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Abstract: Maize yield in China accounts for more than one-fourth of the global maize yield, but
it is challenged by frequent extreme weather and increasing food demand. Accurate and timely
estimation of maize yield is of great significance to crop management and food security. Commonly
applied vegetation indexes (VIs) are mainly used in crop yield estimation as they can reflect the
greenness of vegetation. However, the environmental pressures of crop growth and development
are difficult to monitor and evaluate. Indexes for water content, pigment content, nutrient elements
and biomass have been developed to indirectly explain the influencing factors of yield, with extant
studies mainly assessing VIs, climate and water content factors. Only a few studies have attempted
to systematically evaluate the sensitivity of these indexes. The sensitivity of the spectral indexes,
combined indexes and climate factors and the effect of temporal aggregation data need to be evaluated.
Thus, this study proposes a novel yield evaluation method for integrating multiple spectral indexes
and temporal aggregation data. In particular, spectral indexes were calculated by integrating publicly
available data (remote sensing images and climate data) from the Google Earth Engine platform,
and county-level maize yields in China from 2015 to 2019 were estimated using a random forest
model. Results showed that the normalized moisture difference index (NMDI) is the index most
sensitive to yield estimation. Furthermore, the potential of adopting the combined indexes, especially
NMDI_NDNI, was verified. Compared with the whole-growth period data and the eight-day time
series, the vegetative growth period and the reproductive growth period data were more sensitive
to yield estimation. The maize yield in China can be estimated by integrating multiple spectral
indexes into the indexes for the vegetative and reproductive growth periods. The obtained R2 of
maize yield estimation reached 0.8. This study can provide feature knowledge and references for
index assessments for yield estimation research.

Keywords: maize yield; multiple spectral indexes; combined index; temporal aggregation;
yield estimation

1. Introduction

In the next few decades, mankind will be faced with the combined challenge of increas-
ing global food production and reducing environmental damage [1]. Eradicating hunger
and achieving food security by 2030 is an important goal of the United Nations [2]. The de-
mand for food production is expected to increase by 70–100% by 2050, and food production
can be increased by improving crop yields on existing farmlands [3]. China is the largest
smallholder system in the world [4], and it is the second largest producer of maize at the
global level [3]. However, agricultural systems in China are highly heterogeneous because
of climate, topography and management (crop rotation and intercropping) complexities [5].
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Obtaining information on the spatial and temporal distribution of maize yield in a timely
and accurate manner is essential in ensuring national food security and rationalizing the
agricultural structure [3].

Crop yield estimation is a challenging task due to a variety of complex factors. Crop
yields depend mainly on climate, soil, genotype and management factors [2,6], which can
be formulated as Yield = f (climate) + (soil) + (genotype) + (management). These variables
can be further described as follows. (1) Climate variables (temperature, precipitation and
phenology) are widely used for crop yield prediction [7]. Land surface temperature (LST) is
sensitive to heat stress and water stress, and it is widely used for crop yield estimation [7,8].
Climate factors are usually obtained via remote sensing technology. However, information
pertaining to soil, genotype and management is difficult to monitor directly by simply
using remote sensing; in fact, the indexes used to obtain information are derived indirectly.
(2) Soil variables refer to soil moisture, salinity and nutrients [9]. Normalized difference
water index (NDWI) [10] is sensitive to soil moisture content, which is directly related
to crop growth status and yield [9]. Nitrogen (N) content provides important nutrients
to the kernel, and it can reflect the level of maize management and soil nutrition [9].
(3) Management variables include irrigation, fertilization, crop rotation and intercropping.
Management practices (fertilization and irrigation) and crop breeding can also improve crop
yield [11]. (4) For the genotype variables, climate and genotype jointly affect many aspects
of plant physiology, including chlorophyll content, biomass, plant water content and final
grain yield [12,13]. Most of these factors are biophysical variables. Biophysical variables
include leaf area index (LAI), vegetation cover, fraction of absorbed photo synthetically
active radiation (fAPAR), pigment content (chlorophyll, carotenoid, anthocyanin), nitrogen
content, canopy water content and biomass [14–16].

Vegetation indexes (VIs) are the most commonly used indexes in crop yield estima-
tion [17,18]. Examples of VIs are the normalized difference vegetation index (NDVI), leaf
area index (LAI) [17,19] and wide dynamic range vegetation index [20]. However, NDVI
tends to be saturated at the peak of the growth season [21]. Compared with other VIs (e.g.,
LSTs), the near-infrared reflectance of vegetation (NIRv) has great potential in predicting
maize and soybean yields [18,22]. The solar-induced chlorophyll fluorescence (SIF) index
can also approximate the enhanced vegetation index (EVI) from the aspect of crop growth
performance when the resolution of spatial imagery is low [7]. Nonetheless, VIs have
shortcomings: they have been developed for specific targets [23], and their applicability
largely depends on vegetation type and local conditions [24]. Although VIs can describe
the greenness of vegetation, the effects of environmental stress on crop growth and de-
velopment are seldom evaluated adequately [21,25]. Furthermore, although partial yield
variability can be captured by VIs, a considerable amount of these variabilities are hardly
sufficiently explained [4].

Maize is a C4 crop that is more sensitive to environmental changes (i.e., temperature
and rainfall) than other crops [26], and it has been widely used for yield estimation [27].
Environmental variables, such as temperature and precipitation, and soil data [4] have
been previously integrated into VIs. Some studies have proven that combining multisource
remote sensing, fluorescence and environmental data can improve yield prediction [7,28,29].
Moreover, temperature and rainfall across different periods have varying impacts on
yield [30]. Despite these findings, the complex and nonlinear effects of environmental
factors on crop growth [31] entail great uncertainties for yield prediction [30].

