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Abstract: Registration between remote sensing images has been a research focus in the field of
remote sensing image processing. Most of the existing image registration algorithms applied to
feature point matching are derived from image feature extraction methods, such as scale-invariant
feature transform (SIFT), speed-up robust features (SURF) and Siamese neural network. Such
methods encounter difficulties in achieving accurate image registration where there is a large bias
in the image features or no significant feature points. Aiming to solve this problem, this paper
proposes an algorithm for multi-source image registration based on geographical location information
(GLI). By calculating the geographic location information that corresponds to the pixel in the image,
the ideal projected pixel position of the corresponding image is obtained using spatial coordinate
transformation. Additionally, the corresponding relationship between the two images is calculated
by combining multiple sets of registration points. The simulation experiment illustrates that, under
selected common simulation parameters, the average value of the relative registration-point error
between the two images is 12.64 pixels, and the registration accuracy of the corresponding ground
registration point is higher than 6.5 m. In the registration experiment involving remote sensing
images from different sources, the average registration pixel error of this algorithm is 20.92 pixels, and
the registration error of the image center is 21.24 pixels. In comparison, the image center registration
error given by the convolutional neural network (CNN) is 142.35 pixels after the registration error
is manually eliminated. For the registration of homologous and featureless remote sensing images,
the SIFT algorithm can only offer one set of registration points for the correct region, and the neural
network cannot achieve accurate registration results. The registration accuracy of the presented
algorithm is 7.2 pixels, corresponding to a ground registration accuracy of 4.32 m and achieving more
accurate registration between featureless images.

Keywords: image registration; featureless image; geographical location information; remote sensing
image

1. Introduction

Remote sensing technology has been widely used in environmental monitoring, geo-
graphic mapping, disaster monitoring, military reconnaissance, resource survey and other
fields. Accordingly, various photoelectric/radar payloads are also developing rapidly,
which leads to there being a large number of remote sensing images of the same region,
often coming from different payloads or platforms. Consequently, the automatic regis-
tration of remote sensing images is an important research direction in the field of remote
sensing [1–3].

Obviously, with different platforms, sensors, shooting angles and imaging times,
remote sensing images in the same area will also have differences in resolution, gray
distribution, structure, texture and other characteristics. The purpose of image registration
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is to find the same point in two or more images of the same scene and achieve accurate
image alignment. Scholars have conducted a lot of research on image registration. As early
as the 1970s, Anuta and Barnea realized the automatic registration of some satellite remote
sensing images by comparing the absolute deviation between image feature similarities and
using algorithms such as fast Fourier transform (FFT) and sequential similarity detection.
However, this method is only applicable to areas with obvious target features [4,5]. With
the development of computing and image-processing technology, the gray-level features of
images have been the focus of registration algorithms for some time. The sum of squared
difference (SSD), normalized cross-correlation (NCC), mutual information (MI) and various
improvement algorithms are all based on the similarity measurement of gray-level features
for image registration [6–9]. This kind of algorithm is simple and easy to implement,
but is sensitive to external factors such as noise and requires high image quality. For
instance, SSD is greatly affected by the initial gray-level difference in the image, while
MI is sensitive to the local gray-level difference. With David G. Lowe putting forward
and improving the SIFT algorithm [10], feature-based image registration technology has
gradually become a research hotspot. The SIFT method locates the feature points in
different scale spaces by constructing a Gaussian difference pyramid and searching for
the local extremum in the pyramid. Therefore, the SIFT operator is invariant to scale
and rotation. The SIFT algorithm only considers the local neighborhood of the Gaussian
difference pyramid and ignores the rationality of the feature-point distribution. Hence, the
feature-point distribution may be uneven, leading to inaccurate deformation parameter
estimation. To solve this SIFT operator problem, scholars proposed optimization algorithms,
such as uniform robust scale-invariant feature transform (UR-SIFT) and modified uniform
robust scale-invariant feature transform (MUR-SIFT), focusing on solving the problem
of feature-point screening of distribution anomalies [11–13]. Xi. G reduces the number
of mismatches in the feature-matching algorithm by maintaining the consistency of the
topology and the affine transformation between neighborhood-matching [14]. Considering
the registration speed, Bay H and others propounded the SURF algorithm, but its scale
and rotation invariance was worse than the SIFT algorithm [15]. In general, SIFT and
various improved algorithms produce good outcomes in conventional image registration,
with features such as principal component analysis scale-invariant feature transform (PCA-
SIFT), SIFT for synthetic aperture radar image (SAR-SIFT), adaptive binning scale-invariant
feature transform (AB-SIFT), etc.; thus, they are widely used [16–18].

In recent years, with the rapid development of artificial intelligence technology, deep
learning algorithms based on the twin neural network have been gradually introduced
into the field of remote sensing image registration and achieved good results in specific
tasks [19]. Li et al. realized the automatic registration of urban remote sensing images
through a cross-fusion matching network; its registration accuracy tested better than
the SIFT algorithm [20]. Similarly, Wang completed high-precision image registration
through deep neural network and migration learning and proved the effectiveness of
the algorithm using Radrsat, Landsat and other groups of remote sensing images. For
achieving multi-source image registration [21], Maggiolo achieved registration between
synthetic aperture radar (SAR) images and visible images based on conditional generative
adversarial networks (cGAN) [22]. The deep learning algorithm needs a suitable dataset
as its basis. For example, the first mountain-region image registration dataset, proposed
by Feng, provides key data support for subsequent research [23]. Unfortunately, similar
datasets are still scarce, and most of them are aimed at a particular environment. In other
words, there is no general and public large-scale remote sensing image registration dataset.
Additionally, even if the registration algorithm is based on deep learning, its core is to
extract registration points based on local invariant features or geometric features. Therefore,
image registration cannot be realized in areas without obvious features, such as deserts,
grassland or ocean. Furthermore, the registration model based on geometric features is
greatly affected by similar structures in the image. In the process of multi-source image
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registration, due to the existence of local non-rigid distortion, similar methods also make it
difficult to achieve stable registration.

