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Abstract: The low-latitude ionosphere has an active behavior causing the total electron content (TEC)
to vary spatially and temporally very dynamically. The solar activity and the geomagnetic field have
a strong influence over the spatiotemporal distribution of TEC. These facts make it a challenge to
attempt modeling the ionization response. Single frequency GNSS users are particularly vulnerable
due to these ionospheric variations that cause degradation of positioning performance. Motivated
by recent applications of machine learning, temporal series of TEC available in map formats were
employed to build an independent TEC estimator model for low-latitude environments. A TEC
dataset was applied along with geophysical indices of solar flux and magnetic activity to train a
feedforward artificial neural network based on a multilayer perceptron (MLP) approach. The forecast
for the next 24 h was made relying on TEC maps over the Brazilian region using data collected
on the previous 5 days. The performance of this approach was evaluated and compared with real
data. The accuracy of the model was evaluated taking into account seasonality, spatial coverage and
dependence on solar flux and geomagnetic activity indices. The results of the analysis show that the
developed model has a superior capacity describing the TEC behavior across Brazil, when compared
to global ionosphere maps and the NeQuick G model. TEC predictions were applied in single point
positioning. The achieved errors were 27% and 33% lower when compared to the results obtained
using the NeQuick G and global ionosphere maps, respectively, showing success in estimating TEC
with small recent datasets using MLP.

Keywords: GNSS; ionospheric models; machine learning; single point positioning; total electron content

1. Introduction

The users of global navigation satellite system (GNSS) single frequency applications
worldwide are substantially affected by ionospheric variability because of the degradation
of position accuracy caused by the phenomena in this plasma environment. This is espe-
cially true over low-latitude regions, where the dynamics are varied and intensified. Users
depend on good representation of a quantity called total electron content (TEC), which
is, basically, the integrated electron density along the signal path considering the volume
of an abstract unitary cylinder. The TEC unit, TECu, is estimated considering the signal
path as a volume of an abstract unitary cylinder. The TEC unit, TECu, is equivalent to
1016 electrons/m2. Modeling the TEC is required to assess the ionospheric delay; however,
over low-latitude regions that is a difficult task due to the complex electrodynamics of the
ionosphere. The distribution of the plasma density over these regions varies according to
several parameters such as wind patterns, hour of the day, seasonality, solar flux conditions,
geomagnetic conditions, etc. [1,2]. Over low-latitude regions the phenomena include the
fountain effect, the equatorial ionization anomaly (EIA), and pre-reversal enhancement of
the zonal electric field (PRE), equatorial spread F, equatorial plasma bubbles (EPBs) and the
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ensuing ionospheric scintillation [3]. While some of these phenomena cause mild plasma
redistribution, the spread F and EPBs belong to a distinct category and correspond to sud-
den and drastic changes in the ionospheric F region bottom side and topside, respectively,
causing GNSS users to experience the advent of ionospheric scintillation [4].

The ability to generate the TEC spatiotemporal structure properly is widely desired
and would aid in providing correct estimations of the ionospheric delay. Currently, several
models have been used to accomplish this task, including the Klobuchar model [5], the
international reference ionosphere (IRI) [6], the NeQuick G [7], GIMs (global ionospheric
maps) such as IONosphere EXchange format (IONEX) [8], neural network approaches
based on long short-term memory (LSTM), multi-layer perceptron (MPL), etc., and spectral
analysis techniques [9,10]. However, over low-latitude regions, especially over the Brazilian
region, these models and GIMs are not capable of reproducing all the features of the iono-
sphere due to the large variability of the ionosphere as mentioned earlier [11]. As a result,
the spatiotemporal TEC structures obtained by employing these models and GIMs offer a
deficient representation. Some works explored the reasons for the deficiency of the TEC
estimation comparing ground-based instruments, such as ionosondes, and TEC obtained
from GNSS observables. Belehaki, A. [12] used digisonde data and GNSS measurements
to estimate the contribution of the plasmaspheric density to the TEC values over Europe,
where, typically, there are no EIA, EPBs, etc., and the behavior of the ionosphere changes
more smoothly with space and time. The environment over the Brazilian region, however,
is considerably distinct, and data from GNSS would be preferable because it includes the
plasmaspheric contribution.

Nowadays, the usage of machine learning techniques attempting to predict the behav-
ior of the ionospheric environment through TEC has been a promising approach according
to recent works in the literature. Ghaffari Razin, M. R.; Voosoghi, B. [13] developed a
method of ionospheric tomography based on wavelet neural networks, which showed
success in estimating TEC when compared to test stations in Iran. Mallika et al. [14] pre-
sented an ionospheric forecasting algorithm combining principal components analysis
(PCA) and neural networks to forecast ionospheric TEC values in a region over Japan using
20 years of TEC data along with geomagnetic activity index Ap and the solar flux index
(F10.7). Liu, L. [15] used a LSTM (long short term memory) neural network to perform
the forecast of the spherical harmonic coefficients applied in the construction of global
ionospheric maps (GIM). Similarly, Ref. [16] presented results predicting the TEC on a
global scale 24 h prior to the real data. Their work was based on GIM maps that fed a
nonlinear autoregressive exogenous neural network with external input (NARX). This
model was considered satisfactory, causing errors between 3 and 5 TEC units. Han, Y. [17]
applied four different types of machine learning models to forecast ionospheric TEC using
three international GNSS service (IGS) monitoring stations located in low-latitude regions.
They evaluated the performance of these models in geomagnetic disturbed conditions with
high solar activities and showed that in these scenarios it is difficult to properly predict the
TEC values.