Many features can be used in yield estimation, but only a few of them have a direct
impact [9]. A study evaluating remote sensing (climate and soil) data found that the
green chlorophyll index, LST and temperature are sensitive to yield estimation [10]. Other
studies evaluating environmental data (climate and soil data), multiple satellite data (VIs
and SIF) and surface temperature data, among others, determined the importance of
topography, EVI, soil hydraulic and nutrient indexes of yield prediction; however, optical-
based VIs share somewhat similar information and hence can hardly enhance EVI-related
findings [32]. Past studies also verified the limitations of spectral indexes, and knowing
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which index is more effective for crop yield estimation is seldom discussed [7,25]. Pigment,
nutrient element and biomass indexes are rarely used in crop yield estimation [33,34],
despite their close relation to yield estimation. The N partitioning index at anthesis, which
can describe the proportion of aboveground N of crop composition at flowering, is closely
related to crop nitrogen uptake; they are used in a few yield estimation studies [35,36].
Indexes reflecting chlorophyll content were used in cotton yield prediction [37]. Incidentally,
only a few studies have systematically evaluated the sensitivity of spectral indexes and
climate factors [10,32].

Different periods affect yield estimation to varying degrees [38]. In many yield es-
timation studies, indexes for the whole-growth period are commonly used [18,39]. The
life cycle of maize consists of nutrition and reproduction. During the vegetative growth
period, stems and leaves grow vigorously, and nitrogen accumulates continuously. During
the reproductive period, the crop accumulates more nutrients, and more nutrients are
transferred to the grain [40]. These two periods vary in their impact on crop yield. For
example, the period (from silking to dough, i.e., from nutritional development to repro-
ductive development) is a critical period for maize as it is most sensitive to environmental
changes [20]. In recent studies, indexes representing different growth periods have been
used to estimate crop yield [20,41,42]. These studies have used regreening-to-filling period
indexes for yield estimation, and they have achieved high prediction accuracy [33]. In
summary, the sensitivity of indexes for different growth periods need to be further explored.
According to the literature, time series data have good yield estimation potential [7,17,43].
Temporal aggregation data are usually assessed using coarse-to-detailed time scales in
yield estimation studies [44].

Currently, mainstream yield prediction methods include physical simulation models
and machine learning models [10] among which representative crop models include those
developed by the international maize and wheat improvement center (CIMMYT) [45].
The CIMMYT recommends the use of models to monitor and evaluate the growth and
development of wheat and maize [46,47]. CIMMYT-based models can capture primary
crop growth processes and genotype-environment-management interactions [48]. In most
models, knowledge from physiological studies is an important element, such as the Crop
growth model, which incorporates knowledge derived from genetic information [46].
The strong reliance on knowledge can be explained by large-scale yield estimation being
limited by the difficulty of developing parameters for crop varieties and management
practices [3]. In addition, some crop models oversimplify or obscure real-life processes,
such as high temperature and drought stress [49]. Although machine learning can capture
the nonlinear relationships between yield estimation and different parameters [50] and
crop yield characteristics from time series data [28,43], relevant mechanisms are difficult to
reveal due to the technology’s black box problem [51]. An effective solution is to acquire
feature knowledge for yield estimation through exploration.

In this study, the influencing factors (i.e., climate, soil, genotype and management
factors) of crop yield were considered to overcome the shortcomings of current estimation
studies. The whole-growth period was divided into two subperiods, namely the vegetative
growth period and reproductive growth period. The sensitivity of indexes for water
content, pigment content, nutrients, biomass and climate factors and the effect of temporal
aggregation data on yield estimation were systematically assessed. Then a novel method
for yield estimation was developed by integrating multiple spectral indexes and temporal
aggregation data. Finally, the proposed method was used to estimate maize yield for a
given period (2015–2019). The main objectives of this research were to assess the sensitivity
of biophysical variables (i.e., pigment content, nitrogen content and canopy water content),
to assess the effect of temporal aggregation data on yield estimation and to explore how to
realize national maize yield estimation by integrating feature knowledge related to multiple
spectral indexes and temporal aggregation data.
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2. Materials and Methods
2.1. Study Region

The global total maize yield data were obtained from the database of the Food and Agri-
culture Organization of the United Nations (FAOSTAT) (https://www.fao.org/faostat/zh/
#data/QCL accessed on 18 November 2022) from which the proportions of total maize yields
of different countries were calculated. According to the data, maize yield in China accounts for
more than one-fourth (28%) of the global maize yield (Figure S1 of Supplementary Materials).
Therefore, China was selected as the study area. The total grain yield in China reached
65 × 107 tons in 2015, while the total maize yield reached 26.5 × 107 tons in the same year
(Figure S2 in Supplementary Materials). In terms of trends, the increase in total maize yield
before 2015 was rapid, whereas the increase after 2015 was slow. Thus, the study period
between 2015 and 2019 was selected. The nine agricultural regions in China are shown in
Figure 1a. Maize is mainly distributed in the Northeast China Plain, North China Plain, Inner
Mongolia, Ningxia, mountainous areas in Southwest China and hilly areas in South China
(http://www.stats.gov.cn accessed on 18 November 2022). The planting mode of maize in the
country is complex as it involves single-season maize cropping, winter wheat-maize rotation
and rice-maize rotation, among others [52]. In this study, the yield distribution per unit area
in 2018 was mapped, based on statistical data (Figure 1b). In most provinces of the Northeast
China Plain and North China Plain and the central region of Yunnan, the yield range was
between 6000 and 8000 kg/ha. In the northern regions of Gansu and Xinjiang, the yield
exceeded 8000 kg/ha. In Ningxia, Hubei, Guizhou and Guangxi provinces, the yield was
lower than 5000 kg/ha.
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Figure 1. Map overview of the study area: (a) distribution of maize in 2018 and agricultural areas;
(b) distribution of maize yield per unit area in 2018. Note: Agricultural region 1: Northeast China
region, 2: Gansu new region, 3: the Inner Mongolia and region along the Great Wall, 4: Loess Plateau
region, 5: Huang-Huai-Hai region, 6: Qinghai Tibet region, 7: Middle and lower reaches of the
Yangtze River, 8: Southwest China, 9: South China.

