) calculated
in this study compared to published sources by crop type documenting location, year(s) when
available, and reference. Note USA locations list the state where data were acquired.

This Study From References
Crop Type Crop Area (%) CWP CWP Average CWP Location Year (s) References

Almonds 13.96 0.21 0.39

0.28 California 2005–2009 [91]
0.25 Spain 2004–2006 [92]
0.21 Spain 2017 [93]
0.69 California 2001–2009 [23]
0.53 California 2010–2018 [23]

Cotton 9.53 0.26 0.36

0.24 Global 1977–2002 [94]
0.52 California 2001–2009 [23]
0.62 California 2010–2018 [23]
0.42 Uzbekistan 2007 [95]
0.46 Uzbekistan 2007 [96]
0.28 Uzbekistan 2006 [97]
0.23 India 2002 [98]
0.08 India 2014 [99]

Winter Wheat 7.48 2.07 1.36

1.15 Global 1977–2002 [94]
1.09 Global 1979–2016 [49]
0.98 Global 1998–2008 [100]
1.20 Australia 2007–2012 [101]
1.60 Spain 2004–2007 [102]
2.10 Mediterranean [103]
1.40 Italy [104]

Pistachios 3.31 0.79 0.32 0.28 California 2001–2009 [23]
0.35 California 2010–2018 [23]

Grapes 2.57 1.26 3.32

1.77 Brazil 2002–2003 [66]
5.92 Australia 2010–2012 [67]
4.48 California 2001–2009 [23]
4.67 California 2010–2018 [23]
2.37 Brazil 2005 [105]
2.44 Brazil 2005 [105]
2.46 Mexico 2005 [106]
2.49 Mexico 2006 [106]

Barley 0.75 1.51 1.51

1.03 Ethiopia 2010 [68]
1.50 Spain 2004–2007 [102]
1.70 Mediterranean [107]
1.70 Mediterranean [108]
1.60 Australia [109]

Rice 0.46 1.09 0.99
1.10 Global 1977–2002 [94]
0.89 Global 1979–2016 [49]
0.98 Global 1998–2008 [100]

Corn 0.13 1.86 1.86

1.90 Global 1977–2002 [94]
1.87 Global 1979–2016 [49]
2.25 Global 1998–2008 [100]
1.60 Italy 1996–1997 [110]
1.70 China [111]

Walnuts 0.04 0.76 0.47 0.48 California 2001–2009 [23]
0.45 California 2010–2018 [23]

3.4. Crop Water Savings and Yield Increase Results

Increasing CWP calculations show that modest increases in CWP can result in drastic
decreases of water use with substantial potential for water savings or significant yield
increases (Table 7). For example, almonds with a CWP of 0.21 kg/m3 were estimated to
consume approximately 192 million m3 of water; increasing CWP by 10, 20, and 30% would
result in CWP of 0.23, 0.25, and 0.27 kg/m3 respectively. With holding yield constant, this
in turn results in decreasing total CWU to approximately 175, 160, and 148 million m3 while
providing potential water savings of approximately 17, 32, and 44 million m3 respectively.
Or alternatively by holding total CWU constant and increasing CWP, this demonstrates
that yield increases considerably with increasing CWP (Table 7). For instance, almonds
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with an estimated total yield of 40.52 million kg, had a predicted increased yield increase of
4.05, 8.1, and 12.16 million kg at respective CWP increases of 10, 20, and 30%.

Table 7. Crop water savings potential with CWP increase of 10%, 20%, and 30%. Calculations
demonstrate that with a constant yield and increasing CWP, total Crop Water Use (CWU) decreases
and water savings increase substantially. Or by holding total CWU constant and increasing CWP,
yield increases significantly.

Crop Type CWP (kg/m3) CWU (m3) Water Savings (m3) Yield (kg)