As previously mentioned, the Brazilian region is in a sector with several particularities
in the ionosphere, which have been the subject for several recent research works [18].
Motivated by this complex ionospheric environment, in this work, the neural networks
procedure applied was designed aiming to provide a TEC prediction that preserves essential
features of the TEC spatiotemporal structure over this sector. To do so, real maps of TEC
from the region of interest in periods under similar conditions were used to feed the
neural network. In addition, the approach proposed has the advantage of allowing the
organization and distribution of TEC forecasts to users promptly. The contributions of this
work are to use deep learning to predict a more detailed behavior of the TEC over a large
territorial extension like Brazil, and to provide immediate short forecasts. These features
have potential to make this prediction a service of interest for users of satellite positioning
technologies at low latitudes.
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2. Methodology

The parameter to be estimated by the model proposed in this work is the TEC across
the Brazilian territory. To make this prediction using a machine learning approach, real
TEC values from Rede Brasileira de Monitoramento Contínuo dos Sistemas GNSS (RBMC),
a network of geodetic receivers over Brazil, were used to build TEC maps over the re-
gion of interest [19]. These TEC maps were built based on the methodology of [20]. In
addition to the TEC maps used as inputs to the neural networks, other parameters of
space weather were also used to optimize the neural network: the solar flux F10.7 and
the geomagnetic index Ap. The F10.7 index is an indicator of solar flux and measures the
noise generated by the sun in the wavelength of 10.7 cm in solar flux units (s.f.u.) being
1 s.f.u. = 10−22 Wm−2Hz−1. The Ap index provides the level of geomagnetic activity over
the globe and its values are obtained by averaging 8 samples during the day.

2.1. TEC Data Processing

One of the key factors for an accurate GNSS positioning is a fair estimate of the
ionospheric delay. The ionospheric delay, however, is directly related to the TEC above-
mentioned. The TEC is responsible for causing changes in the code and carrier phase
measurements; this relation may be defined as:

I =
K

2 f 2 TEC (1)

where I is the ionospheric delay in meters, K is a constant equal to 80.62
(
m3/s2) and f is

signal frequency in MHz. This relationship between the TEC values and the ionospheric
delays is invertible, i.e., it is also possible to obtain an estimate of the TEC values from the
ionospheric delay values. To estimate the TEC, the use of dual-frequency GNSS receivers
is needed. From the pseudorange and carrier-phase measurements provided by these
receives, TEC may be estimated using the observables provided, typically, in the L1 and L2
frequencies (nowadays L5 may also be used). The pseudorange equation is given by [21]:

Pk= ρ + c (∆tr − ∆ts) + Ik + T + bkr + bks + mk + ε (2)

where Pk is the pseudorange observation corresponding to the frequency reference k, ρ is
the geometric distance from the receiver up to the satellite, c is the speed of the light at
the vacuum, ∆tr and ∆ts are the receiver and satellite clock errors, Ik is the ionospheric
delay, T is the tropospheric delay, bkr and bks are the instrumental biases for the receiver
and the satellite, respectively, mk is the term associated with multipath effects, and ε is the
thermal noise.

The TEC that may be obtained with this procedure is often referred to as slant TEC
(STEC). To obtain the STEC from the combination of the frequencies L1 and L2, the differ-
ence between P2 and P1 is calculated, where P1 and P2 are the pseudoranges for the L1 and
L2 carriers, respectively. By neglecting the multipath and thermal noise, the other terms in
Equation (2) are canceled. After this, by replacing the terms related to the ionospheric delay
(I1 and I2) it is possible to obtain the equation of STEC from pseudorange measurements
using f1 and f2 [22]:

STECcode= 2
( f1 f2)

2

K ( f 2
1 − f 2

2
) (P2 − P1)− br − bs, (3)

where STECcode represents the STEC value measured from pseudorange code observations.
To carrier-phase, the equation is given by [21]:

φk = ρ + c(∆tr − ∆ts)− Ik + T + bkr + bks + λk Nk + mk + εk (4)
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where φk, is the carrier-phase observation corresponding to the frequency k, λk is the
respective wavelength and Nk corresponds to the cycle ambiguities. To obtain STEC
from carrier-phase, the difference between φ1 and φ2 (the carrier-phases for L1 and L2,
respectively) is used. The process is like that for pseudoranges, assuming φk = Lk λk. The
equation to STEC from carrier-phase measurements using f1 and f2 is given by [22]:

STECφ =
2 ( f1 f2)

2

K
(

f 2
1 − f 2

2
) (L1 λ1 − L2 λ2)− br − bs − (λ1 N1 − λ2 N2) (5)

where STECφ is the STEC obtained from phase-code measurements.
For this kind of application, the ionosphere is assumed as a thin shell located at a

reference altitude of 350 km. This altitude is used because it is approximately where
the electron density peak is located and is usually referred to as the ionospheric pierce
point (IPP). The models used for ionospheric delay correction in single-frequency GNSS
receivers, for example, use this assumption. In this representation, the STEC is converted
to vertical TEC (VTEC), because it maps the ionosphere in geographic coordinates, also
called sub-ionospheric points. This conversion is given by the following equation [23]:

STEC
VTEC

=

[
1 −

(
R cos E
R + h

)2
]−1/2

(6)

where R is the Earth radius (in km), h is the height of the thin shell representing the
ionosphere (in km), and E is the elevation angle of the satellite.