2.2. Materials
2.2.1. Remote Sensing and Climate Data

The satellite data used in this study were obtained from MODIS, EAR5 and TerraCli-
mate. MODIS includes MOD09A1 and MYD11A2, while MOD09A1 provides eight-day
maximum composite images with spatial resolutions of 500 m. The spectral indexes were
extracted from MOD09A1, and the climate data were extracted from MYD11A2, EAR5 and
TerraClimate. VIs (i.e., NDVI) are often used to estimate the yield, but this approach is in-
sufficient. The influencing factors of yield include climate, soil, genotype and management.
In this study, the indexes for the aforementioned factors were calculated using MODIS
data, which were obtained from the Google Earth Engine (GEE) platform. The spectral
index used in the study is presented in Table 1, while its detailed description is given in

https://www.fao.org/faostat/zh/#data/QCL
https://www.fao.org/faostat/zh/#data/QCL
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Supplementary Materials. The relationships of the indexes and the influencing factors
from the perspective of research methodology are presented in Section 2.3. MYD11A2
provides 1 km of satellite data. LSTday and LSTnight, which can capture heat stress and
water stress, especially during the extremely dry growth seasons, were selected in this
study [53]. The images were preprocessed for declouding, desnowing and interpolation.
Tmean, Tmin, Tmax and total precipitation were obtained from the monthly and daily data
of EAR5. Monthly evapotranspiration, radiation, soil moisture and vapor pressure deficit
(VPD) data were obtained from TerraClimate. The climate factors are listed in Table 2. GEE
provides information on the collection, processing and analysis of remote sensing data
sources [54]; hence, the preprocessing and index calculation in this study were completed
on the GEE platform (Supplementary Materials for the code link).

Table 1. Spectral indexes.

Index Type Indexes

Vegetation EVI2, NDVI, GEM, ARVI2, OSAVI, PVR, WDRVI, BNDVI, NDPI,
NIRv, VARIgreen, SLAV, ATSAVI, LAIbrown, LZC, VIgreen, GCC

Water content NDMI, NDII, LSW, SIWSI6, SIWSI7, MNDWI, NMDI, GVMI
Carotenoid content PSSRc, PSNDc, CRI550, PRI, SIPI
Chlorophyll content GNDVI, PSSRb, GCVI, NDFI685, CVI, CIgreen
Anthocyanin content mACI
Nutrient content NDNI, NRI1510, NDSI
Biomass GPP, SANI, DMCI

Table 2. Climate factors.

Data Climate Factor Resenting Meaning Spatial
Resolution

Time
Resolution Units

ERA5

Tmax Maximum air temperature at 2 m height 27,830 m Daily K
Tmean Average air temperature at 2 m height 27,830 m Daily K
Tmin Minimum air temperature at 2 m height 27,830 m Daily K
Total_precipitation Total precipitation 27,830 m Daily m

TerraClimate

Evapotranspiration Actual evapotranspiration 4638.3 m Monthly mm
Radiation Downward surface shortwave radiation 4638.3 m Monthly W/m2

Soil moisture Soil moisture 4638.3 m Monthly mm
VPD Vapor pressure deficit 4638.3 m Monthly kPa

MOD09A1
LSTday Day land surface temperature 1 km Daily Kelvin
LSTnight Night land surface temperature 1 km Daily Kelvin

2.2.2. Statistical Data

County-level maize yield statistics from 2015 to 2019 were obtained from the databases
of the National Bureau of Statistics (www.stats.gov.cn accessed on 18 November 2022)
and China Economic and Social Data Research Platform (http://data.cnki.net/Yearbook/
accessed on 18 November 2022). The outliers were preprocessed using two methods.
First, yield data exceeding the average value plus/minus twice the standard deviation
were isolated. Second, by referring to box diagrams and histograms, a small number
of outliers were removed. Land cover or crop maps are widely used in extant studies,
whereas annual dynamic crop distribution maps are rarely used [17]. In this study, the
maize distribution data from 2015 to 2019 were derived via the maize mapping method
of the two-band EVI (EVI2)/NMDI increase/decrease ratio index for the peak growth
period [55]. The global total maize yield data were downloaded from FAOSTAT (https:
//www.fao.org/faostat/zh/#data/QCL accessed on 18 November 2022).

www.stats.gov.cn
http://data.cnki.net/Yearbook/
https://www.fao.org/faostat/zh/#data/QCL
https://www.fao.org/faostat/zh/#data/QCL
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2.3. Method

This study developed a remote sensing method for maize yield estimation by inte-
grating multiple spectral indexes and temporal aggregation data. The three main parts of
the method are importance assessment, temporal aggregation assessment and maize yield
estimation, as shown in Figure 2. At present, the commonly applied VIs are being widely
used in yield estimation. The main influencing factors of yield are climate, soil, genotype
and management. Clearly, commonly applied VIs are insufficient for yield estimation. In
this study, the indexes closely related to yield, such as moisture content, pigment content,
biomass, nitrogen content and climate factors, were calculated. These indexes could also
either directly or indirectly reflect the climate, soil, genotype and management factors. The
details of each factor are as follows: (1) climate: temperature, precipitation and phenology;
(2) soil: moisture and nutrients (nutrient elements); (3) soil in relation to management:
nitrogen content in nutrient elements (fertilization) and soil water content (irrigation); and
(4) climate and genotype: chlorophyll content, biomass and plant water content, among
other aspects of plant physiology.
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The overall strategy of this study can be summarized as follows. First, the whole-
growth period was subdivided into vegetative and reproductive growth periods, and
the sensitivity of indexes for climate, soil, genotype and management was systematically
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assessed using random forest (RF) models. Second, the effect of temporal aggregation data
on yield estimation was evaluated using the eight-day time series data of the whole-growth
period and the two specific growth periods (vegetative growth and reproductive growth).
Finally, the process of integrating multiple spectral indexes and temporal aggregation
data, with the aim of achieving national-scale maize yield estimation at the county level,
was explored.

