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Abstract: Bolted connections are essential components that require regular inspection to ensure
bridge safety. Existing methods mainly rely on traditional artificial vision-based inspection, which
is inefficient due to the many bolts of bridges. A vision-based method using deep learning and
unmanned aerial vision is proposed to automatically analyze the bridge bolts’ condition. The
contributions are as follows: (1) Addressing the problems that motion blur often exists in videos
captured by unmanned ariel systems (UASs) with high moving speed, and that bolt damage is
hard to accurately detect due to the few pixels a single bolt occupies, a bolt image preprocessing
method, including image deblurring based on inverse filtering with camera motion model and
adaptive scaling based on super-resolution, is proposed to eliminate the motion blur of bolt images
and segment them into subimages with uniform bolt size. (2) Addressing the problem that directly
applying an object detection network for both bolt detection and classification may lead to the wrong
identification of bolt damage, a two-stage detection method is proposed to divide bolt inspection
into bolt object segmentation and damage classification. The proposed method was verified on
an in-service bridge to detect bolts and classify them into normal bolts, corrosion bolts, and loose
bolts. The results show that the proposed method can effectively eliminate the inherent defects of
data acquired by UAS and accurately classify the bolt defects, verifying the practicability and high
precision of the proposed method.

Keywords: bolt inspection; unmanned aerial system; convolutional neural network; motion deblurring;
super-resolution

1. Introduction

Bolt connections are a commonly used connection type in steel bridges. The bolt
connection not only needs to bear the enormous load caused by the bridge’s weight, traffic
load, and temperature, but also is affected by the continuous vibration of the bridge caused
by the wind load and the dynamic load of the vehicles. Therefore, bolt damage in steel
bridges is one of the representative failure forms. It generally includes bolt corrosion, bolt
looseness, or even missing bolts. Once a bolt is loose or missing, it means that the bearing
capacity of the connection has been seriously degraded. Therefore, it is of great significance
to inspect bridge bolts regularly. The existing bridge bolt detection methods generally rely
on manual visual inspection, which is inefficient and dangerous, especially for long-span
bridge inspection. For example, a long-span steel truss bridge usually contains hundreds
of thousands of bolts. Manual vision inspection is time-consuming. To detect cable clamp
bolts of a suspension bridge across a river, workers must climb to a cable more than 200 m
high to observe the cable clamp bolts one by one, which is quite dangerous.

The existing contact-based bolt looseness detection methods (including acoustic/ultrasonic
methods, impact testing, the vibration-based approach, and piezoelectric-enabled active
sensing [1–4]) have played an essential role in inspecting steel structure bolts. These
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methods can quantitatively analyze bolt looseness and even measure the axial force of
bolts. They are of great significance for the monitoring of bolts’ condition in essential
parts. However, more efficient methods need to be adopted for the daily rapid inspection of
massive bolts on long-span bridges. In recent years, a more widely used image-based visual
inspection method has made feasible the rapid and automatic assessment of bridge bolts.
This kind of non-contact detection method uses a camera to collect bolt images rapidly and
uses analysis methods based on machine vision to automatically identify bolts and classify
whether there are defects in bolts. It is more efficient than the contact-based bolt inspection
method and avoids the problem of contact detection being sensitive to environmental noise
and relying on strict operations. Park et al. [5] proposed a bolt detection method using
edge detection. Then, Hough transform was proposed to calculate the rotation of bolts so
that bolt loosening could be determined by comparing the rotation angle of the bolt in the
two periods. A similar method was proposed by Cha et al. [6], who added a linear support
vector machine to distinguish tight bolts from loose bolts so that results could be more
robust. However, the method based on Hough transform can only calculate bolt rotation
of 0~60 degrees and needs to take photos of the bolt in different periods, which is not
suitable for the rapid inspection of a large number of bridge bolts. Ramana et al. [7] applied
the Viola–Jones algorithm, which can identify loose bolts automatically, and the reported
accuracy on an indoor test was 97%. Sun et al. [8] proposed a fast bolt-loosening detection
method using a convolutional neural network (CNN) and binocular vision. This method
can quantitatively judge whether the bolt is loose by calculating the moving distance of the
bolt. These methods are mainly based on image processing (IP), but IP methods are easily
affected by the background of the bolt image and uneven illumination.

Recently developed deep learning methods have been proven to recognize features
from complex background images [9–11], and which have higher stability and accuracy
than traditional IP methods, have begun to play an increasingly important role in structural
damage detection. Hu et al. [12] proposed a network named the Deep Automatic Building
Extraction Network (DABE-Net) and adopted it to extract buildings from remote sensing
imagery. An automated crack detection technology based on an improved YOLO v4
network was put forward by Yu et al. [13], and the reported mean average precision was
0.976. The VGGnet architecture was applied by Davis et al. [14] to classify construction
waste material automatically, and the delivered accuracy was 94%. Dong et al. [15] reviewed
the application of computer vision-based methods on structural health monitoring. The
application scenarios included structural damage detection (including cracks, concrete
spalling, steel structure corrosion, and bolt looseness), 3D reconstruction, and so on [16,17].
The method of bolt looseness detection using deep learning methods has also been studied
in recent years. A Single Shot Multi-Box Detector (SSD) was applied by Zhao et al. [18], and
the evaluated accuracy on images obtained from different angles and lighting conditions
was 0.914. The region-based convolutional neural network R-CNN model was used by
Pham et al. [19] to detect bolt loosening. This method was evaluated on the real-scale
bolted connections of a historical truss bridge and showed high application potential.
Similarly, state-of-the-art networks, including RCNN [20], faster RCNN [21], and mask
RCNN [22], have been applied to bolt detection, too. These studies showed that using deep
learning methods to quickly and automatically detect loose bolts is expected to be applied
to the health maintenance of in-service bridges. Most existing research uses laboratory
components as the dataset collection objects and in verification experiments. However, the
number of images in these datasets is generally less than 300, and many of them are images
with repetition rates. The bolts on the components in the laboratory are also different from
those on in-service bridges.

The image acquisition of bridge bolts is also difficult for traditional inspection methods,
while existing research has hardly been studied. The method of using UAS loaded with
a camera is expected to solve this problem [23–26]. With the maturity of flight control
systems for UASs and the decline in prices, more and more UASs have been used in bridge
inspections due to easy operation and low cost. Chen et al. [27] proposed a UAS-based
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method that used homographic transformation and digital image correlation to measure
structural vibration. A wall-climbing UAS, designed by Jiang et al. [28] and applied to
structure crack inspection, can switch between flying and wall-climbing modes. A UAS
with an ultrasonic beacon system was suggested by Kang et al. [25], and the UAS can fly
along the bridge bottom while inspecting concrete cracks. Although research on bridge
inspection using UASs has been launched, using UASs for bridge bolt inspection has
received no attention.

It is important to note that among the existing research on using UASs to detect bridge
damage, there is little research on ensuring the quality of image data collected by UASs.
When the UAS is flying at high speed, there is likely motion blur in the image collected.
Meanwhile, due to the frequent changes in distance between the camera and structure
during flight, how the feature scale in the captured image changes and how to deal with
images with multi-scale features is also a task.