This work employs TEC maps produced using this approach to feed a neural network
which has the purpose of predicting the TEC spatiotemporal structure for days in the near
future. The input TEC map was built using data from the RMBC network over the Brazilian
territory. This network currently has more than 100 receivers operating and the RINEX
(receiver independent exchange) data recorded by these receivers are available at the RBMC
website for download.

These maps were made according to the methodology developed by [20]. The con-
struction of the TEC maps followed the steps given below:

1. Conversion of STEC to VTEC considering only data collected by satellites with eleva-
tion angles above 20◦.

2. All the IPPs from the VTEC obtained at all available stations are gathered during
5-min intervals.

3. At each 5-min, the IPP points are grouped into grid cells in a mesh with 1◦ resolution
for the longitude × latitude plane at the IPP altitude.

4. For each grid cell, the average VTEC value is weighted by the elevation angle.
5. The Delaunay triangulation [24] process is applied using linear interpolation over the

covered area. This interpolation is intended to fill regions with empty grid cells.
6. In the last step, a Gaussian low-pass filter is applied to the domain to smooth the grid

transitions in the TEC map.

After executing all these steps, considering the 5-min intervals, it is possible to obtain
288 maps for a day. These TEC maps are capable of exhibiting all the macroscopic variations
expected over the low-latitude region.

Figure 1 shows 6 panels with an example of these TEC maps that will be used as inputs
to the neural network. The upper/lower panels present the TEC maps for winter/summer
solstice conditions, hence, covering varied seasonal conditions. The left/middle/right
panels correspond to morning/afternoon/early nighttime periods, respectively. The upper
panels describe smaller TEC concentration and closer to the geomagnetic equator, as
expected for a winter solstice period. The lower panels display a different behavior with
larger TEC values and plasma being redistributed to low latitudes, away from the equator
by the fountain effect, thereby forming the equatorial ionization anomaly at afternoon and
early nighttime.
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Figure 1. Example of TEC maps used as input to the neural network to be discussed in the
later sections. Right/left panels—winter/summer solstice example (3 June and 20 November,
respectively). Upper/middle/lower panels—TEC map at 13h00UT/20h00UT/23h00UT (morn-
ing/afternoon/early nighttime for the Brazilian region).

2.2. Reference Data and Metrics

The performance of the ionospheric delay estimation from the TEC prediction from this
work was compared with the NeQuick G model and the GIM provided by IGS. NeQuick G
is the model used by Galileo (European navigation system) for ionospheric delay correction.
The NeQuick G model calculates the correction using the daily solar flux information
transmitted through 3 coefficients obtained from the navigation message [24]. The GIM
IONEX is a product generated by the IGS and contains global VTEC information and DCB
measurements from GPS satellites. The final GIM product has a latency of approximately
11 days, and the files have a temporal resolution of 2 h with a spatial resolution of 2.5◦ in
latitude and 5◦ in longitude [25].

The results (errors) from the neural network model trained with the real TEC maps
built according to [20] were compared with the NeQuick G model and GIM employing
statistical evaluation. For comparison purposes the adopted metric is the MAE (mean
absolute error) [26]. The MAE may be described by the following expression:

MAE =
1
N

N

∑
j=1

∣∣ϑj − ς j
∣∣ (7)
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where ϑj and ς j are the true and predicted values of the sample j in the vector of length N,
respectively. All the analysis to be presented use error metrics based on the MAE.

3. Neural Network

Deep neural networks are tools able to learn from big datasets and generate models
capable of mapping inputs to outputs even when there is nonlinearity in this mapping.
Due to this capacity of extracting features of a dataset, this deep neural network can be
used for data forecasting, for example, temperature, stock price, etc. [27]. In the case of this
work, they were used for forecasting the ionospheric distribution.

Problems that involve forecasting are dependent on time; therefore, they are more
complex than the classical problems in classification and regression. The multilayer per-
ceptron (MLP) class was chosen to train a model to predict the daily maps of the TEC
distribution over the Brazilian region, e.g., it predicted the VTEC values along the Brazilian
region. This type of neural network architecture was chosen due to features like robustness
to noise and nonlinearities, multivariate inputs, besides being simpler to implement [27].

3.1. Neural Network Architecture

The architecture multilayer perceptron (MLP) was applied in this work to predict TEC
values. This type of neural network is composed of layers containing neurons. The layers
are connected in sequence and the output of each neuron of a layer is connected to the
input of all the neurons in the next layer (fully connected). The layers located between
the first layer and last layer are called hidden layers. As mentioned earlier, this type of
network is robust to input noise and it is capable of modeling both linear and non-linear
problems [28]; therefore, the behavior of the spatiotemporal distribution of the TEC may be
properly assessed.

The neuron model applied in the MLP is given by:

y = f

(
N

∑
i=1

xi wi + b

)
(8)

where: f ( ) represents an activation function, which relates the inputs with the output y;
xi are the inputs of each neuron i; wi represents the weight of each neuron; and b denotes
the bias [29].