It should be noted that, no matter how the image source is switched, the imaging
mode, load category imaging time, and the geographical location of the same area will not
change. Therefore the geographical location of the target can be applied to registration
between different images. In this paper, the remote sensing image registration without
feature points or sparse feature points is realized based on the target location solution
model. The outline of this paper is as follows: the general pixel geographical location
calculation method of aerial and aerospace remote sensing images is given in the next
section; the registration algorithm based on geographical location is deducted in the third
section; in the fourth section, the error analysis model is established, and the registration
experiments are carried out through the actual remote sensing images and parameters. In
the conclusion, the results of this paper are discussed and summarized.

2. Geographic Location Algorithm

To solve the problem of multi-source image registration with sparse feature points
or without feature points, using the implicit geographic location information of images,
it is necessary to select a geographic information description model that can be generally
applied to all kinds of remote sensing images. Image registration is realized by the corre-
sponding geographic coordinate values of different images in this coordinate system. In
this paper, the ellipsoid model proposed by the World Geodetic System—1984 coordinate
system (WGS-84) is used to build the earth coordinate system as the basic coordinate system.
The origin of the coordinate system is the Earth’s center of mass; the Z-axis points to the
direction of the conventional terrestrial pole (CTP), defined by the international bureau
of time (BIH) in 1984.0; the X-axis points to the intersection of the agreement meridian
plane of BIH1984.0 and the CTP equator; the Y-axis is perpendicular to the Z-axis and
X-axis, forming a right-handed coordinate system. This coordinate system is also known as
the earth-centered, earth-fixed coordinate system (ECEF). A point on the earth under this
coordinate system can be described by its coordinate values (XE, YE.ZE), or geographic
location, latitude, longitude and altitude (ϕP, λP, hP), as revealed in Figure 1.
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The mathematical model of the ellipsoid is defined by the following equations.
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Earth ellipsoid model:
x2

Re
2 +

y2

Re
2 +

z2

Rp
2 = 1 (1)

The first eccentricity of the earth ellipsoid:

e =

√
Re

2 − Rp
2

Re
= 0.08182 (2)

Latitude is ϕ curvature radius of prime vertical circle:

Rn =
Re√

1− e2 sin2 ϕ
(3)

where Re is the ellipsoidal long semi-axis (Re = 6378137m), and Rp is the ellipsoidal short
semi-axis (Re = 6356752m).

2.1. Geographic Location Algorithm of Satellite Remote Sensing Image

The remote sensing image that is to be generally registered does not provide the
geographic location information (longitude, latitude, height) corresponding to all pixels;
hence, it is necessary to calculate the geographic location information implied in the image
through multiple coordinate system conversion. A geographic location algorithm is usually
used to complete the calculation and acquire the geographic location information. For
satellite remote sensing images, common coordinate systems include the earth-centered
inertial coordinate system (ECI), the orbital coordinate system, and the camera coordinate
system. ECI is a commonly used coordinate system in the field of satellite navigation. ECI
coordinate system can be used to estimate the position and speed of satellites in orbit.
Taking the J2000 coordinate system as an example, the origin of this coordinate system
is consistent with the ECEF reference system, which is the Earth’s center of mass. The
Z-axis points to the agreement pole along the earth’s rotation axis, the X-axis is located
in the equatorial plane and points to the average vernal equinox, and the Y-axis forms a
right-hand Cartesian coordinate system with the other two axes. The rotation matrix from
the geocentric fixed system to the geocentric inertial system is CECI

ECEF; this is related to the
earth’s rotation, polar motion, precession, nutation and other factors, and can be calculated
according to Equation (4).

CECI
ECEF = [∏(t)Θ(t)N(t)P(t)]T (4)

∏(t), Θ(t), N(t), P(t) is the polar shift matrix, sidereal time rotation matrix, nutation
matrix and precession matrix, respectively. Each matrix is directly related to the imaging
time. The academic research on the precession matrix, nutation matrix and polar shift
matrix is relatively perfect. Its parameters can be directly obtained from the official interna-
tional earth rotation service (IERS) website and related papers, and will not be repeated
here [24–26]. This paper uses Green Mean Time αG to calculate the rotation matrix Θ(t) of
true star time, as written in Equation (5).

Θ(t) =

cos αG − sin αG 0
sin αG cos αG 0

0 0 1

 (5)

In the traditional algorithm, the orbit coordinate system needs to be converted to the
geocentric coordinate system multiple times. First, the satellite orbit coordinate system is
converted to the geocentric orbit coordinate system. Then, the orbital inclination, the right
ascension of the ascending intersection point, and the angular distance of the ascending
intersection point are calculated using six orbits in the ephemeris, and then the conversion
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matrix between the geocentric orbit coordinate system and the geocentric inertial system
is obtained. The calculation of this method is complex. With the gradual development
of the satellite-borne global navigation satellite system (GNSS) system, the measurement
accuracy of the position and velocity of the satellite itself is increasingly improved. In this
paper, the position and velocity of the satellite in the J2000 coordinate system are used to
directly calculate the conversion matrix from the orbital system to the inertial system, as
shown in Equation (6):

CVVLH
ECI =

−(Ps·Vs)Psx + (Ps·Ps)Vsx −(Ps·Vs)Psy + (Ps·Ps)Vsy −(Ps·Vs)Psz + (Ps·Ps)Vsz

VsyPsz −VszPsy VszPsx −VsxPsz VsxPsy −VsyPsx

−Psx −Psy −Psz


CECI

VVLH = CVVLH−1
ECI

(6)

where
(

Psx, Psy, Psz
)

is the three-axis position of the satellite imaging time in the 2000
coordinate system, and

(
Vsx, Vsy, Vsz

)
is the three-axis speed of the satellite. The normalized

vector Ps, Vs is calculated as follows.