To address these problems, a practical method that uses images collected by UAS and
a deep learning-based automatic analysis method are proposed to inspect bolts from an
in-service bridge with high precision and high efficiency. What is different from existing
research is that the proposed method aims to develop strategies that use UAS to collect
bridge bolt images, reduce the quality deterioration of images caused by high-speed flight,
detect bolts, and classify bolt damage with high accuracy. Specifically, a UAS designed
for bridge bolt inspection was designed and modified; then, the method of using this
UAS to collect bridge bolts was proposed. Second, a method based on optical flow and
inverse filtering was proposed to determine whether there was motion blur in UAS video
and automatically eliminate motion blur. Then, the image was segmented by adopting a
proposed super-resolution-based adaptive scaling method into subimages with uniform
bolt sizes. After that, bolt damage was determined with a two-stage bolt inspection method,
in which the YOLO v5x network trained on a custom dataset was applied to detect bolts
and segment them into single bolt images. Then, efficientNet was used to classify bolts into
normal bolts, corrosion bolts, and loose bolts.

The remainder of this paper is organized as follows: the framework of the proposed
bolt inspection method is introduced in Section 2. The designed UAS, bolt data acquisition
method using the UAS, and bolt image preprocessing method are presented in Section 3.
Section 4 discusses the proposed two-stage bolt inspection method using deep learning.
The field test is shown in Section 5, followed by the conclusions in Section 6.

2. Framework of the Proposed Method

The proposed automatic bridge bolt inspection method is a vision-based method
using image processing and deep learning algorithms with images acquired by UAS,
which contains three parts: bolt image acquisition, data preprocessing, and bolt damage
identification, as shown in Figure 1. In detail, bolt image acquisition used the modified
UAS to capture the bolts at the bridge’s side, bottom, and cable clamp according to the
specific route. Data preprocessing aims at two problems that may cause image degradation
when using UAS: the first is image motion blur caused by the high moving speed of the
UAS, which causes image motion blur while taking video or image. The other is that
different object distances lead to large changes in the pixel size of the bolts in images.
Usually, a single bolt occupies a small size in the image when the distance is large. These
problems may lead to low accuracy and automatic bolt damage identification instability. To
address these problems, an image motion deblurring method using inverse filtering with a
camera motion model calculated by optical flow was proposed to estimate and eliminate
motion blur automatically; then, an adaptive scale segmentation method using multi-scale
template matching and super-resolution based on Enhanced Super-Resolution Generative
Adversarial Networks (ESRGAN) was proposed to segment bolt images into uniform scale
subimages with a bolt pixel size of 240 × 240 pixels. The third part was to use a proposed
two-stage bolt damage identification method to detect bolts in images and classify the
damage types, in which the YOLO v5 network was applied to detect and segment bolts,
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then efficientNet was used to classify the segmented bolts into normal bolts, corroded bolts,
and loose bolts.
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3. Data Acquisition and Preprocessing
3.1. Design of the UAS

UASs have been widely applied in inspecting structural damage, including cracks,
concrete spalling, etc. When selecting a UAS for bridge bolt inspection, the endurance time,
positioning accuracy, camera focal length, and computing ability should be considered
comprehensively. The designed UAS is shown in Figure 2, in which matrice-600pro from DJI
Company was used as the UAS platform, the zenmuse-Z30 camera was used to acquire bolt
images or videos, and the Intel NUC 10 micro-computer was used for onboard computing.
The total weight of the UAS was 11 kg and the endurance time was about 40 min. The Z30
camera was modified to be upside down so that the UAS could take bolt images at the
bottom of the bridge. The UAS was equipped with three sets of GPS antennas so that the
received GPS signals could be more stable than those of a traditional UAS. Meanwhile, the
Z30 camera was a zooming camera with a maximum of 872 mm of 35 mm equivalent focal
length, so that clear bolt images can be obtained without coming close to the bridge surface.
The Intel NUC 10 micro-computer could read video from the Z30 camera directly through
the onboard software development kit (OSDK) and perform continuous data processing
ability when algorithms were transplanted.
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3.2. Strategy for Bridge Bolt Data Acquisition Using UAS

Despite the advantage that traffic would not be affected when using a UAS based
inspection method, safety should be considered first when determining the bolt image
acquisition strategy due to the severe consequences of any accident. Therefore, an appro-
priate way is to keep a safe distance between the UAS and the bridge and use the long
focal length of the zoom camera to acquire images. Three flight paths and photography
strategies were designed corresponding to the position of the bridge where the bolts were
located. (1) Flight paths for side bolt inspection were several routes parallel to the side
of the bridge according to the direction of the bridge. Taking a steel truss bridge as an
example, the bolt connection joints of the bridge side are located in the upper, middle,
and bottom lines of the vertical side of the bridge. Therefore, the side routes are three
routes with plane overlap, and elevations are the upper, middle, and bottom elevations
of the bridge side, respectively. (2) Flight paths for bolts on cable clamp are trajectories
paralleling the bridge cable, considering that it is hard to control a UAS to fly in parallel
with a bridge cable because the cable is nonlinear. The strategy is to hover the UAS at
different positions on the side of the cable and rotate the camera to capture the clamp
images. (3) For bolt inspection at the bridge bottom, a similar strategy to cable clamp
inspection is used due to the complex environment at the bridge bottom. Photography
strategies are shown in Figure 1, which shows the distance between UAS and the bridge is
20 m when capturing side bolts, and it is 10 m when capturing bolts at the bridge bottom.
Because UASs have a short flight period, achieving high detection efficiency is one of the
most critical aspects of the UAS-based bridge inspection approach. If the bolt image is
acquired by taking photographs, the UAS will stop, hover, and adjust the angle to take
photos at each bolt connection portion, considerably increasing the complexity of operation
and flying duration. As a result, the bolt data is more efficiently gathered by recording
videos. During inspection, the UAS can continue to fly or operate the camera. Furthermore,
the method of taking continuous video means it is more difficult to miss capturing targets
than when taking images.

3.3. Zoom Camera Model and Motion Deblurring

The most widely used camera model is the pinhole model. It has been used in many
existing works [29]. The camera equipped on the UAS was a zoom camera, so the focal
length f was a variable based on the pinhole model, as shown in Figure 3a. Based on the
pinhole model, if the measured object has a displacement at the moment of image capture
that is, the moment when the electronic shutter controls the charge-coupled element
to produce photoelectric induction in the vertical direction of the photosensitive plate,
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compared with the object pixel obtained by the first line of photosensitive material, the
object pixel displacement obtained by the Nth line of photosensitive material is:

∆xp =
vt

f + ∆ f
(1)

where v is the horizontal velocity of UAS, t is the exposure time of each frame. For a video
with an acquisition frequency of 30 fps, t = 0.033 s. f + ∆f is the focal length of the camera,
as shown in Figure 3b.
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The degraded image g(x, y) caused by camera movement and noise during UAS-based
imaging can be considered as the convolution of the interference-free image f (x, y) and the
point spread function p(x, y) plus the environment noise n(x, y), expressed as:

g(x, y) = f (x, y)⊗ p(x, y) + n(x, y) (2)

where x and y represent the horizontal and vertical coordinates of pixels in the image
coordinate system. For an image with size [M, N], the pixel in it can be expressed as
pi,j
(

xi, yj
)
, where 0 ≤ i ≤ M, 0 ≤ j ≤ N, and the image composed of pij

(
xi, yj

)
can be

expressed as f (x, y). Since the speed of the UAS did not change significantly during flight
and the exposure time of each frame was less than 10 ms, within this time, the displacement
of the UAS was minimal. The relative displacement of the camera and the photographed
bridge surface can be considered a uniform linear motion. In addition, inspection is usually
conducted in good weather with enough light, so the noise caused by light and other
conditions can also be ignored. Under this uniform linear motion, the exposure during
image shooting can be expressed as:{(