Once the neural network is assembled the training is composed of two stages: forward
phase and backward phase. In the forward phase, the weights are fixed, and the input
data propagate through the network until reaching the output producing an error, which is
generated by comparing the output data with the desired response. In the backward phase,
this error is used to adjust the network weights; then it is propagated in the backward
direction. The adjustments are made successively from the last layer to the first layer at
various times until reaching the desired error threshold in the output, when the training of
the network is completed [29].

3.2. Neural Network Configuration

In this section, the configuration and parameters used in the MLP neural network
used in this work are presented. The neural network (MLP) implemented has five layers
and the configuration of each one is shown in Table 1.

The configuration presented in Table 1 shows the number of neurons and the activation
function applied in each layer was the rectified linear unit function (ReLu). ReLu was
used because this function works only with positive values and rectifies negative values
to zero. Because TEC is density and always has positive values, this function returns
adequate outputs.
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Table 1. MLP configuration.

Layer Number of Neurons Activation Function

1st 500 ReLu

2nd 100 ReLu

3rd 100 ReLu

4th 50 ReLu

5th 1 ReLu

The inputs were arranged according to the following parameters: year; day of year
(DoY); time (in seconds); latitude of the IPP (in degrees); longitude of the IPP (in degrees);
F10.7 index (in s.f.u.); and Ap index (in nT). All these input variables were normalized
by the respective maximum value. The output variable is the vertical TEC value (VTEC).
Figure 2 shows the structure of the multilayer perceptron neural network (MLP-NN) used
in this work.
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across Brazil.

The deep learning-based TEC model was developed using the TensorFlow framework.
The neural network presented in Figure 2 was configured to avoid overfitting using the
EarlyStopping function to monitor the metric MAE during the training. If the MAE achieves
a value smaller than 5 × 10−5 TEC units (TECu), the training process is interrupted before
completing all epochs set in its beginning. The optimizer used to train the neural network
was the Adam optimizer. This algorithm has the function of updating all neural network
weights interactively using the training data. The hyperparameters for the Adam optimizer
were a learning rate of 0.001, β1 = 0.9 and β2 = 0.999. β1 and β2 are, respectively, the
exponential decay rate for the 1st and 2nd moment estimates of the stochastic gradient
descent method of optimization from the Adam class. To compile the model of the neural
network, the cost function used was the MSE (mean squared error), and the validation
metrics used were MAE, MSE, and accuracy. To fit the model, a value of a batch size of 256
and a number of epochs equal to 20 were used. The training process took approximately
40 min on average using Google Collab. In addition, during the training process, whenever
a given MSE achieved a value smaller than that from an MSE from a previous epoch, the
neural network weights were saved, so that the best model was obtained at the end of the
training process.

3.3. Preprocessing and Training Methodology

The training methodology was developed to predict the ionospheric VTEC of the
Brazilian region; due to this, the MLP-NN training used VTEC maps that were processed
using the methodology developed by [13]. This methodology permits obtaining the VTEC
maps from the observational RINEX recorded from all dual-frequency global positioning
system (GPS) receivers maintained by the RBMC.
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The TEC maps were originally sampled every 5 min for each day available. Following,
these maps were structured in tables where the columns are divided as follows: 1—Year;
2—DoY (day of year); 3—time (seconds); 4—latitude IPP (degrees); 5—longitude IPP
(degrees). Then, the F10.7 (10–22 W m−2 Hz−1) and the Ap (nT) were concatenated (per
day) in columns 6 and 7, respectively. These space weather indexes were obtained from
the OMINIWeb website (https://omniweb.gsfc.nasa.gov/form/dx1.html, accessed on
14 December 2022) maintained by the National Aeronautics and Space Administration
(NASA). The VTEC from each day was separated in a single column to compute the error
during the training stage.

The training strategy was based on datasets of five days prior to the given day that
should be predicted; by doing so the dataset was fully used sequentially, i.e., each day
predicted was the result of the training using over the five days prior to this desired
day. This procedure was performed for the entire year of 2014. Please observe that the
aforementioned approach implies outputs from January 6 up to December 31. At the end
of this process, the values were denormalized and the TEC values were obtained from the
neural network.

To exemplify the performance of the neural network during the training phase, Figure 3
presents the cost function and the MAE as functions of time during the training of the
VTEC prediction for day 365 of year 2014.
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Figure 3. Panel (a)— cost function (MSE) for day 365 of year 2014. Panel (b)— metric (MAE) for the
same day. According to the panels the convergence was reached after few epochs of training.

Panel (a) of Figure 3 presents the convergence of the cost function (MSE). Please note
that the value of the cost function drops quickly as the epochs advance. Panel (b) shows
the convergence of the MAE, used later to evaluate the error in the estimation of the VTEC
value (normalized). The MAE value also drops considerably according to the advance of
the epochs up to epoch 12, where the EarlyStopping function stops the training. Please
remember that the function was configured to stop the training when the MAE value was
less than 5 × 10−5. From these graphs, it is possible to verify that the model had learned
about the training data, allowing it to make predictions of TEC data.