CWP + 0%

Almonds 0.21 1.92 × 108 0 4.05 × 107

Cotton 0.26 7.83 × 107 0 2.01 × 107

Winter Wheat 2.07 2.15 × 107 0 4.46 × 107

Pistachios 0.79 1.99 × 107 0 1.58 × 107

Grapes 1.26 2.62 × 107 0 5.24 × 107

Barley 1.48 2.32 × 106 0 3.45 × 106

Rice 1.09 4.77 × 106 0 5.20 × 106

Corn 1.66 1.05 × 106 0 1.74 × 106

Walnuts 0.76 3.28 × 105 0 2.49 × 105

CWP + 10%

Almonds 0.23 1.75 × 108 1.75 × 107 4.46 × 107

Cotton 0.28 7.12 × 107 7.12 × 106 2.21 × 107

Winter Wheat 2.28 1.96 × 107 1.96 × 106 4.90 × 107

Pistachios 0.87 1.81 × 107 1.81 × 106 1.74 × 107

Grapes 1.40 2.39 × 107 2.39 × 106 5.77 × 107

Barley 1.63 2.11 × 106 2.11 × 105 3.79 × 106

Rice 1.20 4.33 × 106 4.33 × 105 5.72 × 106

Corn 1.82 9.55 × 105 9.55 × 104 1.91 × 106

Walnuts 0.84 2.98 × 105 2.98 × 104 2.74 × 105

CWP + 20%

Almonds 0.25 1.60 × 108 3.20 × 107 4.86 × 107

Cotton 0.31 6.52 × 107 1.30 × 107 2.42 × 107

Winter Wheat 2.49 1.79 × 107 3.59 × 106 5.35 × 107

Pistachios 0.95 1.66 × 107 3.32 × 106 1.90 × 107

Grapes 1.52 2.19 × 107 4.37 × 106 6.29 × 107

Barley 1.78 1.94 × 106 3.87 × 105 4.13 × 106

Rice 1.31 3.97 × 106 7.95 × 105 6.24 × 106

Corn 1.99 8.75 × 105 1.75 × 105 2.09 × 106

Walnuts 0.91 2.73 × 105 5.47 × 104 2.99 × 105

CWP + 30%

Almonds 0.27 1.48 × 108 4.43 × 107 5.27 × 107

Cotton 0.33 6.02 × 107 1.81 × 107 2.62 × 107

Winter Wheat 2.69 1.65 × 107 4.96 × 106 5.79 × 107

Pistachios 1.03 1.53 × 107 4.60 × 106 2.05 × 107

Grapes 1.65 2.02 × 107 6.06 × 106 6.82 × 107

Barley 1.93 1.79 × 106 5.36 × 105 4.48 × 106

Rice 1.42 3.67 × 106 1.10 × 106 6.76 × 106

Corn 2.15 8.08 × 105 2.42 × 105 2.26 × 106

Walnuts 0.99 2.52 × 105 7.57 × 104 3.24 × 105

CWP + 0%

All Crops

3.46 × 108 0 1.65 × 108

CWP + 10% 3.15 × 108 3.15 × 107 1.81 × 108

CWP + 20% 2.89 × 108 5.77 × 107 1.98 × 108

CWP + 30% 2.66 × 108 7.99 × 107 2.14 × 108

To put water savings potential into a perspective that can be more readily visualized
a comparison to a known body of water is effective. With a CWP increase of 10% in
almonds, an estimated 6980 Olympic swimming pools (2500 m3) or 685 Lincoln Memorial
Reflecting Ponds in Washington, DC, USA (25,500 m3) worth of water could be saved.
Furthermore, CWP can be used to estimate water footprint, a measure of human water
consumption in volume of water per unit of product [112–116]. Based on our assessment of
this particular study area and time frame with an estimated almond yield of 40,520,371 kg
using 191,968,502 m3 of water and with one almond kernel weighing 1.2 g [117,118], given
the many uncertainties present it can be generally estimated that approximately 5.7 L of
water were consumed to produce one almond. This type of analysis can provide insight
into making more informed water management decisions.
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4. Discussion

This innovative suite of methodologies to determine ETa at 30 m resolution with
Landsat images for individual crops at field to regional scales has the potential to expand
to other agricultural areas and time frames. The methods here demonstrated that ETf can
be determined per crop type utilizing our approach for hot and cold pixel selection from
thermal image bands. Furthermore, this method of deriving ETo using meteorological
data in conjunction with GIS interpolation analysis can be applied to other regions. In the
absence of site-specific crop yield measurements, we show how yield can be estimated
from extrapolating agricultural reports scaled to a designated area. These aspects have
shown that various datasets can be combined to provide more insight on CWP.

The economics of water use in crop production provide insight on predicting and
interpreting water allocation procedures that can guide users toward socially desirable
outcomes [113]. California was the top agricultural commodity producing state in the
USA, generating over $46 billion while exporting approximately 26% of its agricultural
production in 2016 [48]. Therefore, the value a crop can generate is of great concern in
assessing water management decisions. This provides further incentive for CWP study
where the known market value a crop is sold for in a given year can be ascertained. This is
especially apparent when limited local water is used to grow crops for export as California
is the USA’s sole exporter for numerous agricultural commodities, exporting 99% or more
of several crops including almonds [48].

Economic Crop Water Productivity (ECWP) is the ratio of a monetary value ($) of crop
output divided by the amount of water input (m3) providing a measure of net economic
benefits per unit of water ($/m3) consumed [114,115]. ECWP was calculated based on
the 2016 price of a crop sold by weight ($/kg) in California for almonds, winter wheat,
pistachios, grapes, barley, rice, corn, and walnuts from CDFA agricultural reports [116].
For cotton, the dollar value was derived from the average 2013 and 2014 market price per
yield utilized to estimate 2016 value for ECWP calculations in absence of 2016 CDFA cotton
values [116]. To estimate ECWP ($/m3), the statewide value of crop per kilogram ($/kg)
was multiplied by CWP (kg/m3) determined for the study area. This ratio essentially
demonstrates how much money is generated from a yield of crop produced from a m3 unit
of water consumed. Of crops analyzed in this study, the orchard nut crops and grapes were
estimated to be highest with pistachios at 2.93 ($/m3) whereas barley was the lowest at
0.29 ($/m3) (Table 8). This indicates from an economic standpoint not considering other
factors such as associated growing time and cost of production, it can be inferred that more
money per m3 of water used is generated from sales of pistachios than barley at point of
sale by over ten-fold. Results of CWP, ECWP, and a ratio of water savings potential at 10%
CWP increase divided by crop area (m3/m2) is displayed in Figure 7. This figure illustrates
tree nut orchard crops tend to have low CWP yet high ECWP and relatively high potential
for water savings per area (m3/m2) compared to row crops.