2.3.1. Phenological Period Calculation

The whole-growth period was further divided into the vegetative growth period and
the reproductive growth period to distinguish their distinct effects on crop yield estimation.
For the calculations, this study focused on the period when the third leaf had fully expanded
(V3 period), the heading date (HE) and the maturity period (MA) of maize [5]. The period
from V3 to HE was taken as the vegetative growth period, while the period from HE to
MA was taken as the reproductive growth period. In the V3, HE and MA calculations, the
nine agricultural regions in China and the mean value of the EVI2 time series [56] of each
agricultural region were also considered. The EVI2 time series was masked using the maize
data layer, and the mean phenological period of each agricultural region was determined.
On this basis, the V3, HE and MA values of each agricultural region were obtained.

2.3.2. RF Models and Importance Assessment

The principle of RFs [57] lies in the use of “tree predictors” in which all trees in the
forest have the same distribution. An RF model first trains a large number of decision
trees and then performs estimation by averaging all individual trees or carrying out votes.
Randomness is introduced, and the best trees are searched according to the random features.
As the number of trees increases, the generalization error of the forest converges to a limit.
Bagging is used to reduce variance and overfitting [57]. In RF, the number of parameters
for leaves, forest size and tree roots can be adjusted.

In this study, RF [58] was used for importance analysis. The calculation strategy can
be summarized as follows. First, RFs are used for weighting. Let X be a feature, and its
importance is calculated as X = Σ (errOOB2 − errOOB1)/N, where N refers to N trees in
the forest, and ErrOOB1 represents the error of out-of-pocket data. A part of the data is
selected for training the decision tree through repeated sampling, while approximately
one-third of the remaining data is used for performance evaluation and calculation of the
prediction error rate of the model. Noise interference is randomly added to the X features
of all samples (out-of-bag data), and the error of the out-of-bag data is recalculated and
recorded as errOOB2. If errOOB2 appears after the addition of random noise, then X has a
great impact on the prediction results of the samples.

2.3.3. Index Importance Assessment

VIs (17), leaf water content (8), pigment content (12), nutrient elements (3), biomass
(3) and climate factors (10), totaling 53 indexes, were identified (Tables 1 and 2). Then the
sensitivity of the indexes was evaluated. The strategy can be summarized as follows. The
mean values of spectral indexes at the pixel level were calculated for the whole-growth
period (V3-MA) in 2018, followed by the mean value of each index for each county. The
sensitivity of the 53 indexes was evaluated via the RF method, and the indexes most
sensitive to yield estimation for each category were determined.

Knowledge about the sensitivity of spectral indexes is limited. In this study, the most
important spectral indexes (i.e., derived from the indexes most sensitive to yield estimation)
were further identified by combining relevant indexes (Equations (1) and (2)). We designed
the combined indexes aimed at: first, the original indexes could reflect some information.
The combined indexes may reflect the information from different indexes, thus avoiding
the use of more complex indexes and eliminating data redundancy. Second, compared to
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single index, the combined indexes may enhance the sensitivity to yield. A schematic of
the calculation design is shown in Figure 3.

X =
A − B
A + B

(1)

X =
(A − B)

A
(2)

In the equation, A, B represents different indexes. X represents the combined indexes.
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Finally, the sensitivity of the spectral indexes, combined indexes and climate factors was
assessed via RF to obtain the indexes most sensitive to yield estimation for each category.

2.3.4. Temporal Aggregation Assessment

In most yield estimation studies, phenology is investigated in relation to the whole-
growth period. However, the effects may differ considerably for the vegetative and repro-
ductive growth periods, and transgressions are even noticeable in the time series data of
crop yield [20,41,59]. Aimed at further exploring the effect of temporal aggregation data
on yield estimation, additional indexes (excluding those mentioned in Section 2.3.3) for
yield estimation were calculated (Table 3). First, the mean values of spectral indexes (11),
climate factors (10) and combined indexes (7) were calculated according to the two growth
periods (i.e., vegetative and reproductive) of maize from 2015 to 2019. The mean values of
the indexes for each county were also computed. Then the mean values of the eight-day
time series data for the spectral indexes (11), meteorological factors (6) and combined
indexes (7) were calculated according to the two aforementioned growth periods of maize
from 2015 to 2019 (excluding 2016). During calculations, we found that the values of some
indexes were missing due to the influence of image cloudiness and shadows; the maize
phenology data of some counties somewhat deviated from the actual maize phenology;
and the eight-day time series data in 2016 were incomplete. TerraClimate uses monthly
data; thus, the eight-day time series data of evapotranspiration, shortwave radiation, soil
moisture and VPD could not be computed.

Table 3. Brief descriptions of spectral indexes, climate factors and combined indexes.

Index Type Index

Spectral indexes NMDI, SIPI, CVI, GPP, LZC, PSSRc, CRI550,
NDNI, NRI1510, GCC, NIRv

Climate factors LSTday,LSTnight, Tmax, Evapotranspiration, soil moisture,
Shortwave radiation, VPD, Tmean, Tmin, Total precipitation

Combined indexes NMDI_NDNI, SANI_NRI1510, NMDI_GCC, SANI_PSSRc,
SANI_CRI550, LZC_SIPI
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Finally, the best growth period in relation to yield estimation was determined. The
impact of temporal aggregation data was assessed with respect to the whole-growth period,
the two growth periods (vegetative and reproductive) and the eight-day time series.

2.3.5. Maize Yield Estimation

In this study, RFs were used to evaluate maize yield according to the whole-growth
period, the two growth periods (vegetative and reproductive) and the eight-day time
series. By evaluating the effect of temporal aggregation data on yield estimation, we
obtained the phenological period most sensitive to yield estimation. Here, the phenological
period, which is the growth period most sensitive to yield estimation, was used to estimate
maize yield. In addition, the process of how to integrate multiple spectral indexes and
temporal aggregation data as a means of achieving maize yield estimation was explored.
The strategy can be summarized as follows: First, 56 indexes for the nutritional/vegetative
and reproductive growth periods were ranked in terms of importance and then analyzed.
Second, the index most sensitive to yield estimation was taken as the basic index. On
the basis of the highest to lowest importance, two indexes were integrated into the most
sensitive indexes for yield estimation, and the yield estimation results denoted by R2 were
recorded. Finally, the process of how to integrate multiple spectral indexes and temporal
aggregation data to obtain the best yield estimates was explored, and the reasons for the
influence of yield on spatial patterns were identified.