As mentioned earlier, to evaluate the effectiveness of the proposed MLP-NN model
in the prediction of VTEC values, the metric adopted was the MAE. The VTEC values
from the maps described in Section 2 were used as the reference values (ϑj), while the
predicted samples (ς j) came from the MLP-NN, NeQuick G model, and GIM. The errors
computed consider the values from the models in the spatial grid covering from 33◦W to
70◦W longitude and from 4◦N to 32◦S latitude with 1◦ resolution.

https://omniweb.gsfc.nasa.gov/form/dx1.html
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4. Model Evaluation

Here we present the VTEC predictions obtained based on the MLP-NN described in
the previous section. The performance of the proposed model will be evaluated according
to the months of the year, location, and as function of the time of day (dawn, morning,
afternoon, and night). In addition, the performance of the NeQuick G model and GIM are
also presented for comparison purposes. Please remember that the VTEC maps built with
real TEC values were used as the reference for error calculation.

4.1. Evaluation of Ability of Seasonal Representation

Figure 4 presents histograms with errors for the MLP-NN for all forecasted maps for
the whole year of 2014. The figure is divided into months (panels) and hours (color-
coded curves). The VTEC errors (VTEC map–VTEC predicted) were binned in 4 in-
tervals, representative of substantial TEC changes over low-latitude regions, namely,
dawn (03:00–08:59 UT), morning (09:00–14:59 UT), afternoon (15:00–20:59 UT), and night
(21:00–02:59 UT). Please note that the local time may be between UT-4:40 and UT-2:12,
depending on the longitude considered.

The results indicate that between May and August (winter solstice months) the errors
are smaller (concentrated around zero) when compared to the remaining months (equinox
and summer solstice); this is especially true for nighttime. This behavior is probably
related to the fact that during the winter solstice months the occurrence of highly variable
phenomena such as spread F and plasma bubbles are rare [30]. As an example, during
June nights, approximately 82% of the model error is less than 5 TECu for the afternoon;
therefore, the results agrees very well with real data. In contrast, during months along
the equinox and summer solstice, only 59% of the model errors are less than 5 TECu for
the afternoon.
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Continuing with the model evaluation, Figure 5 shows the average MAE (MAE)
value for the proposed MLP-NN (blue bars), as well as for the NeQuick G (red bars)
and GIM (yellow bars). In this figure, the MAE values were calculated considering the
entire coverage of the TEC maps generated by the MLP-NN, GIM or NeQuick G, i.e., the
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MAE values correspond to the mean errors of the entire representation for distinct time
intervals and months, revealing the seasonal and temporal average distribution of the
errors. It is readily discernible that the MAE values for the predictions by the MLP-NN
are considerably smaller than the other models for all months and for all time intervals,
i.e., the MLP-NN results are consistently better. The improved prediction by the MLP-NN
is especially noticeable for the months between October and March. As an example, the
MLP-NN MAE values are up to 76% lower than those from the GIM. Indeed, for any time
interval, the MLP-NN MAE values remain stable throughout the year. This stability is not
observed for the MAE values obtained using the NeQuick G and GIM. Please note that the
MAE values from these models have a substantial increase in the spread F season months.
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Figure 5. Average MAE (MAE) from the MLP-NN, NeQuick G, and GIM for the year 2014 considering
the entire coverage over Brazil. The panels are organized in 4 time intervals to illustrate the seasonal
and temporal improvements obtained with the usage of the MLP-NN.

4.2. Evaluation of the Error from a Spatial Coverage Perspective

In the previous section, MAE calculation was performed considering the entire cover-
age as a unique set, i.e., only one value was obtained for each time available. Notwithstand-
ing, the GPS errors introduced by the ionosphere are dependent on the TEC distribution,
and the ionosphere over low-latitude regions is known to be highly variable [11]; therefore,
the VTEC spatial distribution must be evaluated.

To evaluate the efficiency of the MLP-NN model in producing an accurate spatial
representation of the TEC, the MAE values in this section were calculated for each point in
the grid individually so that the spatial distribution of the model errors could be obtained.
For this analysis, the MAE for each day was calculated over the entire spatial grid (at each
latitude and longitude with 1◦ resolution).

Figure 6 shows examples of spatial errors (MAE) from the MLP-NN (right panels),
NeQuick G (middle panels), and GIM (left panels) for two distinct days in 2014 (cho-
sen arbitrarily). The days exhibited in Figure 6 are, respectively, 1 June (upper panels)
and 30 November (lower panels), 2014. These days correspond to two distinct seasonal
ionospheric conditions; the first represents a winter solstice condition while the second
corresponds to a summer solstice. The spatial MAE values confirm the results of Figure 5,
showing that the GIM and NeQuick G present inferior performances when compared to
the MLP-NN. The MLP-NN MAE values were considerably lower for both days analyzed
in this example, corresponding to better accuracy for both distinct seasonal conditions. Es-
pecially during larger TEC conditions, as represented in the lower panels (summer solstice),
the MLP-NN results are better in the entire spatial grid. It must be mentioned that this
seasonal period is contained in the spread F season, when the ionosphere causes problems
for GPS transmissions more often [31].
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During winter solstice, notice that the errors from the GIM (upper left panel) are
mostly concentrated in the regions close to the magnetic equator, while those from NeQuick
G (upper middle panel) are condensed in the EIA region. For the period of summer solstice,
the errors exhibit the opposite trend, i.e., the GIM (lower left panel) and NeQuick G (lower
middle panel) errors are more concentrated in the EIA and magnetic equator regions,
respectively. The errors from MLP-NN, besides considerably lower, are more concentrated
at low latitudes for both seasonal conditions. This is also more coherent, because these
regions present larger TEC values consistently, along both seasons represented.
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4.3. Evaluation of the Error According to F10.7 and Ap Indexes

The ionospheric TEC distribution is also dependent on solar flux and geomagnetic ac-
tivity [32]; hence, this section investigates the model representation performance regarding
these aspects, as the F10.7 and Ap indexes are also used to feed the MLP-NN.