Ps =

[
Psx√

P2
sx+P2

sy+P2
sz

Psy√
P2

sx+P2
sy+P2

sz

Psy√
P2

sx+P2
sy+P2

sz

]T
(7)

Vs =

[
Vsx√

V2
sx+V2

sy+V2
sz

Vsy√
V2

sx+V2
sy+V2

sz

Vsy√
V2

sx+V2
sy+V2

sz

]T
(8)

The camera coordinate system is established to describe the position of different
pixels on the satellite. The charge-coupled device (CCD) center of the camera and the
satellite centroid are not completely coincident. However, considering that the distance
between the camera installation position and the satellite centroid (usually less than 0.5m)
is far lower than the imaging distance (about 500 km for low-earth-orbit satellites), the
camera coordinate system and the original point of the satellite body coordinate system
are kept consistent. To achieve stable land imaging, the camera’s main optical axis usually
coincides with the satellite’s Z-axis, so the camera attitude and satellite attitude can be
considered completely consistent, meaning that the satellite’s system coincides with the
camera coordinate system, as shown in Figure 2. The satellite’s attitude can be described in
the orbital coordinate system by the three-axis attitude angle of the satellite. The orbital
coordinate system takes the mass center of the spacecraft as the origin, and the Z-axis
points to the earth center; the X-axis is in the track plane, perpendicular to the Z-axis, and
has an acute angle with the velocity; the Y-axis is determined according to the right-hand
rule. The three axes are the yaw axis, roll axis and pitch axis. The orbital coordinate system
established in this way can also be called the vehicle velocity, local horizontal (VVLH)
coordinate frame. The transformation matrix between the camera coordinate system and
the orbital coordinate system is shown in Equation (9).

CVVLH
CAM =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

×
1 0 0

0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

×
 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (9)

If the target to be located is projected in the (m, n) pixel of the camera focal plane, the
pixel size is a, and the camera focal length is f , the position of the target projected in the
camera coordinate system is:

Tp
CAM = [m× a, n× a,− f ]T (10)

Accordingly, the imaging line of sight vector is:

Tl
CAM = [m× a, n× a, f ]T (11)
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According to the rotation invariance of the space vector and the coordinate conversion
process given above, the imaging line of sight (LOS) in the ECEF coordinate system is:

Tl
E = CECEF

ECI × CECI
VVLH × CVVLH

CAM × Tl
CAM (12)

This algorithm uses the Euler angle for coordinate transformation in 3D space, which
can be used in all kinds of satellite remote sensing images. However, the calculation model
is slightly complex. With the development of star sensors, GNSS and other measuring
equipment, remote sensing images can provide direct quaternions for co-ordinate system
rotation transformation. Research on the concept of quaternions and basic computing
methods is relatively mature [27–29]. Therefore, this paper does not derive its basic concepts
and theories. The unit quaternion used for coordinate system conversion can be described
with [q0 q1 q2 q3]

T . Specifically, q0 is the real part, and q1, q2, q3 implies the imaginary
part. The four parameters of the unit quaternion satisfy the following constraints:

q2
0 + q2

1 + q2
2 + q2

3 = 1 (13)

Based on the unit quaternion, the transformation matrix from A coordinate system to
B coordinate system can be derived as Equation (14):

CB
A =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q1q0)

2(q1q3 + q2q0) 2(q2q3 − q1q0) q2
0 − q2

1 − q2
2 + q2

3

 (14)

Even if the satellite cannot directly provide attitude quaternion, it can use the Euler
angle to calculate quaternion. The calculation method is shown in Equation (15), where
(α, β, γ) is attitude Euler angle.

q =


cos α

2 cos β
2 cos γ

2 + sin α
2 sin β

2 sin γ
2

sin α
2 cos β

2 cos γ
2 − cos α

2 sin β
2 sin γ

2
cos α

2 sin β
2 cos γ

2 + sin α
2 cos β

2 sin γ
2

cos α
2 cos β

2 sin γ
2 − sin α

2 sin β
2 cos γ

2

 (15)
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No matter how the coordinate system is defined, the quaternion-based rotation matrix
formula is fixed, so the quaternion rotation matrix given in Equation (14) can be used to
replace the Euler angle rotation matrix in Equations (6)–(9), and the LOS direction in the
earth coordinate system can be calculated through Equation (12).

Obviously, the ground position corresponding to any pixel in the remote sensing
image should be located on the pixel imaging LOS vector and the earth ellipsoid model
at the same time. Two results can be obtained by calculating the intersection point in
the earth coordinate system. The result closer to the satellite is the geographical position
corresponding to the pixel.

2.2. Geographic Location Algorithm of Aerial Remote Sensing Image

Aerial remote sensing images can also calculate the corresponding geographical posi-
tion of pixels through coordinate transformation. Aerial remote sensing images are usually
obtained by cameras and other optoelectronic loads mounted on unmanned aerial vehicles
(UAVs). Unlike satellites with fixed orbits, cameras loaded on UAVs can image the ground
at any position and any angle, making image registration more difficult. For the same
reason, the auxiliary coordinate system used to calculate the target position is also different
from the satellite. The geographic coordinate system is used to replace the geocentric
inertial system, and the carrier coordinate system is used to replace the orbital coordinate
system to achieve the coordinate conversion process. In addition, the installation method
of a UAV’s camera is also different from that of satellite remote sensing cameras. Most
spaceborne cameras use a rigid connection with the satellite to image the ground, and
squint imaging mainly depends on the satellite side sway and two-dimensional turntable.
UAVs can achieve squint imaging by attitude control, while large UAV cameras are usu-
ally installed on a frame composed of two Cardan shafts to achieve wide-area remote
sensing imaging.