2.3.6. Model Evaluation Metrics

The maize yield estimated results were evaluated in two ways. First, 70% of the
annual yield data was randomly selected as the training samples, and the remaining 30%
was used as the test samples. The coefficient of determination (R2) and root mean square
error (RMSE) was used for evaluation. Then, the leave-one-year-out-validation schedule
was used to evaluate the model’s accuracy [60]. The difference between the observed and
predicted yield distributions and the overestimations/underestimations was analyzed.

3. Results
3.1. Index Importance Assessment Results
3.1.1. Importance Ranking of the Spectral Index

First, the mean values of the spectral indexes for the whole-growth period in 2018
were calculated, and the mean values of each pixel for each county were counted. Then
importance analysis was performed using RF, and certain spectral indexes sensitive to yield
estimation were initially screened. Figure 4a shows the results of the importance rankings
of the spectral indexes. The results show that the NMDI (water content) is the index most
sensitive to maize yield estimation, whereas NIRv, a commonly used VI, ranks poorly.
Among the indexes for pigment content, the structure insensitive pigment index (SIPI) [61]
and chlorophyll vegetation index (CVI) [62] are sensitive to the estimation of maize yield.
Among the indexes for nutrient content, NDNI and nitrogen index (NRI1510) [63] are the
ones most sensitive to yield estimation. Among the indexes for biomass, GPP is the most
sensitive index, indicating its great potential for yield estimation [64].
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3.1.2. Importance Ranking of Multiple Indexes

The spectral indexes, combined indexes and climate factors were jointly evaluated in
terms of importance ranking, with NMDI outranking the other indexes (Figure 4b). Among
the nutrients for N content, NDNI is the index most sensitive to yield estimation. After
incorporating the climate factors, we found that some of them were more effective than the
spectral indexes in estimating maize yield. NMDI, LSTnight, Tmean and precipitation are
part of the top four rankings, indicating that temperature is a sensitive index for estimating
yield. Shortwave radiation ranks sixth, suggesting that radiation is also sensitive to yield
estimation. The combined indexes designed in this study, particularly NMDI_NDNI (fifth
rank), SANI_PSSRc, SANI_NRI1510 and NMDI_GCC, obtained better rankings than the
original spectral indexes (i.e., before combination). On this basis, the spectral indexes,
combined indexes and climate factors, which were more critical than the VI (i.e., NIRv),
were selected, totaling 28 indexes.

3.1.3. Effect of Temporal Aggregation Data on Maize Yield Estimation

The effect of temporal aggregation data on yield estimation was assessed according to
the whole-growth period, the two growth periods (nutritional/vegetative and reproductive)
and the eight-day time series (Figure 4c). The assessment can be summarized as follows.
First, 893 training samples and 243 test samples were selected to estimate maize yield by
using the indexes for the whole-growth period in 2018. Second, 3274 training samples and
772 test samples were used to estimate maize yield by using the indexes for the vegetative
and reproductive growth periods from 2015 to 2019 (except 2016). Third, maize yield
was estimated using the eight-day time series covering 2015 to 2019 (except 2016), and
the numbers of training and test samples were 3223 and 3691, respectively. During the
assessment, we found that some indexes of the eight-day time series were missing, and
some sample data needed to be excluded. The coefficient of determination (R2) values
were 0.58 for the whole-growth period, 0.7175 for the vegetative and reproductive growth
periods and 0.6901 for the eight-day time series. A comparison of the results indicates that
the indexes for the vegetative and reproductive growth periods have great potential for
yield estimation.
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Then the sensitivity of the indexes for vegetative and reproductive growth periods
was evaluated. In the evaluation of the indexes for the whole-growth period (Section 3.1.2),
28 indexes were preselected, and 56 indexes for the vegetative and reproductive growth
periods from 2015 to 2019 were calculated. Figure 4c shows the importance ranking of the
indexes for the vegetative and reproductive growth periods. The following indexes are
effective in yield estimation: NMDI, GPP, CVI and NDNI (vegetative growth period); radi-
ation, Tmax and soil moisture (soil); NMDI_NDNI and SANI_PSSRc (combined indexes);
NMDI and NDNI (reproductive growth period); and evaporation, LSTnight, LSTday and ra-
diation (climate factors). NMDI_NDNI has a higher sensitivity than NDNI. In addition, the
R2 of maize yield estimation based on indexes of the vegetative growth period (R2 = 0.73)
was higher than that of the reproductive growth period (R2 = 0.68).

The relationship between multiple spectral indexes and yield estimation was explored
by mapping the spatial distribution of maize yield per unit area and NIRv and NMDI in
2019. The spatial distribution of NMDI (Figure 5c) was consistent with that of yield estima-
tion in general, whereas the spatial distribution of NIRv (Figure 5b) and yield estimation
differed in some regions, such as Ningxia, Shanxi and Yunnan. Then the time series curves
of the multiple spectral indexes of maize in high- and low-yield fields in 2019 are also plotted
in Figure 5; the other time series curves are shown in Figure S3 in Supplementary Materials.
The responses of biophysical variables to maize yield estimation can be summarized in
three forms: declining trend (NMDI; Figure 5d); increasing and then decreasing trend (CVI;
Figure 5e); and decreasing and then increasing trend (NDNI; Figure 5f). The time series
signals of the high-yield field are higher than those of the low-yield field. The water content,
pigment content, biomass and nutrient element features increased during the vegetative
growth period of maize and decreased during the reproductive growth period. The findings
indicate that feature knowledge is an important aspect of maize yield estimation.
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Figure 5. Relationship between yield estimation and different indexes: (a) spatial distribution of
maize yield per unit area; (b) NIRv and (c) NMDI; change patterns of (d) NMDI, (e) CVI and (f) NDNI
with yield in 2019. Note: (d–f) show the time series curves of the high-yield fields in Kangning
County, Liaoning City and Liaoning Province (yield = 8808 kg/ha) and the low-yield fields in
Pianguan County, Shanxi City and Shanxi Province (yield = 3723.3708 kg/ha).
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3.2. Maize Yield Estimation Results
3.2.1. Maize Yield Estimation by Integrating Different Indexes