Up-to-date monitoring and feedback systems to assess CWP may support safeguarding
the production of crops. Advances in satellite remote sensing imagery and data capture
make it possible to chart crop progress in real-time. Information generated from remote
sensing can be utilized for agriculture in a variety of ways to assess water use and to
optimize crop yields. This benchmark study site in the CVC has provided a test of concept
to expand to larger areas including state, national, and international extents. It may be
possible to automate this suite of methodologies with cloud computing for rapid assessment
of CWP in other areas and time frames. This could help assess how crops use water to
produce food and identify opportunities to manage water. We acknowledge that many CWP
uncertainties exist in estimating remote sensing-based ETa, CWU, and crop yield including
many variables such as crop characteristics, soil properties, irrigation system efficiency, and
management practices. However, this study has provided a base methodology for more
refined calibration and automation.



Remote Sens. 2023, 15, 4894 17 of 23

Table 8. Table of Economic Crop Water Productivity (ECWP). ECWP ($/m3) and ratio of crop
monetary value per unit of mass ($/kg) based on CWP from this study and 2016 market value from
the California Department of Food Agriculture [116]. Data is displayed for the nine crops in the
Central Valley of California study area.

Crop Type CWP (kg/m3) Value per kg
(USD/kg)

Total Value
(1000 USD) ECWP (USD/m3)

Almonds 0.21 5.27 183,148 1.11
Cotton 0.26 3.09 53,303 0.79
Winter Wheat 2.07 0.18 6813 0.37
Pistachios 0.79 3.70 50,197 2.93
Grapes 1.26 0.92 41,258 1.16
Barley 1.48 0.20 584 0.29
Rice 1.09 0.32 1406 0.34
Corn 1.66 0.18 271 0.31
Walnuts 0.76 2.04 436 1.55

Figure 7. Plot of CWP, ECWP, and water savings potential at 10% CWP increase per area. CWP
(kg/m3), ECWP ($/m3) [116], and the ratio of water savings potential at 10% CWP increase per crop
area (m3/m2) plotted for nine commonly grown and water intensive crops in 2016 in the Central
Valley of California study area. CWP = Crop Water Productivity, ECWP = Economic Crop Water
Productivity.

5. Conclusions

We present a suite of methodologies to measure Actual Evapotranspiration (ETa;
mm/d) to determine Crop Water Use (CWU; m3/m2), Crop Productivity (CP; kg2/m2),
and Crop Water Productivity (CWP; kg/m3) or “crop per drop” for commonly-grown and
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water-intensive irrigated crops utilizing cloud computing. As cropping patterns change
over time and different crops consume varying amounts of water, analyzing CWP by crop
type over growing seasons on a yearly basis may help inform crop growing and water
management decision making. With a finite irrigation water supply and crops affected by
market prices, CWP and Economic Crop Water Productivity (ECWP) may allow for making
more informed water optimization strategies. This study proposed and implemented
comprehensive approaches to CWU and CWP assessments, modeling, and mapping using
30 m resolution Landsat data with potential for greater time-series assessments. Significant
findings from this study indicate that agricultural CWP (kg/m3) was significantly higher
for annual food crops such as winter wheat (2.07), corn (1.66), barley (1.48), and rice (1.09)
when compared with orchard crops like pistachios (0.79), walnuts (0.76), and almonds
(0.21). Grapes (1.27) had intermediate CWP with cotton lower at (0.26). However, ECWP
($/m3) was highest for the plantation or cash crops like pistachios (2.93), walnuts (1.55),
grapes (1.16), almonds (1.11), and cotton (0.79) relative to annual crops like winter wheat
(0.37), rice (0.34), corn (0.31), and barley (0.29). This study estimated the potential water
savings at 10%, 20%, and 30% increase in CWP for each crop. In the 434 million m2 cropland
area, a 10% increase in CWP across all nine crops was estimated to result in water savings
of 31.5 million m3 or 31.5 billion liters of water. An increase of CWP obtainable by various
agricultural and irrigation improvements is widely considered the best approach to saving
maximum quantities of water.

Establishing a viable methodology for CWP and ETa measurement over large spatial
and temporal extents may help to reduce uncertainties in CWU and CWP calculations.
Our methods were used to determine ETa comparable to OpenET and CWP for nine
globally dominant crops in irrigated croplands within the Central Valley of California. Such
calculations are especially useful to track the role crop types play in overall water use in
drought prone regions. Moreover, these methods can be expanded to model numerous
crops at regional, national, and global scales for various years where remote sensing images,
meteorological data, and crop yield information are available. Such CWP models may
help implement better water management strategies and make substantial contributions in
addressing food and water security in the 21st century.
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