The origin of the aerial camera coordinate system is usually located at the projection
center of the camera’s optical system,C, and the A-axis is the direction of the camera’s
visual axis. The UAV’s camera is usually installed in the two-axis frame to achieve scanning
and imaging, so there will be internal and external frame angles θpitch and θroll when the
camera works. The angle of rotation around the central axis of the external frame is the
external frame angle, the right rotation θroll is positive, and the left rotation θroll is negative.
The angle of rotation around the central axis of the inner frame is the angle of the inner
frame. When the aerial camera is vertically looking down for imaging, the angle of the
inner frame θpitch is 0◦, and when it is horizontally looking forward, the angle of the inner
frame θpitch is 90◦. As with satellite remote sensing images, the coordinate of the target

projected in the camera coordinate system is also Tp
C = [m× a, n× a,− f ]T .

The carrier coordinate system and attitude description are different from that of the
satellite. The origin of carrier coordinate system A is consistent with the camera coordinate
system. Its X-axis points to the aircraft head, Y-axis points to the aircraft’s right wing, and
the Z-axis is perpendicular to the aircraft’s symmetric plane downward. The transformation
matrix between the camera coordinate system and the carrier coordinate system is shown
in Equation (16).

CC
A =

cos θpitch 0 − sin θpitch
0 1 0

sin θpitch 0 cos θpitch

×
1 0 0

0 cos θroll sin θroll
0 − sin θroll cos θroll

 (16)

The geographic coordinate system is commonly used in the field of navigation and
positioning. Its origin is located in the local location of the positioning station, and the
camera optical system center was also selected as its origin. In the A-NED coordinate
system, taking the carrier as the origin, the N axis and E axis point to the north and east
of the carrier’s position, respectively, and the D axis points to the Earth’s center of mass
along the ellipsoidal normal. Therefore, the transformation between the carrier coordinate
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system and the geographic coordinate system can be calculated through carrier attitude,
which is described by all three parameters: carrier attitude ϕ, pitch angle θ, and heading
angle ψ. The corresponding calculation formula is presented in Equation (17).

CA
NED =

1 0 0
0 cos ϕ sin ϕ
0 − sin ϕ cos ϕ

×
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

×
 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (17)

The transformation of the geographic coordinate system to the earth coordinate system
requires the transformation of the coordinate system origin, which involves the curvature
radius of the prime vertical circle RN :

RN =
RE√

1− e2 sin2 ϕ
(18)

where e is the first eccentricity of the earth’s ellipsoid and the latitude of location station A.
The transformation matrix is shown in Equation (19).

CNED
ECEF =


1 0 0 0

0 1 0 0

0 0 1 Rn + h

0 0 0 1

×

− sin ϕ 0 cos ϕ 0

0 1 0 0

− cos ϕ 0 − sin ϕ 0

0 0 0 1

×


cos λ sin λ 0 0

− sin λ cos λ 0 0

0 0 1 0

0 0 0 1

×


1 0 0 0

0 1 0 0

0 0 1 Rne2 sin ϕ

0 0 0 1

 (19)

Similar to the method used to calculate the geographical position of satellite images,
the coordinates of the pixel points to be registered in the earth coordinate system are shown
in Equation (20).

TP′
E = CECEF

NED × CNED
A × CA

C × TP′
C (20)

The coordinate system relationship during aerial remote sensing image imaging
processes is demonstrated in the figure below. The geographical position of the pixel image
to be registered can also be calculated through the intersection of the line-of-sight model
and the ellipsoid model. Since similar algorithms are discussed in detail in the existing
research, they will not be repeated here. The coordinate system involved in the UAV’s
taken image location solution is displayed in Figure 3.
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When processing satellite remote sensing images, the transformation from ECI to ECEF
coordinate system mainly uses the imaging time as the conversion parameter, so quaternion
cannot deal with all the transformation processes. The coordinate system of UAV does not
involve the imaging time, and the transformation process is all rotation transformation,
so quaternion is more suitable for processing thn satellite images. In addition, the sensor
measurement system of some UAVs can provide the attitude quaternion, or Equation
(15) can be used to solve the quaternion through the Euler angle provided by the angle
sensor and calculate the imaging LOS vector in the earth coordinate system according to
Equation (14).

3. Registration Algorithm Based on GLI

After obtaining the geographic location information in the image, the next step is to
achieve image registration by solving the corresponding pixel location. When the images to
be registered come from different remote sensing loads, the ground areas corresponding to
the two images are not always identical. To achieve registration between two remote sensing
images, it is necessary to select more than three non-collinear target points in the image
overlap area for registration. The more registration target points are selected, the higher
the registration accuracy. Since the registration method based on the geographical location
proposed in this paper does not need to take the impact of image features and textures into
consideration, it only needs to select registration points evenly in the overlapping area, as
plotted in Figure 4.
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On the premise of ensuring the number of registration points, the registration reference
points are selected by comprehensively considering the accuracy, calculation speed, and the
appropriate pixel interval n, which is decided according to the size of the overlapping area.
The selection method of n is analyzed by simulation. Taking the total pixel length (M) and
width (N) of the overlapping area as an example, when selecting registration points every
(M/6, N/6) interval, the algorithm undergoes the highest comprehensive evaluation of
registration accuracy and processing speed. However, increasing the number of registration
points does not significantly improve registration accuracy. If the processing speed of the
algorithm needs to be improved, the pixel distance between regis-tration points can be
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increased, but cannot be lower than (M/3, N/3); otherwise, the registration accuracy will
be greatly reduced.

To make the calculation process clearer, the registration points are selected in the order
from top left to bottom right, as shown in Figure 5. Noticeably, due to the inconsistent
image acquisition angle and extent, the registration points may not occur in the overlapping
images when the registration points are selected at fixed intervals, as shown in Figure 5,
registration point (i, 1)− (i, 4), which should be rounded off. The overlapping area of two
pictures can be calculated by solving the geographical coverage area of the image, and then
whether the registration point is located in the overlapping area can be determined.
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The key to image registration based on geographical location is to find the same
geographical location corresponding to different pixels. As the ground resolution of the
image may be different, but the description of longitude and latitude is fixed, the image
ground resolution is converted into longitude resolution and latitude resolution, and the
corresponding relationship between registration points is calculated on this basis, as shown
in Equation (21).