At present, most yield estimation studies are conducted at the provincial level. In this
work, by adopting the linear fitting method, the NMDI and NDVI of the whole-growth
period in 2018 were used to estimate the yield at the provincial level. The R2, obtained
by only using NMDI (Figure 6a), was 0.49, whereas that obtained using only NDVI was
only 0.23. At the county scale, the R2 obtained using only NMDI was 0.22, indicating
the difficulty of conducting yield estimation at the county level. This finding may be
attributed to differences in technology, arable land management practices, solar and thermal
resources, the uneven distribution of water resources and climate change [5]. Nonetheless,
the nutritional/vegetative and reproductive growth periods have great potential for yield
estimation. When only NMDI was used to estimate the yield, the R2 increased to 0.41
(Figure 6b). Regardless of the results, the proposed strategy can improve the accuracy of
yield estimation at the county level, but it is more appropriate at the provincial level. In
terms of the yield estimation in China from 2015 to 2019, the R2 reached 0.8.
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Our strategy for maize yield estimation can be summarized as follows. First, the
changes in estimation accuracy with an increasing number of indexes were explored. In
this study, 4120 training samples and 975 test samples were randomly selected based on
the indexes of the vegetative and reproductive growth periods from 2015 to 2019, and
maize yields were further estimated by integrating multiple spectral indexes and temporal
aggregation data. Figure 7a shows the yield estimation accuracy. As previously discussed
in Section 3.1.3, NMDI1 (i.e., the NMDI of the vegetative growth period) ranks first in
terms of importance, as shown in Figure 4c; therefore, it was used as the benchmark index.
Then, two other indexes were incorporated in series (i.e., from high to low according to
importance), and the R2 was recorded. Increasing the number of indexes to 20 (i.e., the
top 20 indexes based on importance) improved the R2 (0.78; Figure 7b). Furthermore, R2

essentially remained stable even when the number of indexes was increased. In this study,
the maximum R2 was 0.8.
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Figure 7. (a) Maize yield estimation by integrating multiple spectral indexes and temporal aggrega-
tion data, (b) Maize yield estimation accuracy of strategy C. Note: NMDI1 represents the value of the
vegetative growth period. NMDI2 represents the value of the reproductive growth period. Other
items are similar.

Second, the 2019 data were taken as an example for exploration, and NMDI1 was used
as the benchmark index for yield estimation. Maps were built to easily view the relevant
results, including a scatter map of observed and predicted yields (Figure 8a,b), spatial
distribution map of the indexes (Figure 9a,c) and a difference map of observed and predicted
yields (Figure 9b,d). Furthermore, the change rule of overestimation/underestimation (i.e.,
from dispersion to aggregation), with an increasing number of multiple spectral indexes
of the vegetative and reproductive growth periods, was explored. The aforementioned
strategy allowed for the influencing factors and the spatial pattern of yield estimation to be
gradually revealed.
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In strategy A, NMDI1 was used to estimate the yield (Figure 7a). The coefficient of de-
termination R2 was 0.2837; RMSE = 2583.5 kg/ha; and the overestimation/underestimation
values were relatively dispersed (Figure 8a). The spatial distribution of NMDI1 (Figure 9a)
was consistent with the spatial distribution of yield estimation (Figure 5a). In Xinjiang and
Gansu, the NMDI is greater than 0.65; the soil is dry; and the vegetation water content
is low. Maize production in this region is mainly distributed in oasis and basin areas. In
densely vegetated areas, NMDI increases almost linearly with leaf water content [65]. The
North China Plain and Northeast China Plain have a higher NMDI, indicating adequate
water content, which is closely related to yield. According to the spatial distribution of the
differences between observed and predicted yields (Figure 9b), overestimations are mainly
distributed in most counties of Xinjiang, Gansu and Yunnan, whereas underestimations



Remote Sens. 2023, 15, 414 14 of 22

are mainly distributed in the southwestern counties of Xinjiang and the North China Plain,
including Shanxi, Hebei, Henan and Hubei.
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In strategy B, evapotranspiration, NMDI2 and GPP1 were integrated into NMDI1.
The R2 increased from 0.28 to 0.62; RMSE decreased from 2583.5 kg/ha to 950.04 kg/ha
(Figure 8b). Overestimation and underestimation decreased, indicating the importance
of the aforementioned indexes to yield estimation. Figure 9c further shows that NMDI2
is closely related to yield estimation in terms of spatial features, and the yield estimation
accuracy can be further improved by using indexes for the reproductive growth period. The
difference map between the observed and predicted yields (Figure 9d) shows a decreasing
trend of overestimation and underestimation. On this basis, indexes for pigment and
nitrogen content were further integrated to improve yield estimation accuracy. The R2

reached 0.78 (RMSE = 747.15 kg/ha) when the top 20 most important indexes were used.
When the number of indexes was further increased, R2 gradually became stable.

Most studies have used multisource remote sensing (i.e., spatial and temporal data)
through deep learning. The R2 in China and the United States at the county level were
reportedly in the range of 0.75 to 0.78 [7,10,66]. In this study, maize yield estimation
involved the integration of soil, genotype and management indexes, achieving R2 in
the range of 0.78 to 0.8. More importantly, despite the missing or incomplete soil and
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geographic space data, our results were similar to those obtained by other studies, hence
proving the effectiveness of the proposed method. Detailed discussions are presented in
Supplementary Materials.