∂
∂t + v ∂

∂x

)
e(x, t) = 0

e(x, 0) = f (x)
(3)

where e(x, t) is the exposure of the camera at time t; when t=0, it is expressed as f(x), then it
can be defined as e(x,t) = f(x − vt) at any time t. The image acquired on the image sensor at
this time is the cumulative exposure at that moment, expressed as:

g(x, t) =
t∫

0

e(x, t)dt =
t∫

0

f (x− vt)dt (4)

If ε = x − vt, the above formula can be transformed into:

g(x, t) =
1
v

x∫
x−vt

f (ε)dε (5)
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The above formula shows that the motion blur is the result of the superposition
of multiple images in the [x− vt, x] interval at t = 0. If the UAS is hovering, namely
v = 0, then

g(x, t) =
t∫

0

f (x)dt = t f (x) (6)

This means that the camera is continuously taking the same image. Further, if the UAS
is not moving in a horizontal direction, but flying at a constant speed v at any angle θ, then

g(x, y) =
t∫

0

f
(
x− vptcosθ, y− vptsinθ

)
dt (7)

where vp is the pixel speed converted from the camera model and the actual flying speed v.
It can be seen that the direction of motion θ and velocity vp are the two key parameters to
determine the motion-blurred image.

Since the Z30 zoom camera was used in the inspection, the camera parameters needed
to be set according to the lighting conditions when taking photos. During the inspection,
the exposure time was set to te =1/100 s, and the resolution was w × h = 1920 × 1080.
Therefore, in the exposure time of each frame, the sensing speed of the photoelectric sensor
was ve = h

te
= 1.08 × 105 pixel/s. Generally, if the motion of blurred pixels reaches

6 pixels, the motion blur of the image can be felt and may cause image degradation. So that
the relative pixel motion speed V between the camera and the bridge should not exceed
vp = 6

te
= 600 pixel/s, the pixel movement of a single frame relative to the previous frame

should not exceed 20 pixels when the UAS takes video at 30 fps. This can be used to judge
whether motion blur occurs in bolt videos.

After that, it is vital to determine the direction of the motion blur and the size of the
blur kernel. For the determination of the motion blur direction θ, it is known from the
photography strategies in Section 3.1 that for bridge side bolt inspection, the UAS was
moving horizontally to the bridge, so the motion blur direction should be 0◦ or 180◦. For the
bolt inspection at the bridge bottom, the UAS hovers with the camera rotating horizontally.
Since the camera rotates at a slight angle at every moment, the movement direction θ can
be considered to be 90◦ or 270◦. For bolt inspection in the cable clamp, the camera basically
rotates horizontally, so the motion blur direction is similar to that in the side bolt inspection.

For the determination of the blur kernel size, the key is to determine the amount of
motion of the pixels in the image at each moment. When the amount of movement is
greater than 20 pixels, the motion blur of the image needs to be eliminated, and the size of
the blur kernel is the calculated pixel displacement.

The above problem can be summarized as the need to evaluate which frames in the
captured video need to take the role of motion blur elimination and calculate the blur
direction and blur kernel size. The problem is then summarized as the calculation of
displacement and vector direction between adjacent frames in the video. An image motion
blur detection and deblurring method based on optical flow and inverse filtering was
proposed to address this problem. First, the Lucas–Kanade (LK) optical flow algorithm [30]
was used to automatically calculate the displacement and direction of adjacent frames so
blurred frames can be selected automatically, and the displacement and direction are the
sizes of the blur kernel and the direction of motion blur. The inverse filtering method was
used with the calculated blur kernel size and direction to remove the motion blur directly.
It is calculated as shown in Equation (8), where T is the exposure time, and a and b are the
horizontal and vertical movement. The steps of the process are shown in Figure 4.

H(u, v) =
Tsin[π(ua + vb)]

π(ua + vb)
e−jπ(ua+vb) (8)
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3.4. Adaptive Scale Segmentation Based on ESRGAN

The purpose of adaptive scale segmentation is to unify the size of single bolts after
bolt detection, and enhance the details as much as possible, so the classification accuracy of
bolt loss can be stable and accurate. The core of the proposed adaptive scale segmentation
method is to enlarge the bolt images taken at different distances so that the scale of a single
bolt in the scaled bolt image will be close to the input size of the classification model, which
is 240 × 240 pixels. The steps to achieve this goal were as follows: First, a multi-scale
template matching was used to find the circumscribed rectangle size of the smallest bolt in
the image acquired by the UAS. The ratio of the long side of the circumscribed rectangle
to 240 pixels is the enlarged ratio of the raw image. Then, rounding the enlarge ratio and
comparing it with two times, four times, and eight times, the closest one was the final
enlarge ratio of the raw image. Then, the pre-trained ESRGAN network was used to enlarge
the source image twice, four times, or eight times. Finally, a sliding window method was
used to segment the enlarged image with a 20% overlap rate. After that, the captured image
would become the subimage with a uniform scale. The operation steps of the method are
shown in Figure 5.

The first step of the proposed method was to confirm bolt sizes from raw images.
The template matching method was adopted considering the timeliness of the algorithm.
Several standard bolt images were set first and then we traversed the collected images
to find the area with the highest matching degree with the raw image. The size of the
highest matching area obtained was the size of the bolt in the image. Considering that
traditional template matching is not suitable for image matching with multi-scale, a multi-
scale transformation was added before template matching so that the optimal scale of the
bolt size could be determined adaptively by choosing the optimal matching. The specific
steps of the algorithm were as follows: firstly, the preset image was scaled from 0.8 to
8 times, and template matching was carried out under each scaling factor. The applied
matching method was the sum of squared differences, which can be expressed as:

D(i, j) =
M

∑
s=1

N

∑
t=1

[S(i + s− 1, j + t− 1)− T(s, t)]2 (9)

where S(s,t) is the search image of size M × N, T(s, t) is the template image of size m × n,
and (i,j) is the coordinate of the upper left corner in the process of traversal searching
the image. After traversing, the maximum matching area of D(i, j) was selected as the
bolt position.
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Figure 5. Workflow of adaptive scale segmentation method.

Once the bolt size was obtained by template matching, it was compared with the
input size of the classification network (240 × 240 pixel) to be a multiple of the super-
resolution required for the image. Since the trained super-resolution network generally
only had a magnification ratio of 2, 4, and 8 times, it was necessary to round the calculated
multiple. Image or video super-resolution is one of the early applications of deep learning.
The purpose of super-resolution is to recover a large-size high-resolution image from
a small-size low-resolution image so that the image retains more details. The super-
resolution method based on deep learning is generally based on single image super-
resolution (SISR), and the network is used to learn the end-to-end mapping function from
low-resolution images to high-resolution images in several pairs of low-high-resolution
images in the training set so that it can handle super-resolution tasks similar to the images
in the training set.