ϕGSD =
GSD

RM + h
, λGSD =

GSD
(RN + h) cos ϕm

, RM =
RE(1− e2)

(1− e2 sin2 ϕ)
3/2 (21)

where GSD refers to the ground resolution corresponding to the image, h represents the
ground height of the area to be registered, ϕGSD and λGSD indicate the longitude and lati-
tude resolution, respectively, corresponding to the image pixel, and the radius of curvature
of the meridian circle of the area is denoted as RM. For the convenience of description, M is
used to describe the registration point, and M′ implies the corresponding projection pixel
of the registration point. The geographical position M11(ϕ11, λ11) of the initial registration
point in reference image 1 can be calculated, and the longitude and latitude coordinates of
the (i, j) registration point can be obtained, according to the longitude and latitude ratio of
the image: [

ϕMij

λMij

]
=

[
ϕM11

λM11

]
+

[
(i− 1)nϕGSD
(j− 1)nλGSD

]
(22)

Based on Equation (22), the coordinates of this point in the earth coordinate system: is:

Mij
E =

xij
E

yij
E

zij
E

 =

(RNMij + hMij) cos ϕMij cos λMij

(RNMij + hMij) cos ϕMij sin λMij

(RNMij(1− e2) + hMij) sin ϕMij

 (23)
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According to different image acquisition sources, the camera coordinate system coor-
dinates of this point in the image to be registered can be calculated as:

satellite : Mij
CAM = CCAM

VVLH × CVVLH
ECI × CECI

ECEF ×Mij
E

aircra f t : Mij
C = CC

A × CA
NED × CNED

ECEF ×Mij
E

(24)

The point to be calibrated and its projected pixel should be on the same straight line
under the camera coordinate system; that is, the imaging visual axis direction equation
passing through the origin of the coordinate system. Therefore, the coordinates of its
pixel position in the camera coordinate system M′ ij = [x′ ijC, y′ ijC, z′ ijC] should satisfy the
equations below:

satellite : xij
CAM

x′ ijCAM

=
yij

CAM

y′ ijCAM

=
zij

CAM

z′ ijCAM

, z′ ijCAM = − f

aircra f t : xij
C

x′ ijC
=

yij
C

y′ ijC
=

zij
C

z′ ijC
, z′ ijC = − f

(25)

To solve Equation (25):

M′ ijCAM(M′ ijC) =

[
xij

CAM
− f

,
yij

CAM
− f

,− f

]
(26)

Based on the above algorithm, the corresponding pixel positions of a pair of regis-
tration points A can be obtained through pixel geographic location solution and spatial
coordinate transformation. The calculation process should be repeated for all the registra-
tion points to obtain the corresponding relationship between the two images. The overall
algorithm flow is shown in Figure 6.
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Based on the above algorithm, the corresponding pixel positions of a pair of 
registration points A can be obtained through pixel geographic location solution and 
spatial coordinate transformation. The calculation process should be repeated for all the 
registration points to obtain the corresponding relationship between the two images. The 
overall algorithm flow is shown in Figure 6. 

 
Figure 6. Overall flow diagram of the algorithm. Figure 6. Overall flow diagram of the algorithm.

4. Simulation and Experiment
4.1. Simulation Analysis of GLI and Registration Error

Different from traditional algorithms that use image features for registration, the
core influencing factor of the GLI registration algorithm is the positioning accuracy of the
points to be registered in the image, signifying the positioning error directly affects the
subsequent registration results. Therefore, the positioning errors of different images should
be considered before simulation analysis. The spatial distance can be used to evaluate
the positioning accuracy corresponding to the position of a single pixel. If the standard
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reference coordinate of the point to be registered is MR
E =

[
xr yr zr

]
and the positioning

result is MP
E =

[
xp yp zp

]
, the positioning error is:

error = dr−p =
√
(xr − xp)

2 + (yr − yp)
2 + (zr − zp)

2 (27)

In simulation analysis, the Monte Carlo method is an appropriate algorithm to analyze
a large amount of data. The simulation error analysis model based on the Monte Carlo
method is defined as follows:

4 y = f (x +4x1, x2 +4x2, . . . , xn +4xn)− f (x1, x2, . . . , xn) (28)

where y represents the single positioning result,4y is the single positioning error, and4x
expresses the random variable of measurement error, which follows the normal distribution.
The error model can be described as Equation (29)

4 xk = Riσxk (29)

where Ri indicates the pseudorandom number obeying the standard normal distribu-
tion, and σxk illustrates the standard deviation of the measurement of the corresponding
parameter term.

Another key index to evaluate the positioning accuracy in multiple simulation analyses
is the circle probability error (cep), which is shown in Equation (30)

1
2πσxσy

√
1− ρ2

x

x2+y2≤R2

exp{− 1
2(1− ρ2)

[
(x− µx)

2

σ2
x

−
2ρ(x− µx)(y− µy)

σxσy
+

(y− µy)
2

σ2
y

]}dxdy = 0.5 (30)

Based on the simulation model and evaluation index above, the positioning errors of
aerial remote sensing images and satellite remote sensing images are analyzed by typical
values. Specific reference values are displayed in Tables 1 and 2.

Table 1. Simulation parameters of aerial remote sensing images.

Variable Reference Value Standard Deviation Unit

ECEF coordinate (x) −2,852,931.44 10 m
ECEF coordinate (y) 4,657,887.12 10 m
ECEF coordinate (z) 3,287,036.40 10 m

Roll 30 0.02 ◦

Pitch 15 0.02 ◦

Yaw 0 0.02 ◦

θpitch 0–30 0.005 ◦

θroll 0.5 0.005 ◦

Table 2. Simulation parameters of satellite remote sensing images.