3.2.2. Maize Yield Spatial Distribution

The top 20 most important indexes were used to estimate the maize yield between 2015
and 2019. The best estimation results were attained by the indexes for nutritional/vegetative
and reproductive growth periods. Subsequently, by taking 2018 as an example, the spatial
distribution of yield and the influencing factors of yield were analyzed, and the spatial
distribution of the difference between observed and estimated yields in 2015, 2016, 2017
and 2019 was plotted (Figure S4 in Supplementary Materials). Figure 10a verifies the
relatively high maize yield in counties in the northern parts of China and the low maize
yield in counties in the central and southern regions, which is consistent with the study
of Zhang et al. [7]. The maize yields in some counties of Ningxia, Gansu, Inner Mongolia
and northern Xinjiang reached 8000 kg/ha and even higher. Although cultivation areas are
small, maize is grown at relatively low altitudes in areas with suitable temperature and
sufficient water supply, hence the high maize yields. In Heilongjiang, Jilin and Liaoning
in the northeast; in Shanxi, Shandong, Henan and Jiangsu in the north; and in Yunnan,
the maize yields are relatively high, reaching 6000 kg/ha. By contrast, maize yields are
lower in the counties of Hubei, Hunan, Guizhou and Guangxi, with less than 5000 kg/ha
and even less than 4000 kg/ha in other counties. The distribution of maize in these areas
is dispersed.
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The spatial distribution patterns of overestimation and underestimation are shown in
Figure 10b. The difference between the observed and predicted yields in most counties, in-
cluding those in the North and Northeast China Plains and the southern region, is negligible
(~600 kg/ha). Overestimation was mainly distributed in the counties of Xinjiang, Ningxia
and Shaanxi. Particularly in Xinjiang, the overestimation was between 600 and 1200 kg/ha.
In the western counties of Gansu and Ningxia, the maize yield was underestimated by
600–900 kg/ha, even reaching 1200 kg/ha. In some counties of Shandong, Shanxi and
Yunnan on the North China Plain, the maize yield was underestimated by 600–900 kg/ha.

4. Discussion
4.1. Sensitivity of Different Dimensional Indexes

VIs are the indexes mainly used in yield estimation. Although VIs can depict the
greenness of vegetation, they cannot adequately capture the environmental stresses on crop
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growth and development. Furthermore, although VIs can capture yield variability, their
wide estimation results are difficult to explain. In this study, the indexes most sensitive
to yield estimation were determined based on climate, soil, genotype and management
indexes. Evaluations of the indexes for the whole-growth period (Figure 4b) indicate
that NMDI is the most important index for yield estimation, further suggesting precise
data from using this index in maize mapping [55]. Previous studies have shown that
water-related indexes are sensitive to maize yield estimation [7], which may be explained
by maize being a crop with high water demand [67]. The chlorophyll index also has
great potential in estimating yield [68]. In this study, SIPI, CVI and PSSRc (pigment
content indexes) and NRI1510 and NDNI (nitrogen content indexes) were all sensitive to
yield estimation. Previous studies have also shown that nitrogen content has great yield
estimation potential, with the nitrogen planar domain index stably estimating aboveground
biomass [69]. The use of NRI1510 is effective in combining the advantages of nitrogen and
chlorophyll absorption characteristics [65].

4.2. Sensitivity of the Nutritional/Vegetative Growth and Reproductive Growth Indexes

In this study, the sensitivity of the indexes varied considerably across the different
growth periods. For the vegetative growth period, the indexes most sensitive to yield
estimation were NMDI, GPP, CVI and NDNI; for the reproductive growth period, they
were NMDI and NDNI (Figure 5). These findings may be related to the growth mech-
anism of maize. Hence, the characteristics of maize during the nutritional/vegetative
and reproductive growth periods were explored by analyzing the time series curves of
the indexes. For the nutritional/vegetative growth period, the water content increased
(Figure 5d); the nitrogen content (Figure 5f) gradually increased; and biomass accumulation
increased (Figure S3d,e in Supplementary Materials). These trends gradually decreased in
the reproductive growth period.

The responses of the indexes to yield estimation can be summarized as follows. First,
chlorophyll content increases from preflowering to maturity and gradually decreases after
maturity, which is consistent with the findings of other studies [70]. Second, nitrogen
continuously accumulates during the nutritional/vegetative growth period, but the ac-
cumulation slows down during the filling period [71]. As maize grows, the ability to
absorb photosynthetic radiation increases, and carbohydrates are synthesized from CO2
and water [70,72]. Organic matter accumulates up to the R5 (Dent) period, remains high
and then steadily increases in the mature stage [71,73]. For the reproductive growth period,
NMDI and NDNI are the indexes most sensitive to yield estimation (Figure 4). This can
be explained by maize being a crop with high water demand [67]. More N content is
transported to the kernel in the reproductive growth period [74]. At this period, LSTnight
and LSTday, which reflect water stress, are sensitive to maize yield [7]. Therefore, multiple
spectral indexes contribute more to yield estimation in the nutritional/vegetative growth
period, while climate factors contribute more in the reproductive growth period. This
finding is consistent with those obtained by other studies showing that early peaks in the
growth period help in crop yield prediction and that climate indexes provide additional
information on the different periods of crop development [32].

4.3. Effect of Temporal Aggregation Data on Maize Yield Estimation

In most recent yield estimation studies, indexes across different periods are used for
crop yield estimation [20,41,59]. In this study, the effect of temporal aggregation data on
yield estimation was evaluated according to the whole-growth period, the two periods of
growth (nutritional/vegetative and reproductive growth periods) and the eight-day time
series. As the phenological period shifted from coarse to detailed, the change trend of R2

initially increased and then decreased. The vegetative and reproductive growth periods
(R2 = 0.71) are more advantageous for yield estimation than the whole-growth period
(R2 = 0.58) and eight days of time series data (R2 = 0.69). The possible reasons for this
finding are as follows. First, when only the indexes of the whole-growth period are used,
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the effect of different growth periods on yield estimation is essentially ignored. Second,
when the eight-day time series data are used to estimate yield, the estimation accuracy
is affected by the differences in phenological periods of different areas (i.e., between the
northern and southern regions of China). The actual phenological period is usually delayed
from south to north. Nonetheless, the same number of periods should be used as input to
the estimation model.