Research on image super-resolution using deep learning has been done in recent
years. The super-resolution convolutional neural network (SRCNN) was the earliest one
to use bicubic interpolation to enlarge images and then perform nonlinear mapping [31]
through a three-layer convolutional network to obtain a high-resolution image result [32],
but the layers of a SRCNN are few, and the receptive field is small (13 × 13). Then, the
deeply-recursive convolutional network (DRCN) with more convolution layers and greater
receptive fields was proposed [33], which also uses a recurrent neural network (RNN)
to avoid too many network parameters. In response to the low efficiency of DRCN, an
efficient sub-pixel convolutional neural network (ESPCN) using the sub-pixel convolution
operation to directly perform the convolution operation on the low-resolution image was
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raised, which can significantly improve the inference efficiency [34]. A super-resolution
generative adversarial network (SRGAN) is a super-resolution network that uses a gen-
erative adversarial network (GAN) as a discriminator [35]. It overcomes the problem of
using mean square error (MSE) as a loss function in previous networks, which causes the
generated image to be too smooth and lack high-frequency texture details. Its loss function
is composed of adversarial loss and content loss so that the quality of the generated image
is not judged from the pixel level but from the high-level abstract features. An enhanced
super-resolution generative adversarial network (ESRGAN) is an improved network to
SRGAN [36]. Aiming at the problem of unrealistic texture details and accompanying noise
generated by the original model, the original model’s network structure, counter loss
function, and perceptual loss function were respectively improved, specifically using the
residual-in-residual dense block (RRDB) method instead of residual blocks. By deleting the
batch normalization (BN) layer to prevent the introduction of irrelevant features in training,
a relative generative adversarial network (relativistic GAN) was used to let the discrimi-
nator predict relative realism instead of absolute value, and the former activated feature
expression with stronger supervision information was used to constrain the perceptual
loss function.

Secondly, the ESRGAN was used as the super-resolution network, and the network
structure is shown in Figure 6. The characteristics of bolt images were entirely different
from those in the existing super-resolution open-source database, so it was necessary to
establish a super-resolution database of bolts. Considering that the data must be as close as
possible to the in-service bridges, we used the modified UAS to collect 31,087 bolt images
from three in-service bridges. Five hundred original images were selected from the data
of each bridge as high-resolution (HR) images in the training set, and we resized these
1500 HR images by 0.5, 0.25, and 0.125 times to make the two, four, and eight times super-
resolution low-resolution (LR) images respectively using the resize function of Matlab.
Based on this, a super-resolution database of bridge bolts was made.
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During training, the result of the network should be evaluated, and the most commonly
used paraments, including peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and Laplace gradient sum, are used as the evaluation parameters. PSNR is the ratio
of the maximum power of the signal to the noise power of the signal, which was used to
measure the quality of the compressed reconstructed images. It was calculated as:

PSNR = 10× log10

(
MAX2

I
MSE

)
(10)



Remote Sens. 2023, 15, 328 11 of 23

where MAXI represents the maximum value of the pixel in the image, and mean square
error (MSE) represents the mean squared value of two corresponding images [37]. The
MSE of two images I(i, j) and T(i, j) with size M× N can be calculated as:

MSE =
1

M× N

N

∑
i=1

M

∑
j=1

(
Iij − Tij

)2
(11)

SSIM represents the degree of image distortion and its calculated method as:

SSIM(I, T) =
(2uIuT + C1)(2σIT + C2)(

u2
I + u2

T + C1
)(

σ2
I + σ2

T + C2
) (12)

where uI and uT are the mean values of images I(i, j) and T(i, j), σI and σT are the standard
deviations of the two images, σ2

I and σ2
T are the variances of the two images, respectively,

and σIT is the covariance of the two images, while C1 and C2 are constants. All of the above
were calculated using the Gaussian function [38].

The Laplace gradient sum is a common index to evaluate image clarity. Its calcula-
tion method is to obtain the Laplace gradient value of pixels with the Laplace template
and calculate the sum of the Laplace gradient values of all pixels. The applied Laplace
template is:

s =
Nx−1

∑
x=2

Ny−1

∑
y=2
| f (x + 1, y) + f (x− 1, y) + f (x, y + 1) + f (x, y− 1)− 4 f (x, y)| (13)

where Nx and Ny are the number of horizontal pixels and vertical pixels of the image. The
Laplace gradient sum in Table 1 is the average gradient sum of the selected 100 images.

Table 1. Comparison of super-resolution methods.

Evaluating Indicator Times Bicubic Interpolation VDSR ESRGAN

PSNR
2× 36.03 38.00 38.83
4× 31.21 33.30 33.93
8× 27.63 29.13 29.70

SSIM
2× 0.95 0.97 0.97
4× 0.93 0.94 0.94
8× 0.87 0.90 0.91

Laplace gradient sum
2× 20.30 50.73 52.75
4× 4.71 15.51 51.47
8× 2.91 9.83 24.49

The model was trained on TensorFlow, where the generator network of ESRGAN was
a residual-in-residual dense block net (RDDBNet), and the VGG-19 network was used as
the discriminator network. The number of training steps was 50,000, and the learning rate
was 0.0001. After training, 100 images were randomly selected from the bolt images of the
bridge to calculate the PSNR and SSIM between 2×, 4×, and 8× super-resolution images
enlarged using ESRGAN and original images. Other super-resolution methods, including
bicubic interpolation and the VDSR trained under the same conditions, were used as the
comparison, and the results are shown in the Table 1:

The results show that the bridge bolt image enlarged using ESRGAN show better
image quality at 2×, 4×, and 8× than the other two methods. Figure 7 is a comparison of
images enlarged using three methods. Since two times and four times super-resolution
were the most used, the comparison is the effect of 4 times super-resolution. It can be seen
that the ESRGAN showed a higher degree of restoration in the super-resolution restoration
of bolt images, especially in the restoration of bolt edges, thread textures, and corrosion
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textures. This advantage provides stable and reliable source data for bolt identification and
classification in the following processing.
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4. Two-Stage Bolt Inspection Based on Deep Learning

Deep learning methods have been increasingly applied in various fields of structure
inspection in recent years. State-of-the-art networks are not only close to or even better
than manual inspection in the recognition accuracy of complex images but also have shown
significant improvements over previous networks in terms of the increase in inference
speed and the reduction of computational consumption. Among them, the YOLO series
networks are the best networks as well as the most widely used networks [39]. YOLO v5 is
the latest network in the YOLO series. The first version of YOLO v5 was proposed in June
2020. Considering that the latest YOLO v5 series networks already have a high inference
speed and detection accuracy, verification of a large number of databases has shown that
it meets engineering needs. The YOLO v5 series networks have strong multi-platform
portability, so the latest YOLO v5 series networks were applied, and the contributions
were focused on selecting the optimal model from the four models of YOLO v5s, YOLO
v5m, YOLO v5l, and YOLO v5x, and customizing the model parameters on the established
in-service bridge bolt database.

Figure 8 shows the network structure of YOLO v5s. Other network structures of
the YOLO v5 series are similar, except that the cross-stage partial (CSP) structure with
different numbers of residual components and the focus structure with different numbers
of convolution kernels are used. The network could be divided into four parts: the input,
backbone, neck, and prediction.
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In the input part, the difference between YOLO v5 and the previous network is the
use of mosaic data enhancement and adaptive image scaling. Mosaic data enhancement
uses four images randomly, scales them randomly, and then randomly distributes them
for splicing. This method enriches the dataset, and the random scaling adds a lot of small
targets, making the network more robust. Adaptive image scaling reduces the number
of gray pixels supplemented by the short side as much as possible by taking the smallest
scaling factor for different image aspect ratios so that the inference speed can be improved.

The difference between YOLO v5 and previous networks in the backbone part is the
application of the focus structure and CSP structure, as shown in Figure 8. The feature
of the focus structure is the slicing operation. The original 608 × 608 × 3 image is put
into the focus structure, in which the slicing operation is used to turn the image into a
304 × 304 × 12 feature map. After a convolution operation with 32 convolution kernels,
the image is converted into a feature map of 304 × 304 × 32. The CSP structure divides the
feature mapping of the base layer into two parts and then merges them through a cross-stage
hierarchical structure, which reduces the amount of calculation while ensuring accuracy.