Variable Reference Value Standard Deviation Unit

J2000 coordinate (x) 5,721,150.32 100 m
J2000 coordinate (y) 3,817,990.65 100 m
J2000 coordinate (z) −12,360.16 50 m

Speed (x) −2,976.45 10 m/s
Speed (y) 4,477.58 10 m/s
Speed (z) 5,389.24 5 m/s

Roll 28.0755 0.0001 ◦

Pitch 42.1555 0.0001 ◦

Yaw −5.81223 0.0001 ◦

Pixel deviation
caused by the

temperature field
(0,0) 1 pixel
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The ground in the simulation area is flat, so the positioning error caused by terrain
fluctuation is temporarily not considered. During the simulation, the area with the center
(31.20◦N, 121.48◦E) is photographed to obtain images by the UAV with a 2500 flight height.
As shown in Figure 7, due to random error, the distance error simulation results in a
single target location varying greatly, while the CEP gradually becomes stable when the
simulation times exceed 1000, which can predict the positioning accuracy in the actual
situation. Under the simulation conditions in Table 1, the CEP is stable at around 11.15m,
the projection position of the point to be registered in the image is a two-dimensional
coordinate, and the pixel error during registration is also a two-dimensional parameter;
therefore, considering their longitude and latitude errors separately is feasiable, and the
registration error can be analyzed in combination with the longitude and latitude resolution
of a single pixel. The longitude and latitude error probability distribution of aerial remote
sensing images is shown in Figure 8.
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The standard deviation of longitude and latitude of the simulation results can be
calculated from the target reference position (ϕr, λr) and the positioning simulation result
(ϕs, λs), as shown in Equation (31).

σϕ =

√√√√√ N
∑

i=1
(ϕs − ϕr)

2

N
, σλ =

√√√√√ N
∑

i=1
(λs − λr)

2

N
(31)

Through calculation, the latitude standard deviation σϕ and longitude standard de-
viation σλ are 0.0000937◦ and 0.0000923◦, respectively. In addition, the pixel registration
standard deviation of the point to be registered can be obtained by combining the longitude
and latitude resolution calculated by Equation (21).

Similar to the calculation approach to data in Table 1, this paper simulated and
analyzed the positioning accuracy of satellite remote sensing images through the data in
Table 2. Figures 9 and 10 illustrate the positioning error results.
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Under the simulation parameters in Table 2, the latitude standard deviation of pixel
positioning error σϕ is 0.000124◦, and the longitude standard deviation σλ is 0.000146.
Through analysis, it can be found that the CEP of satellite simulation positioning is 81.12 m,
which is significantly higher than the simulation results of aerial remote sensing images.
This is because a high earth orbit satellite is used to image the ground in the simulation
process, which is more affected by various random errors such as attitude control, orbit
measurement and position measurement than that of the low earth orbit satellite and UAVs.
However, the positioning error does not mean that the registration accuracy will be reduced,
since the specific pixel registration accuracy is limited by the pixel resolution, and the image
resolution of the high earth orbit satellite is lower than that of the low-altitude UAV.

To verify the validity of this algorithm, the image registration process is simulated
and analyzed through the simulation environment. Assuming that the area to be regis-
tered is within the range of 43.73◦N − 43.76◦N, 125.36◦E− 125.40◦E, Table 3 shows the
geographic location information of the points selected for registration in the simulation. In
the simulation process, the algorithms provided in Sections 2 and 3 are used to calculate
the geographic location and perform image registration. The simulation parameters are
as follows: the pixel size of the UAV camera is 10 microns and the camera focal length
is 0.06m. The camera CCD detector size is 2000 × 2000, and the carrier flight height is
3000 m. Under this simulation condition, the standard deviation of longitude positioning
σϕ is 0.00016◦, and the standard deviation of latitude positioning σλ is 0.00011◦.

Table 3. Parameters of registration points.

Registration Point 1 2 3

longitude 43.7608 43.7450 43.7429
latitude 125.3752 125.3957 125.3820
height 217.2 217.6 216.5

The image to be registered is the satellite remote sensing image of the same area, the
number of detector pixels is 4000 × 4000, the longitude positioning standard deviation σϕ

is 0.00022◦, and the latitude positioning standard deviation σλ is 0.00015◦. The distribution
of pixel position calculation results of multiple simulation registration points is shown in
Figure 11.

To display the simulation results more clearly and intuitively, the positioning error,
projection error and registration point error are specifically analyzed, as shown in Table 4.

Table 4. Simulation data.

Registration
Point

Number of
Simulations

Positioning
Error(A)

Projection
Error(S)

Registration
Point Error

Ground
Registration

Accuracy

1

102 3.66 26.2 8.9 4.45
2053 5.68 39.6 15.2 7.60
4875 3.78 25.9 16.4 8.20
7693 8.43 59.7 13.5 6.75

2

1368 4.82 36.7 18.8 9.40
5513 2.66 22.8 4.7 2.35
3957 1.11 7.84 14.3 7.15
8462 6.27 42.5 3.9 1.95

3

2384 3.76 26.8 2.7 1.35
3375 7.89 55.3 16.7 8.35
5691 1.97 13.6 3.2 1.60
9201 8.10 58.9 10.7 5.35



Remote Sens. 2023, 15, 436 16 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 25 
 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 11. Distribution of registration points on simulated images. (a) Calculation results of 
registration point 1 in aerial remote sensing image; (b) calculation results of registration point 1 in 
satellite remote sensing image; (c) calculation results of registration point 2 in aerial remote sensing 
image; (d) calculation results of registration point 2 in satellite remote sensing image; (e) calculation 
results of registration point 3 in aerial remote sensing image; (f) calculation results of registration 
point 3 in satellite remote sensing image. 