Table 2 presents the MAE together with the standard deviation (σ) for the models
analyzed in terms of the F10.7 index. The MLP-NN improvement percentage was calculated
following 100 ×

(
MAEM − MAEMML-NN

)
/MAEM. Notice that the MLP-NN model had

MAE reductions over 50% for all the conditions of F10.7. Supporting the improved accuracy
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of the MLP-NN model, the standard deviation results presented similar behavior, with
much smaller values for this model when compared to the others.

Table 2. Evaluation of the accuracy of the methods for different ranges of solar flux.

F10.7
(s.f.u.) Data Source MAE

(TECu)
σ[MAE] (TECu)

MLP-NN
Improvement

(%)

F10.7 ≥ 150

MLP-NN 5.44 3.39 -

NeQuick G 11.44 6.25 52.44

GIM 14.77 8.29 63.17

100 ≤ F10.7 < 150

MLP-NN 4.68 3.00 -

NeQuick G 9.72 6.28 51.85

GIM 11.35 7.12 58.77

F10.7 < 100

MLP-NN 2.22 1.53 -

NeQuick G 6.48 5.19 65.74

GIM 4.94 2.42 55.06

Regarding the geomagnetic condition, the data were grouped in a first set containing
only the days under “quiet” geomagnetic conditions (Ap < 27) and in a second set with
only the days under “disturbed” geomagnetic conditions (Ap ≥ 27) [33].

Table 3 presents the MAE, together with the standard deviation (σ), for the models
analyzed in terms of the Ap index. Under geomagnetic disturbed conditions, the VTEC
prediction was admittedly more challenging. The observed MLP-NN MAE for this condi-
tion revealed improvements of 45.38% and 38.80% when compared to the values for the
GIM and NeQuick G, respectively. For geomagnetic quiet conditions, the improvement
provided by the MLP-NN MAE reached 60.99% and 52.52% when compared to the values
for the GIM and NeQuick G, respectively. For both geomagnetic conditions, note again that
the MLP-NN model had much smaller errors than the other models analyzed. The standard
deviation for the MLP-NN model was also smaller than those from the NeQuick G and
from GIM. These results indicate that the MLP-NN model is also better in representing the
ionospheric TEC under distinct solar and geomagnetic conditions.

Table 3. MAE values for different TEC methods considering geomagnetic quiet and disturbed cases.

Ap Index Data Source MAE
(TECu)

σ[MAE]
(TECu)

MLP-NN
Improvement

(%)

Ap ≥ 27

MLP-NN 8.28 3.83 -

NeQuick G 13.53 4.80 38.80

GIM 15.16 6.57 45.38

Ap < 27

MLP-NN 4.90 3.18 -

NeQuick G 10.32 6.33 52.52

GIM 12.56 7.84 60.99

5. Discussion

In the previous sections, the results indicate that the MLP-NN model may successfully
represent the VTEC over Brazil with better accuracy than models and maps widely used
such as GIM and NeQuick G. In this discussion section, some applications of the MLP-NN
model are addressed. The first step in this discussion is to compare the predictions of
this model with the reference VTEC maps built according to [20]. The purpose of this
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evaluation is to show, explicitly, the ability of the MLP-NN to properly represent the spatial
distribution of the TEC over the Brazilian region.

Figures 7 and 8 illustrate two days (arbitrarily chosen) corresponding to periods of
winter solstice (June 6) and summer solstice (November 30) in the year 2014.

The left panels in Figure 7 exhibit the VTEC maps estimated with real data using
the methodology presented in [20]. From upper to lower panels, the periods represented
are post-midnight time (7h00 UT), morning (13h00 UT), afternoon (20h00UT), and early
nighttime (23h00UT), respectively. Please remember that the local time is between UT-4:40
and UT-2:12. The color bar at right describes the VTEC values. The right panels use the
same graphical elements, however, this time presenting the prediction obtained with the
MLP-NN model. It is evident that all features are properly preserved and that the spatial
structure of the TEC predicted with the MLP-NN is coherent with the physical processes
over low-latitude regions.
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Figure 8 is similar to the previous one, except that the day represented belongs to a
summer solstice (30 November 2014). The graphical representation is the same as that used
in the previous figure.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 8. Comparison between the real VTEC maps (left) and the VTEC maps predicted with the 
MLP-NN (right) during a summer solstice arbitrary day (30 November 2014). From upper to lower 
panels, frames corresponding to the post-midnight, morning, afternoon, and early nighttime are 
presented. 

Please observe that aspects such as the concentration of the ionospheric plasma over 
regions around the geomagnetic equator and its posterior redistribution by the fountain 
effect to low latitudes, away from the equator, are evident in the results provided by the 
MLP-NN model (right panels). Hence, the ability of the MLP-NN to reproduce the TEC 
spatial structure is confirmed, regardless of the seasonal condition of the ionosphere. 

These results are important and suggest that, although the ionospheric phenomenol-
ogy is complex and widely variable over the Brazilian region, the configuration of the 
MLP-NN is adequate to reproduce its effects. It must be mentioned, however, that this 
ability is a heritage from the dataset feeding the network and the ionospheric behavior 
was learned implicitly. 