The neck part is layers arranged between the backbone and the output layer. In the
neck part of YOLO v5, the CSP2 structure is adopted to strengthen the ability of network
feature integration.

In the prediction part, the feature is the application of a combination of generalized
intersection over union (GIOU) loss and distance intersection over union suppression
non-maximum suppression (DIOU-NMS), which can obtain higher average precision (AP)
than traditional IOU loss and NMS.

The YOLO v5s network has the smallest depth and width of the feature map in
the YOLO v5 series. The YOLO v5 series network controls the depth and width of the
network by adjusting the depth multiple and width multiple, respectively. For the four
models of s, m, l, and x, the depth multiple and width multiples are [0.33, 0.50], [0.67, 0.75],
[1.0, 1.0], [1.33, 1.25], and the model size increases accordingly. The increased depth and
width enable the model to have higher APs, but the computational efficiency decreases
accordingly. Because bolt recognition is a relatively simple detection task compared to
multi-type target recognition, even if the APs of the four models should be different in
theory, they may not be much different in the bolt dataset. Therefore, the establishment of
the bridge bolt recognition dataset, training of these models, and comparing the accuracy
of the four models are the main issues to be discussed in this section.
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4.1. Establishment of Bridge Bolt Dataset

Similar to the previous dataset established for the super-resolution network, the
images of the bolt inspection dataset were also taken from three in-service bridges, and
1000 images were selected from these three bridges, then the proposed adaptive scaling
unified method was applied to segment these images into 24,000 subimages. Labelimg
is a commonly used open-source data labeling software; here, this tool was used to label
bolts manually, and a normal bolt was labeled as “bolt”, a corroded bolt was labeled as
“corrobolt”, and a loose bolt was labeled as “loosebolt”. After manual labeling, a database
of three types of bridge bolts required for training was formed. The results show that
the database contained 237,600 normal bolts, 21,583 corroded bolts, and 295 loose bolts.
Image examples from the database are shown in Figure 9. The bolts of the small-span
suspension bridge were mainly cable clamp bolts and bottom steel truss connecting bolts;
the long-span cable-stayed bridge images were mainly the connecting bolts on the side of
the steel truss; and the long-span suspension bridge images were cable clamp connecting
bolts. In addition, because the collected bolt images were from the images and videos
obtained from the multiple inspections of three bridges using UASs, the collected data
included bolts in different parts under different lighting conditions. This dataset containing
complex conditions and consistent with the real detection scene provided benefits to ensure
the robustness of the trained model.
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These networks were trained in the PyTorch framework. The computer used for
training consisted of an i7 11700k CPU, an Nvidia RTX3090 GPU, and 32G RAM. The
number of training steps was 50,000. Before training, the images were divided into training,
test, and verification images according to the ratio of 8:1:1. The k-means clustering method
was used to calculate the size of 9 anchors, which were [12, 32], [40, 68], [52, 100], [60, 80],
[44, 72], [44, 44], [80, 80], [160, 200], and [120, 140].

4.2. Test Using a Single Object Detection Network

After training, the mean average precision (mAP)s values of the four models were
0.841, 0.934, 0.936, and 0.940, respectively. The network with the largest network depth and
width had the highest accuracy, so YOLO v5x can be selected as the bolt inspection model
when real-time inspection is unnecessary. The P-R curves of the four models during the
training are shown in Figure 10.

Although the accuracy of YOLO v5x reached 0.940, it can be seen from the P-R curve
that the detection accuracy of the three types of bolts was different. After training, the
tested classification accuracy of YOLO v5x was 0.883, indicating that some bolts were
identified incorrectly. Figure 11 shows a test example of a bolt image after training, where
Figure 11a,b are the results of directly identifying bolts and classifying the type of bolts
using a single network. The detection results show that the accuracy of bolt classification
is 71% in Figure 11a and 88% in Figure 11b, which are the results of the same two images
using the object detection network to segment the bolts first and then classify them with a
classification network. Figure 11c has an accuracy of 98% and Figure 11d has an accuracy
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of 100%. The decimal number on the bounding box of the bolts in the image represents the
confidence level of the detection result.
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4.3. Test Using a Two-Stage Inspection Method

Considering the large number of bolts in bridge inspection, it is difficult to check
whether the automatic inspection results are accurate manually. Therefore, the most
important goal is to ensure the correct identification of bolt damage. Based on this, a
two-stage bolt inspection method using an object detection network and a classification
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network was proposed, in which YOLO v5x was used to detect and segment bolts from
preprocessed images. Then, efficientNet was applied to classify these segmented bolt
images into normal bolts, corrosion bolts, and loose bolts.

Firstly, the bolt database established above was modified by changing the bolts origi-
nally labeled as “bolt”, “corrobolt”, and “loosebolt” into only one category labeled “bolt”;
that is, the modified dataset contained only one category of the target. Then, a bolt classifi-
cation dataset segmented from the three types of bolt datasets in Section 4.1 was assembled
to be the training dataset for efficientNet. After that, YOLO v5x was trained again while
keeping other parameters consistent, and the mAP was 0.997, which shows that almost
all bolts could be detected correctly. The training of efficientNet was also conducted in
the PyTorch framework. The number of training steps was 5000, the learning rate was
0.001, and the test accuracy was 0.993 after training, which was much higher than using
YOLO v5x trained in Section 4.2. The P-R curve for YOLO v5x and accuracy for efficientNet
during training are shown in Figure 12.
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Figure 11c,d are the results of bolt damage detection using the proposed two-stage
method for the same image with Figure 11a,b. The results show that the classification
accuracy of bolt damage using the proposed two-stage method was much higher than
that using the single network method. The accuracy was 98% for Figure 11c and 100%
for Figure 11d. Where the accuracy was calculated by the proportion of the number of
bolt damage classes predicted as correct to the total number of bolts for Figure 11a,b, the
accuracy was calculated by multiplying the accuracy of bolt identification by the accuracy
of bolt damage classification for Figure 11c,d. The accuracy of bolt identification is the
ratio of the number of detected bolts to the total number of bolts. The accuracy of bolt
classification is the ratio of the number of bolts correctly classified divided by the total
number of bolts.

5. Filed Test on a Suspension Bridge

An in-service bridge was used as the test object to verify the practicability of the
proposed method. This section introduces the test results of the proposed method on a
suspension bridge. The inspected bolts were located at the bottom of the bridge and on the
cable clamps.

5.1. Establishment of Bridge Bolt Dataset

The tested bridge was a pedestrian suspension bridge in the Huaian canal project. The
bridge’s total length was 197.7 m, the middle span was 115.7 m, and the bridge deck was
2.7 m wide. The bridge deck was a vertical and horizontal channel steel structure with
a total of 53 short transverse channels, five longitudinal channels, and 106 cable clamps.
The bolts of interest in the test were the channel steel connecting bolts at the bottom of the
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bridge and the bolts on the cable clamp, including 371 channel steel connecting bolts and
742 cable clamp bolts. The bridge had been in service for 18 years, and some bolts had
been loosened and corroded. However, the bridge was located above the canal, making it
difficult to inspect them manually.