To display the simulation results more clearly and intuitively, the positioning error, 
projection error and registration point error are specifically analyzed, as shown in Table 
4. 

  

Figure 11. Distribution of registration points on simulated images. (a) Calculation results of registra-
tion point 1 in aerial remote sensing image; (b) calculation results of registration point 1 in satellite
remote sensing image; (c) calculation results of registration point 2 in aerial remote sensing image;
(d) calculation results of registration point 2 in satellite remote sensing image; (e) calculation results
of registration point 3 in aerial remote sensing image; (f) calculation results of registration point 3 in
satellite remote sensing image.
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The projection error in the table refers to the pixel deviation distance between the
projection position obtained by the coordinate transformation of the point to be registered
and the actual projection position. However, due to random errors, the deviation directions
of the points to be registered in the two images are not consistent. Therefore, the deviation
between the actual projection position and the ideal projection position of the points to be
registered should be considered; that is, the relative projection error of the points between
the two images, which is recorded as the registration point error in the table. The ground
registration accuracy can be calculated based on the ground resolution of the satellite image
pixel of 0.5 m.

In the simulation experiment, all the data in Figure 11 are analyzed. The average
projection errors of the three registration points on the two images are 34.53 pixels and
37.98 pixels, respectively. The average error of the relative registration points between
the two images is 12.64 pixels, and the registration accuracy of the corresponding ground
registration points is better than 6.5 m. This confirms that the algorithm can achieve image
registration for the same area.

4.2. Registration Experiment of UAV Remote Sensing Image and Satellite Remote Sensing Image

To verify the effectiveness of the geographic-information-based registration algorithm
in the case of heterogeneous image registration, an aerial remote sensing image and satellite
remote sensing image in the same area were randomly selected for registration experiments.
However, the imaging angles and imaging time between the two images are different,
and the coverage area is not completely consistent. The two images were obtained by
high-resolution remote sensing satellites and ground remote sensing image obtained by
UAVs, respectively. The resolution of the satellite remote sensing images is 0.15 m, and the
ground resolution of UAV remote sensing images is 0.6 m. To better reflect the selection
of registration points and the registration effect, the images are scaled in the schematic
diagram to a uniform resolution.

First, two images were registered using the algorithm proposed in this paper. Nine
groups of registration points were selected in the images, and the two images were regis-
tered by the algorithm proposed in Sections 2 and 3. The corresponding positioning results
and registration errors are recorded in Table 5. The geographic location information in the
table was calculated according to the satellite remote sensing images to be registered. The
projection position (UAV) is the ideal projection position of the point to be registered in the
UAV remote sensing image calculated by the above algorithm. The registration error refers
to the pixel deviation between the ideal position and the actual projection position. The
registration accuracy can be represented by the spatial distance between the pixel position
calculated by the algorithm and the standard position of the point to be registered.

Table 5. Experimental results of heterogenous image registration.

Registration
Point Longitude Latitude Projection

Position (UAV)
Registration
Error (Pixel)

Registration
Accuracy (m)

1 109.5155 18.2339 445.5, 487.2 21.1 12.67
2 109.5158 18.2340 989.3, 486.9 19.6 11.79
3 109.5161 18.2341 1533.7, 487.8 21.1 12.71
4 109.5156 18.2333 446.3, 1006.2 22.7 13.63
5 109.5158 18.2338 988.7, 1005.3 20.8 12.48
6 109.5161 18.2339 1532.9, 1006.4 21.7 13.03
7 109.5157 18.2335 445.8, 1525.1 21.2 12.72
8 109.5159 18.2336 989.6, 1526.2 19.4 11.69
9 109.5161 18.2336 1532.6, 1524.9 20.4 12.29

The experimental results show that GLI algorithm can register two images, the ac-
curacy of ground registration reaches 12.55 m, and the exact correspondence between
the two images can be obtained. Moreover, to verify the advantages of this algorithm in
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the case of heterologous image registration, SIFT-algorithm- and neural-network-based
registration algorithms were used to register the two images in the experiment, and the
results were compared with the GLI algorithm, as shown in Figure 12. The number in
Figure 12a represents the selection order of registration points in the GLI algorithm, and
the cross symbol in Figure 12c represents the position of feature points extracted by CNN.
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To display the registration results more clearly, the experimental data were analyzed
through the parameters of the number of registration points, the number of correctly
matched pixels, and the average registration pixel error, as shown in Table 6. In the
experiment, the SIFT algorithm obtained three groups of registration points, but all of them
belonged to the wrong registration and the average registration error was 751.35 pixels.
Many registration points were obtained by the neural network, of which only four groups
were close to the correct registration and belonged to the same feature area, and the overall
average registration error was 381.25 pixels. Neither method can give the corresponding
relationship between the two images because there are too many misregistration points.
The reason for this is that the two algorithms are based on image features, while the image
to be registered has huge differences due to inconsistent shooting angles, changes in road
signs, and changes in parking lot location and the number of vehicles. The number of
wrong registrations is far greater than that of correct registrations. Therefore, the two
algorithms cannot achieve image registration. Correspondingly, the GLI algorithm achieves
image registration using the geographic location of nine sets of registration points, without
considering image characteristics. Due to the positioning error, the average pixel error
between the points to be registered was approximate 20.92 pixels. To verify the effectiveness
of this algorithm, the registration errors of the image centers were also analyzed in Table 6.
The data given in the table are the results of the calculation after the significant error
registration points were manually removed. Since there are no correct registration points,
SIFT cannot obtain registration results, and the average registration error of the neural
network is 102.35 pixels.

Table 6. Comparative analysis of experimental results.