Figure 8. Comparison between the real VTEC maps (left) and the VTEC maps predicted with
the MLP-NN (right) during a summer solstice arbitrary day (30 November 2014). From upper to
lower panels, frames corresponding to the post-midnight, morning, afternoon, and early nighttime
are presented.

Please observe that aspects such as the concentration of the ionospheric plasma over
regions around the geomagnetic equator and its posterior redistribution by the fountain
effect to low latitudes, away from the equator, are evident in the results provided by the
MLP-NN model (right panels). Hence, the ability of the MLP-NN to reproduce the TEC
spatial structure is confirmed, regardless of the seasonal condition of the ionosphere.
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These results are important and suggest that, although the ionospheric phenomenology
is complex and widely variable over the Brazilian region, the configuration of the MLP-
NN is adequate to reproduce its effects. It must be mentioned, however, that this ability
is a heritage from the dataset feeding the network and the ionospheric behavior was
learned implicitly.

Positioning Performance

One of the main interests in the development of this type of prediction model is the
use for ionospheric correction in satellite navigation algorithms. To confirm the better
accuracy of results from the MLP-NN model, the values of this prediction were tested in
two locations in Brazil, Recife (8.05◦S, 34.95◦W) and Salvador (12.97◦S, 38.51◦W). These
stations were used because data were available for a long period with good quality records.
The positioning results from the MLP-NN model and from NeQuick G and GIM were
compared, because the last two are widely used in positioning applications. The positioning
method used in this evaluation was the GPS single point positioning (SPP) [34]. In this
approach, observables from the L1 GPS signal code were used together with the transmitted
ephemeris to compute the position. In this processing, the ionosphere corrections were
made considering the MLP-NN, NeQuick G and GIM independently, while the tropospheric
corrections used the Hopfield model [35]. In addition, the VTEC values estimated by the
reference VTEC map constructed as described in Section 2 were also used and will be
referenced in this section as TEC MAP.

Figure 9 shows an example of the SPP 3D error for 20 November 2014, on a receiver
located in Recife. Here, 3D error refers to the value considering 2

√
(e2 + n2 + u2) for the

east (e), north (n) and up (u) directions, respectively. This example illustrates how the
ionosphere influences the positioning error. During the day, from 05 UT to 15 UT, the
errors were smaller from all the models. This behavior agrees with the MAE graphs
in Figure 6, which show that approximately during these hours the MLP-NN model
presented smaller mean absolute error values. However, as the ionosphere becomes
more ionized during the afternoon (15UT to 20 UT), as shown in the central panels of
Figures 7 and 8, the positioning errors increased. The 3D errors in the dusk and early
nighttime periods increased probably due to enhancement in the ionospheric plasma
motion at these hours. This motion is augmented by the vertical component of the plasma
drift during the prereversal enhancement of the zonal electric field [36]. Please observe
that this vertical drift increase is highly variable and promotes a large redistribution of
plasma to latitudes away from the equator; therefore, any model produces slightly poor
representation at these hours. Subsequent to the prereversal enhancement, the equatorial
and low-latitude ionosphere often experiences instabilities that lead to the formation of
EPBs. EPBs are huge regions of depleted plasma and are extremely difficult to predict;
hence, again, any model is not capable of presenting a perfect representation due to these
drastic events that change the plasma spatiotemporal structure. For these reasons, errors
up to ~3UT are large for all the models considered.

The smallest positioning errors were typically observed for the TEC MAP (blue line)
followed by the MLP-NN (yellow line) that was trained using TEC MAP data as inputs. The
TEC MAP presented the best positioning result with an average error of 3.37 m; however,
because processing is required, it cannot broadcast instantaneous positioning information.
Among the analyzed models, the MLP-NN outperformed the NeQuick G (purple line) and
GIM (orange line) with an average error of 4.10 m while the others presented errors of
5.59 m and 6.10 m, respectively. Therefore, the MLP-NN model result presented an error
in positioning that was 27% and 33% better (smaller) when compared to NeQuick G and
GIM, respectively.
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Figure 9. Example of 3D single point positioning error for 20 November 2014, over the RBMC station
in Recife. The error of the proposed model (yellow line) is typically smaller than the NeQuick G
(purple line) and GIM (orange line).

Following the analysis of the SPP, Figures 10 and 11 show the cumulative distribution
function (CDF) for two days (arbitrarily chosen), representing winter (upper panels) and
summer (lower panels) solstices, respectively. The CDFs of the 3D positioning errors
were evaluated for the stations in Recife (Figure 10) and Salvador (Figure 11). The results
were in general agreement with those from Figure 9, i.e., the TEC MAP and the MPL-NN
showed the best positioning with smallest errors when compared to the other models. In
the upper panels showing the results for June 6 (winter solstice), the errors were small
for all the models when compared to the errors for the summer solstice condition. This
result was expected; please observe that a comparison between the maps in Figures 7 and 8
reveals that the VTEC variability in the winter season is much smaller than during the
summer. Regarding the TEC estimator performance, considering, for example, the summer
solstice condition (12 November 2014) in Salvador, the TEC MAP and the MPL-NN had
probabilities of 3D errors < 5 m reaching 83% and 79%, respectively. These values were
considerably larger than the values of 67% and 72% obtained with the GIM and the NeQuick
G, respectively, i.e., errors smaller than 5 m were substantially more expected for the MLP-
NN model. The comparison shows that SPP users would have improvements reaching
12 and 7 percentage points, respectively, using the MPL-NN for positioning at low latitudes.