The photography strategies of using the UAS to acquire bolt images are described
in Section 3.2. For the inspection of cable clamp bolts on the side of the bridge, the UAS
hovered at three positions at the ends and the middle of the bridge. The camera was
controlled to rotate to take videos of the cable clamp bolts. For the inspection of bolts at the
bridge bottom, the UAS hovered at the two ends and the middle of the bottom while the
camera took videos from one side to the other. A total of 94 min of bolt video was taken,
covering all the bolts that needed to be inspected, including 1113 bolts; 371 bolt images and
2.91 GB of videos were collected. The resolution of the video was 1920 × 1080 pixels, and
the frame rate was 30 fps. To keep camera parameters such as exposure and focal length
consistent, the shutter speed was set to 1/100 s, and the photo sensibility was set to auto.
The focal length remained the same after the start of recording, and the focus was set to
autofocus. The filed test is shown in Figure 13.
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5.2. Data Preprocessing

After the bolt video was collected, the method above was adopted for step-by-step
processing. First, the method based on optical flow and inverse filtering was used to
remove the motion blur in the captured video automatically. Since the exposure time of the
captured video was the same, the deblurring process of the video did not require manual
adjustment of parameters and could be processed automatically. Figure 14 shows examples
of preprocessed images using the proposed motion deblurring method and the original
images, where Figure 14a,b are motion-blurred images captured from the original video
obtained by the UAS, and Figure 14c,d are the two captured images processed by the
proposed deblurring method.

After automatically eliminating the video motion blur, the image could be segmented
with an adaptive scale. The results calculated using the proposed multi-scale template
matching method show that the size of the cable clamp bolts was between 120 × 80 pixels
to 300 × 200 pixels, and most of the bolt images from the bridge bottom were between
50 × 100 pixels to 200 × 250 pixels, while the input size of the classification network was
240× 240 pixels. Most images only needed to be enlarged by two times, so the 2× ESRGAN
network was used to process bolt videos in batches. Specifically, for those whose calculated
enlarge ratio was greater than 1, 2× super-resolution was then used, then the image would
be resized with the ratio of the original enlarge ratio to 2. For bolts whose size was originally
larger than 240 × 240 pixels, that is, the calculated enlarge ratio was less than 1, the image
was directly resized to that ratio. After unifying image scales, these images were divided
according to the size of 640 × 640 pixels with an overlap rate of 10%.
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5.3. Bolt Inspection Results

To verify the accuracy of the proposed two-stage bolt damage automatic identification
method, the method of manual inspection and the method of directly using a single
network for bolt damage identification that is commonly used in the existing methods
were applied as a comparison. Specifically, the proposed method and the existing methods
were evaluated for bolt inspection speed and accuracy. The inspection comprised two
methods: Method 1 was the proposed method, which included bolt image preprocessing
and two-stage bolt damage identification. Method 2 was preprocessing to detect bolt
damage by the three categories of YOLO v5x trained in Section 4.2. Method 3 was using
the technique of existing research, which is using only the YOLO v5x network for bolt
detection and classification. The test objects were 100 images derived from the acquired
video. Among them, 50 images contained motion blur. The bolts in the images include both
cable clamp bolts and bridge bottom bolts. Table 2 shows the computing time required for
the image preprocessing method, the two-stage inspection method, and the single-stage
identification method to analyze 100 images. The computer used for data processing was
the same as that for model training. The results show that the computing time of the
proposed method was much longer than that of the single-stage identification method,
which is the result of the sacrifice of inference speed in the tradeoff between speed and
accuracy and the disadvantage of the proposed method. To make up for this shortcoming
as much as possible, the proposed method was programmed into the onboard computer of
the UAS so that automatic analysis could run continuously during flight. This can reduce
the total time of data acquisition and analysis. Since the i7 10710U CPU of the onboard
computer provided satisfactory computing ability, the processing time of bolt images using
the proposed method was tested on it, and the time for deblurring was 834.2 s/100 images,
while the time for uniform scaling was 1162.5 s/100 images. In addition, considering
that the focus of this study was to achieve the highest accuracy possible, there was no
optimization in the algorithm’s efficiency at present, and the efficiency of the algorithm
will be improved in future work.

Table 3 shows the accuracy of 100 images calculated using the above three methods:
TP represents the true positive, which is the number of bolts that should be detected as
positive types that were finally detected as positive in the test. TN represents the true
negative, which is the number of bolts that should be detected as negative types that were
detected as negative. Both TP and TN mean that the bolts were inspected correctly. FP
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is the false positive, and FN is the false negative. They mean that bolts were incorrectly
detected as categories in which they did not belong. The calculation method of accuracy is:

accuracytotal =
TP + TN

TP + TN + FP + FN
(14)

Table 2. Bolt image processing time of the three methods.

Method Time

Proposed method
(image preprocessing and

two-stage inspection)

Step1: Image preprocessing Deblurring 611.6 s
Uniform scale 592.7 s

Step 2: Two-stage bolt inspection 11.5 s

Traditional method One-stage bolt inspection 6.9 s

Table 3. Inspection accuracy using the three methods.

Method Group TP TN FP FN Accuracy

1. Proposed method (preprocessing and
two-stage method)

Blurred 102 36 2 0 0.986
Non-blurred 169 96 1 0 0.996

2. Preprocessing and single network Blurred 91 25 15 9 0.829
Non-blurred 150 86 19 11 0.884

3. Using single network Blurred 79 18 29 22 0.655
Non-blurred 143 79 27 17 0.835

The results in Table 3 show that the proposed method had the best accuracy for both
images with and without motion blur. The detection accuracy of method 2 for images
with and without motion blur was similar but lower than that of the proposed method.
Method 3 not only had the lowest accuracy but also had worse accuracy for motion-blurred
images. This proves that the presented bolt image preprocessing method was helpful in
making the detection accuracy stable, and the proposed two-stage inspection method had
higher accuracy than using a single network. Specifically, the comparison of the accuracy
with and without motion blur in method 1 shows that the proposed image preprocessing
method could effectively eliminate the influence of image blur on the accuracy, while the
comparison of the accuracy with and without motion blur in method 3 shows that motion
blur led to a decrease in accuracy of 0.18. The comparison of the accuracy between method
1 and method 2 proved that the proposed two-stage inspection method had better accuracy
than the single network method. The average accuracy was improved by 0.13. In general,
the primary goal of bolt inspection in this research was to make the detection accuracy
as close to 100% as possible so as to ensure that there were as few missing identifications
of bolt damage as possible. The accuracy of the proposed methods was higher than 0.98,
which can satisfy engineering requirements.