Dividing phenology into two periods of growth (vegetative and reproductive growth)
is an effective approach for yield estimation, especially since the evaluation between the two
periods can be distinguished from each other. Nonetheless, the indexes for the vegetative
growth period (R2 = 0.73) have more potential for estimating yield than those for the
reproductive growth period (R2 = 0.68). This finding can be attributed to the most sensitive
indexes under each category, which were selected in this study from the main influencing
factors (climate, soil, genotype and management factors). Therefore, these indexes for
the vegetative growth period can reflect maize growth and organic matter accumulation.
In the absence of extreme weather effects (i.e., high temperature and drought) in the
reproductive growth period, early yield estimation can be realized only by using the index
of the vegetative growth period, which is consistent with the findings of existing research.
An advance period of one to two months is needed to achieve a desirable wheat yield
estimation effect [50].

4.4. Yield Estimation Effect after Integrating Different Indexes

In crop yield estimation, the most widely used index is NDVI [34], but it is prone
to saturation. Furthermore, the yield estimation ability of VIs in the mature period is
limited [75]. In this study, the indexes for the climate factors, water content, pigment
content and nutrient elements were integrated into the VIs as a means of improving yield
estimation accuracy. Our findings showed that R2 can reach 0.80. In the extant yield
estimation research, different spectral indexes and environmental factors have also been
combined. For instance, Cai et al. used a multidimensional vegetation index (i.e., EVI and
SIF) to estimate the wheat yield in Australia, and the R2 reached 0.75 [21]. In other studies,
the R2 of crop yield estimation reached 0.66–0.77 after integrating climate factors and
VIs [20,21,76]. Zhang et al. used VIs and climate factors to estimate maize yields in China at
the county level from 2001 to 2015, and an estimation R2 of 0.75 was achieved [7]. Previous
studies have also estimated crop yield by integrating water content and chlorophyll [30,77],
with R2 improving to 0.6–0.79 [78]. Soil data were used to estimate crop yield in China at
the county level, and the R2 reached 0.78 [66]. In this study, only the climate factors and
spectral index were considered, but the yield estimation accuracy can still approximate the
yield estimation by simply using soil data. Spectral indexes can be obtained via remote
sensing technology, which not only overcomes the difficulty of obtaining large-scale soil
data but also the indirect derivation of indexes for genotype and the environment (e.g.,
pigment, nutrient elements and biomass).

CIMMYT proposed a variety of crop models, and the data they used mainly included
evapotranspiration, mean temperature, max temperature, min temperature, rainfall, low
rainfall, radiation, heat stress factor, water stress factor, leaf area increment, nitrogen
content, irrigation, apparent radiation use, cultivar/line, day length and latitude [46,47].
However, the costs of monitoring the data are high, and data collection is even more expen-
sive. In our study, the following indexes were assessed: (1) climate factors: temperature,
precipitation and phenology; (2) soil and management factors: nitrogen content in nutrient
elements (fertilizer) and soil moisture; and (3) climate and genotype factors: many aspects
of plant physiology, including chlorophyll content, biomass and plant water content. The
parameters provided in this study can be input into the crop model, further allowing the
crop model to illustrate its advantages. Consequently, large-scale crop yield estimation
results can be obtained.



Remote Sens. 2023, 15, 414 18 of 22

4.5. Uncertainties and Future Work

The uncertainties and future work are as follows. First, the influencing factors of
yield are climate, soil, genotype and management factors, among which the latter three
were indirectly obtained. In future research, more potential indexes for soil, genotype
and management will be added. Alternatively, new types of indexes may be aimed at
further improving the precision of yield estimation. Second, in this study, the vegetative
and reproductive growth periods were used for yield estimation, but the corresponding
differences in phenology may not have been fully extracted. In the future, we plan to
subdivide the growth period as follows: turning-green period, jointing period, heading
period and maturity period. In this manner, the optimal phenological phase of maize yield
prediction could be obtained [79], and early crop yield estimation can be realized [80].
Finally, MODIS data are mainly used in this study. Future research may include Sentinel
and other radar data to estimate crop yield in finer farmlands.

5. Conclusions

This study proposes a maize yield estimation method that integrates feature knowl-
edge of multiple spectral indexes and temporal aggregation data at the county level. In
particular, the maize yield in China from 2015 to 2019 was evaluated. The findings of
this research can be summarized as follows. (1) The water content index is more effective
than the VI in maize yield estimation. Among the multiple spectral indexes, NMDI is the
index most sensitive to yield estimation. (2) The effect of temporal aggregation data on
yield estimation can be evaluated using the whole-growth period, the two specific growth
periods (vegetative and reproductive growth periods) and the eight-day time series. The
accuracy of yield estimation initially increased and then decreased as the phenological
period shifted from coarse to detailed. (3) The incorporation of water content, pigment
content, nitrogen content and climate factors led to the gradual improvement of yield
estimation R2 and RMSE, and R2 reached 0.7832 (RMSE = 741.1503 kg/ha) prior to leveling
off to a maximum of 0.8. These findings correspond to the mechanisms of the influencing
factors on yield estimation. Stable crop yield estimation at the county level was realized,
and the potential of the proposed method for yield estimation was confirmed. The research
results are expected to provide the feature knowledge and references for index assessments
for large-scale crop yield estimation research.
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to 2020; Figure S3: Time series curves of the main indicators of maize in China; Figure S4: Spatial
distribution of difference between observed yield and estimated yield; Table S1: Spectral index;
Table S2: Climatic factors; Table S3: Combined indexes; Table S4: Comparison between this research
and other research methods.
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