A different analysis of the positioning performance is presented in Figures 12 and 13
showing the average value of 3D positioning errors for two full months according to the
hour of the day. The stations in Recife (Figure 12) and Salvador (Figure 13) and the months
of June (left panels) and November (right panels) were used again to represent periods
around winter and summer solstices, respectively. Notice that the MLP-NN 3D average
error (yellow line) is typically smaller than that of NeQuick G (purple line) or GIM (orange
line). This is especially noticeable in the periods where the VTEC is typically enhanced
due to photoionization. During these hours the MLP-NN performance was the best for the
positioning when compared to the other data sources. Consider, for example, the month
of November at 18UT (Figure 13, lower panel), the average 3D error was 3.14 m for the
MLP-NN, while the errors for the GIM and NeQuick G were, respectively, 6.08 m and
6.35 m. Therefore, the error of the MLP-NN model was near the half that of the other
evaluated methods.
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Table 4 shows the average and standard deviation of the 3D errors for both stations
(Recife and Salvador) for the months of June and November 2014. These results indicate
that the SPP achieves better accuracy and precision using the MLP-NN when compared to
the other TEC estimates.

Table 4. Average and standard deviation for 3D error during the months of June and November in
Recife and Salvador during 2014.

3D Error MODEL
Recife Salvador

MEAN (m) STD (m) MEAN (m) STD (m)

JUN

GIM 2.81 1.94 2.77 2.03

NeQuick G 3.16 2.26 3.50 2.55

MLP-NN 2.53 1.82 2.72 2.04

TEC MAP 2.03 1.62 2.15 1.86

NOV

GIM 5.71 3.95 5.30 3.84

NeQuick G 4.92 3.08 5.17 3.45

MLP-NN 4.47 3.26 4.65 3.47

TEC MAP 3.43 2.51 3.73 2.74

Finally, it must be mentioned that this approach was designed to provide services,
such as files equivalent to those from GIM, and might be useful to users of positioning
systems over the Brazilian region.

6. Concluding Remarks

The equatorial and low-latitude ionosphere over the Brazilian region presents very
particular electrodynamics involving several mechanisms. All this variability is difficult to
be properly addressed by models available nowadays; therefore, the information about the
spatiotemporal structure of the TEC has been poorly covered so far. Recent works applied
neural network and deep learning techniques to improve TEC estimation considering some
stations over the Brazilian region during some specific periods of the year (e.g., [37,38]).
In this work an alternative neural network approach was proposed to provide better
forecasting of vertical TEC values over the entire Brazilian region, considering all the year
of 2014 (solar maximum period), for both quiet and disturbed geomagnetic periods, under
distinct solar flux conditions. In addition, the estimation of the improvement in single
point positioning was also discussed. The proposed method to obtain the vertical TEC
values was the use of a multilayer perceptron neural network (MLP-NN) fed with TEC
MAPs (Marini-Pereira et al.) from the five days prior to the day to be predicted and with
the following parameters of space weather: day of the year, hour, solar F10.7 index and the
geomagnetic index Ap. The vertical TEC predictions were made for the entire year of 2014
across the entire territory of Brazil with 1º resolution. The performance of MLP-NN was
compared to the results obtained from NeQuick G and from GIMs in the IONEX format.
The metric used for this comparison was the mean absolute error (MAE).

The results may be summarized as follows:

(1) The average monthly MAE values are smaller (i.e., better) for the proposed MLP-NN
for all the months, in all time intervals considered when compared to NeQuick G and
to GIM. In some cases, the MLP-NN MAE was 76% less than the GIM MAE.

(2) The analyses of MAE over the entire Brazilian region (e.g., Figure 6) considering two
entire days during distinct seasons (June and November) reveals that the MLP-NN
spatial error is also qualitatively better than the NeQuick G and GIM.

(3) The evaluation considering distinct solar flux levels reveals MAE values 51.85% better
than those from the other data sources (NeQuick G and GIM).
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(4) The analysis considering distinct geomagnetic index levels indicate MAE values that
are 38.80% and 52.52% better than the other data sources for disturbed and quiet
geomagnetic periods, respectively.

(5) The analyses of the 3D SPP error are a new feature presented in this work and
the results indicate that positioning errors using the vertical TEC forecasted by the
proposed MLP-NN are remarkably similar to those obtained using real data of the
TEC MAPs. Please observe that the MLP-NN is providing the values in advance
(one day ahead).

(6) Considering the example case of November 20, 2014, the single point positioning
analysis showed that 3D SPP errors from the MLP-NN were 27% and 33% better
(smaller) when compared to NeQuick G and GIM, respectively. For the monthly
evaluation improvements up to 22% (June) and 21% (November) were achieved on
the same basis of comparison.

(7) The predicted vertical TEC maps using the MLP-NN reproduce the spatiotemporal
TEC structure expected over this region, which is not obtained using the other models
(e.g., [11]).

This work demonstrates the feasibility of the use of deep learning methods to forecast
improved vertical TEC maps to be used in positioning approaches over the Brazilian region.
The results are promising even considering distinct solar flux, geomagnetic conditions, and
season of the year.
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