The proposed bolt image preprocessing method involves two parts: image deblurring
and adaptive scale segmentation. Considering that both parts required a long comput-
ing time, the contribution of the two parts to the improvement of accuracy was tested
respectively. Three methods were established for the comparison. Method A: remove the
motion blur of the image first and then use the two-stage inspection method for detection.
Method B: carry out adaptive segmentation of the image first and then use the two-stage
inspection method for detection. Method C: only use the two-stage inspection method for
detection. Because the number of pixels occupied by bolts in this field test was large, and
the advantage of the adaptive scale segmentation method may be more evident for images
with small bolts, the dataset here was assembled with 50 motion-blurred images of this
field test and 50 motion-blurred images from a steel truss bridge, as shown in the middle
of Figure 9. The test results show that the average accuracy of method A was 0.941, in
which the average accuracy of 50 images with large bolt targets was 0.979, and the average
accuracy of 50 images with small bolt targets was 0.903. The accuracy of method B was
0.899, in which the average accuracy was 0.901 for 50 images with large bolt targets and
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0.897 for 50 images with small bolt targets. The accuracy of method C was 0.795, in which
the average accuracy was 0.885 for 50 images with large bolt targets and 0.705 for 50 images
with small bolt targets. The accuracy of method A was 0.146 higher than that of method C,
while compared with method C, the accuracy of method B was improved by 0.104, which
indicates that the motion deblurring contributed more to the improvement of accuracy
than adaptive scale segmentation. Among these results, the accuracy for images with
large bolt sizes was 0.076 more than for images with small bolt sizes in method A, while
this accuracy differed little in method B, which proves that adaptive scale segmentation
was more effective in improving the accuracy when the bolt scale in the image was small.
Based on the above results, a better combination of bolt inspection methods can be selected
according to different scenarios. For the inspection of bolts that occupy large pixels in the
image, such as the inspection of cable clamp bolts, it is better to perform motion deblurring
first and then inspect using the two-stage inspection method. For the inspection of bolts
whose size in the image is small, such as the inspection of nodes of a steel truss bridge,
the combination of motion deblurring and adaptive scale segmentation should be used for
preprocessing, and then using the two-stage inspection method.

Figure 15 shows the bolt health condition of the inspected bridge and examples of
loose bolts and corrosion bolts. It shows that nearly 9.1% of the bridge bottom bolts had
been loosened, and most of them were corroded to a certain extent. The test results shown
in Figure 15 provide intuitive and practical guidance for the health management of the
bridge and prove that the proposed method is suitable for in-service bridges.
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6. Conclusions

This study proposes a practical method for the inspection of bridge bolts using UASs
and deep learning. The specific conclusions are as follows:

1. The proposed motion deblur method that applies inverse filtering to eliminate the
motion blur of the captured image automatically with the estimated movement direction
and displacement by optical flow was tested. The results showed that it effectively removed
motion blur caused by the moving and rotating of the UAS.

2. An adaptive scale unified segmentation method based on multi-scale template
matching and super-resolution was proposed to address the low classification accuracy
problem for images with small bolt sizes, in which ESRGAN was trained and applied to
up-sample bolt images to the required size with detailed texture. The comparison between
the trained ESRGAN, VDSR, and bicubic interpolation showed that images enlarged by
ESRGAN had the highest fidelity.

3. The proposed two-stage bolt damage identification used the YOLO v5x network to
segment bolts from preprocessed images and then classify them into normal bolts, corrosion
bolts, and loose bolts using efficientNet. The trained network showed 99.7% accuracy on
bolt detection and 99.3% accuracy on bolt damage classification in our dataset containing
24,000 images, which was much higher than using one network for both bolt detection and
bolt damage classification.

4. The proposed method was verified on an in-service suspension bridge. The results
showed that the proposed motion deblurring method showed improvement of 14.6% in
bolt damage detection accuracy with motion-blurred images, and the adaptive scale unified
segmentation method showed 10.4% greater accuracy on images with small bolt sizes.

As described in Table 2, the proposed method selects the direction to improve the
accuracy as much as possible in the tradeoff between accuracy and speed, resulting in the
proposed method being far from realizing real-time analysis. Future work will focus on
researching the lightweight bolt image preprocessing method to reduce the time consumed
in processing as much as possible. In addition, the automatic inspection path planning of
the UAS is also meaningful work. Based on the initial three-dimensional model of the bridge
and path planning algorithm, the optimal inspection path of the UAS can be automatically
planned. On the one hand, the control of the UAS can eliminate the dependence on manual
operations and realize whole process automation from data acquisition to analysis. On the
other hand, a reasonably planned path and flight speed can increase flight efficiency and
improve the quality of collected data.

Author Contributions: S.J.: conceptualization, methodology, algorithm, experiment, validation,
writing original draft, writing—review and editing. J.Z.: conceptualization, methodology, validation,
writing—review and editing. W.W.: experiment, validation. Y.W.: experiment, validation, writing—
review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The research presented was financially supported by the Key R&D Program of Jiangsu
(No.: BE2020094), the National Key R&D Program of China (No.: 2019YFC1511105, No.:2020YFC1511900,
and No.:2022YFC3801700).

Data Availability Statement: A part of the dataset established in the study and the trained model
can be downloaded from the link: https://github.com/shark-J/bridge-bolt-inspection (accessed on
6 November 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amerini, F.; Meo, M. Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods.

Struct. Health Monit. 2010, 10, 659–672. [CrossRef]
2. Guarino, J.; Hamilton, R.; Fischer, W. Acoustic detection of bolt detorquing in structures. In Proceedings of the Meetings on Acoustics

157ASA; Acoustical Society of America: Melville, NY, USA, 2009; Volume 6, p. 065002. [CrossRef]
3. Wang, F.; Song, G. Bolt early looseness monitoring using modified vibro-acoustic modulation by time-reversal. Mech. Syst. Signal

Process. 2019, 130, 349–360. [CrossRef]

https://github.com/shark-J/bridge-bolt-inspection
http://doi.org/10.1177/1475921710395810
http://doi.org/10.1121/1.3167485
http://doi.org/10.1016/j.ymssp.2019.04.036


Remote Sens. 2023, 15, 328 22 of 23

4. Wang, F.; Chen, Z.; Song, G. Monitoring of multi-bolt connection looseness using entropy-based active sensing and genetic
algorithm-based least square support vector machine. Mech. Syst. Signal Process. 2020, 136, 106507. [CrossRef]

5. Park, J.; Kim, T.; Kim, J. Image-based bolt-loosening detection technique of bolt joint in steel bridges. In Proceedings of the
6th International Conference on Advances in Experimental Structural Engineering, University of Illinois, Urbana-Champaign,
Chicago, IL, USA, 1–2 August 2015; pp. 1–2.

6. Cha, Y.J.; You, K.; Choi, W. Vision-based detection of loosened bolts using the Hough transform and support vector machines.
Autom. Constr. 2016, 71, 181–188. [CrossRef]

7. Ramana, L.; Choi, W.; Cha, Y.J. Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm. Struct.
Health Monit. 2019, 18, 422–434. [CrossRef]

8. Sun, J.; Xie, Y.; Cheng, X. A fast bolt-loosening detection method of running train’s key components based on binocular vision.
IEEE Access 2019, 7, 32227–32239. [CrossRef]

9. Wang, Y.; Qin, H.; Miao, F. A Multi-Path Encoder Network for GPR Data Inversion to Improve Defect Detection in Reinforced
Concrete. Remote Sens. 2022, 14, 5871. [CrossRef]

10. Yu, Z.; Chen, Z.; Sun, Z.; Guo, H.; Leng, B.; He, Z.; Yang, J.; Xing, S. SegDetector: A Deep Learning Model for Detecting Small and
Overlapping Damaged Buildings in Satellite Images. Remote Sens. 2022, 14, 6136. [CrossRef]

11. Shokri, P.; Shahbazi, M.; Nielsen, J. Semantic Segmentation and 3D Reconstruction of Concrete Cracks. Remote Sens. 2022, 14,
5793. [CrossRef]

12. Hu, Q.; Zhen, L.; Mao, Y.; Zhou, X.; Zhou, G. Automated building extraction using satellite remote sensing imagery. Autom.
Constr. 2021, 123, 103509. [CrossRef]

13. Yu, Z.; Shen, Y.; Shen, C. A real-time detection approach for bridge cracks based on YOLOv4-FPM. Autom. Constr. 2021, 122,
103514. [CrossRef]

14. Davis, P.; Aziz, F.; Newaz, M.T.; Sher, W.; Simon, L. The classification of construction waste material using a deep convolutional
neural network. Autom. Constr. 2021, 122, 103481. [CrossRef]

15. Dong, C.Z.; Catbas, F.N. A review of computer vision-based structural health monitoring at local and global levels. Struct. Health
Monit. 2020, 20, 692–743. [CrossRef]

16. Ni, F.; Zhang, J.; Chen, Z. Zernike-moment measurement of thin-crack width in images enabled by dual-scale deep learning.
Comput. Aided Civ. Infrastruct. Eng. 2019, 34, 367–384. [CrossRef]

17. Ni, F.; Zhang, J.; Chen, Z. Pixel-level crack delineation in images with convolutional feature fusion. Struct. Control Health Monit.
2019, 26, e2286. [CrossRef]

18. Zhao, X.; Zhang, Y.; Wang, N. Bolt loosening angle detection technology using deep learning. Struct. Control Health Monit. 2019,
26, e2292. [CrossRef]

19. Pham, H.C.; Ta, Q.B.; Kim, J.T.; Ho, D.D.; Tran, X.L.; Huynh, T.C. Bolt-loosening monitoring framework using an image-based
deep learning and graphical model. Sensors 2020, 20, 3382. [CrossRef]

20. Huynh, T.C.; Park, J.H.; Jung, H.J.; Kim, J.T. Quasi-autonomous bolt-loosening detection method using vision-based deep learning
and image processing. Autom. Constr. 2019, 105, 102844. [CrossRef]

21. Zhang, Y.; Sun, X.; Loh, K.J.; Su, W.; Xue, Z.; Zhao, X. Autonomous bolt loosening detection using deep learning. Struct. Health
Monit. 2020, 19, 105–122. [CrossRef]

22. Yuan, C.; Chen, W.; Hao, H. Near real-time bolt-loosening detection using mask and region-based convolutional neural network.
Struct. Control Health Monit. 2021, 28, e2741. [CrossRef]

23. Jang, K.; Kim, N.; An, Y.K. Deep learning-based autonomous concrete crack evaluation through hybrid image scanning. Struct.
Health Monit. 2019, 18, 1722–1737. [CrossRef]

24. Liu, G.; He, C.; Zou, C.; Wang, A. Displacement Measurement Based on UAV Images Using SURF-Enhanced Camera Calibration
Algorithm. Remote Sens. 2022, 14, 6008. [CrossRef]

25. Kang, D.; Cha, Y.J. Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system
with geo-tagging. Comput. Aided Civ. Infrastruct. Eng. 2018, 33, 885–902. [CrossRef]

26. Liu, Y.F.; Nie, X.; Fan, J.S.; Liu, X.G. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-
dimensional scene reconstruction. Comput. Aided Civ. Infrastruct. Eng. 2020, 35, 511–529. [CrossRef]

27. Chen, G.; Liang, Q.; Zhong, W.; Gao, X.; Cui, F. Homography-based measurement of bridge vibration using UAV and DIC method.
Measurement 2021, 170, 108683. [CrossRef]

28. Jiang, S.; Zhang, J. Real-time crack assessment using deep neural networks with wall-climbing unmanned aerial system. Comput.
Aided Civ. Infrastruct. Eng. 2020, 35, 549–564. [CrossRef]

29. Tian, Y.; Zhang, C.; Jiang, S.; Zhang, J.; Duan, W. Non-contact cable force estimation with unmanned aerial vehicle and computer
vision. Comput. Aided Civ. Infrastruct. Eng. 2021, 36, 73–88. [CrossRef]

30. Baker, S.; Matthews, I. Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vis. 2004, 56, 221–255. [CrossRef]
31. Zeng, X.; Huang, H. Super-resolution method for multiview face recognition from a single image per person using nonlinear

mappings on coherent features. IEEE Signal Process. Lett. 2012, 19, 195–198. [CrossRef]
32. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach.

Intell. 2015, 38, 295–307. [CrossRef]

http://doi.org/10.1016/j.ymssp.2019.106507
http://doi.org/10.1016/j.autcon.2016.06.008
http://doi.org/10.1177/1475921718757459
http://doi.org/10.1109/ACCESS.2019.2900056
http://doi.org/10.3390/rs14225871
http://doi.org/10.3390/rs14236136
http://doi.org/10.3390/rs14225793
http://doi.org/10.1016/j.autcon.2020.103509
http://doi.org/10.1016/j.autcon.2020.103514
http://doi.org/10.1016/j.autcon.2020.103481
http://doi.org/10.1177/1475921720935585
http://doi.org/10.1111/mice.12421
http://doi.org/10.1002/stc.2286
http://doi.org/10.1002/stc.2292
http://doi.org/10.3390/s20123382
http://doi.org/10.1016/j.autcon.2019.102844
http://doi.org/10.1177/1475921719837509
http://doi.org/10.1002/stc.2741
http://doi.org/10.1177/1475921718821719
http://doi.org/10.3390/rs14236008
http://doi.org/10.1111/mice.12375
http://doi.org/10.1111/mice.12501
http://doi.org/10.1016/j.measurement.2020.108683
http://doi.org/10.1111/mice.12519
http://doi.org/10.1111/mice.12567
http://doi.org/10.1023/B:VISI.0000011205.11775.fd
http://doi.org/10.1109/LSP.2012.2186961
http://doi.org/10.1109/TPAMI.2015.2439281


Remote Sens. 2023, 15, 328 23 of 23

33. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-Recursive Convolutional Network for Image Super-Resolution. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645.
[CrossRef]

34. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [CrossRef]

35. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-
Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [CrossRef]

36. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Tang, X. ESRGAN: Enhanced Super-Resolution Generative Adversarial
Networks. In Proceedings of the Computer Vision—ECCV 2018 Workshops, Munich, Germany, 8–14 September 2018; volume
11133, pp. 63–79. [CrossRef]

37. Zhao, H.W.; Ding, Y.L.; Li, A.Q.; Chen, B.; Wang, K.P. Digital modeling approach of distributional mapping from structural
temperature field to temperature-induced strain field for bridges. J. Civ. Struct. Health Monit. 2022, 12, 1–17. [CrossRef]

38. Lin, S.W.; Du, Y.L.; Yi, T.H.; Yang, D.H. Influence lines-based model updating of suspension bridges considering boundary
conditions. Adv. Struct. Eng. 2022, 26, 13694332221126374. [CrossRef]

39. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/CVPR.2016.181
http://doi.org/10.1109/CVPR.2016.207
http://doi.org/10.1109/CVPR.2017.19
http://doi.org/10.1007/978-3-030-11021-5_5
http://doi.org/10.1007/s13349-022-00635-8
http://doi.org/10.1177/13694332221126374
http://doi.org/10.1109/CVPR.2017.690

	Introduction 
	Framework of the Proposed Method 
	Data Acquisition and Preprocessing 
	Design of the UAS 
	Strategy for Bridge Bolt Data Acquisition Using UAS 
	Zoom Camera Model and Motion Deblurring 
	Adaptive Scale Segmentation Based on ESRGAN 

	Two-Stage Bolt Inspection Based on Deep Learning 
	Establishment of Bridge Bolt Dataset 
	Test Using a Single Object Detection Network 
	Test Using a Two-Stage Inspection Method 

	Filed Test on a Suspension Bridge 
	Establishment of Bridge Bolt Dataset 
	Data Preprocessing 
	Bolt Inspection Results 

	Conclusions 
	References