Algorithm
Number of the

Registration
Point

Number of
the Correct

Registration Point

Average
Registration
Error (Pixels)

Registration
Error of Image
Center (Pixels)

GLI 9 9 20.92 21.24
SIFT 3 0 751.35 N/A
CNN 37 4 381.25 142.35

The results show that the registration accuracy of the GLI algorithm is significantly
better than that of the other two algorithms. When the feature-based registration algorithm
struggles, the GLI algorithm can effectively register heterogeneous images with large
differences. The final image registration result of this algorithm is shown in Figure 13.
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4.3. Experiment with Image Registration without Feature Points

In the case where there are no obvious feature points, such as forest, farmland and sea
level, the traditional registration algorithms cannot perform very well. Neither the SIFT
algorithm nor the neural network model can find accurate matching feature points. In this
paper, the registration ability of the GLI algorithm in the case of no feature points is verified
by two consecutive farmland images taken by UAV.

Figure 14 shows two random remote sensing images of continuous farmland in the test
area, with a certain area of overlap. After determining the overlapping area by calculating
the geographic location corresponding to the pixel, five registration points are uniformly
selected in the figure for the registration experiment and marked with a red circle, and the
calculation results are shown in Table 7.
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Table 7. Calculation results of geographical position of registered pixel points.

Registration
Point

Projection
Position (a) Longitude Latitude Projection

Position (b)
Registration

Error
Registration
Accuracy (m)

1 1647,183 109.5155 18.2339 445.5,487.2 21.1 12.67
2 1647,565 109.5158 18.2340 989.3,486.9 19.6 11.79
3 1647,947 109.5161 18.2341 1533.7,487.8 21.1 12.71
4 1647,1329 109.5156 18.2333 446.3,1006.2 22.7 13.63
5 1647,1711 109.5158 18.2338 988.7,1005.3 20.8 12.48

Figure 15 illustrates the registration results of the GLI algorithm, SIFT and CNN
registration algorithm. As shown in the figure, since there are no typical feature points in
the image, the algorithm based on feature extraction struggles to register two images. Both
the SIFT algorithm and the neural network model extract the wrong registration points.

Similar to the experiment conducted in Section 4.2, the research in this section also
takes registration points and registration accuracy as analysis criteria for experiment
results. Since there are no typical features, such as geometric shape, in the farmland
area, the registration results generated by SIFT algorithm are confusing and only one
pair of registration points belongs to the same area of two images; however, this pair of
registration points’ accuracy also reaches 245.62 pixels and the average registration error
is 362.96 pixels. The neural network model partially recognized similar texture features
but the extracted registration points do not belong to the same region. Therefore, the
corresponding relationship between the two images cannot be derived. It should be noted
that the average registration error does not reflect the real registration results because most
of the registration points have the wrong registration and exceed the overlap region of the
images. These registration errors, which have various directions in the coordinate system,
mean that the comparison of average registration errors does not make much sense. Under
this circumstance, the distribution of the quantity of correct and incorrect registrations
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ought to be more focused. As indicated in Table 8, the registration accuracy for SIFT is
2.17%, while the proportion is 0% for CNN-extracted feature point registration results. This
phenomenon is caused by the uniform distribution of remote image texture, making the
features of images from different regions very similar. This is also one of the reasons why
the imaging registration algorithm based on feature points is difficult to apply to this kind
of remote image.
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Table 8. Comparison of experiment results.

Algorithm
Average

Registration
Error (Pixels)

Number of
Registration

Point

Number of Correct
Registration Point

Registration
Accuracy (m)

CLI 7.42 5 5 100%
SIFT 362.96 46 1 2.17%
CNN 271.97 24 0 0%

For the GLI algorithm, the five groups of registration points obtained based on their
geographical location information all have the correct registration, since the two images
were continuously obtained by the same camera within a short time, and their positioning
errors are also close. Therefore, the registration accuracy is only affected by the random
measurement error during shooting. In this experiment, the pixel registration error is close
to 7.2 pixels and the corresponding ground registration accuracy reaches 4.32 m, which can
better achieve image registration without feature points.

5. Discussion

Simulation analysis and experiments indicate that the proposed algorithm, which is
based on geographical location information, can achieve remote sensing image registration
in the same region. This method does not involve the image features effect and only
relies on the geographical location for registration. The registration accuracy is completely
determined by the geographical location information of the image. In other words, it
can be concluded that the registration accuracy of the algorithm is mainly affected by the
following factors:

The precision of image photogrammetric information. The key to image registration through
pixel location calculation is the geographic positioning accuracy of the algorithm, which
is mainly affected by the measurement accuracy of photogrammetric parameters, such as
imaging angle, position and attitude, satellite speed, UAV speed–height ratio, etc.

Positioning error caused by geometric deformation of the image. Besides the accuracy of
angle measurement, image distortion is also one of the key factors affecting the results
of pixel geographical location calculation. In practical tasks, there are a large number
of images without geometric correction that need image registration. In this case, the
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position information in the image will deviate from the ideal position, which will lead to
registration errors.

The image carries the precision of geographic information. Some images to be registered
may have auxiliary information with reference positions, so they can be registered directly
through the reference positions. The final registration accuracy is only affected by the
accuracy of the information itself and the image resolution.

It should be noted that registration accuracy is more affected by positioning accuracy
when the method is used to deal with the problem of heterogeneous image registration. This
is because the random measurement errors of the two images are not consistent, which may
lead to position errors in the ECEF coordinate system showing opposite directions in the
pixel geographical location calculation process, resulting in poor registration accuracy. In
this case, the core direction of optimizing this method is to reduce the errors in geographical
positioning technology and achieve higher-precision image registration.

6. Conclusions

This paper proposes an image registration algorithm based on geographical location
information. The image registration is realized by calculating the same geographical
location’s corresponding location of different pixels in two paired images. This method is
effective in the registration of arbitrary images, without the limitation of image features
and imaging platforms. The experiments introduced in this paper are based on a real
remote image dataset. The comparison among GLI, SIFT and CNN validates the proposed
algorithm’s effectiveness. In the registration experiment conducted on remote images
taken by UAV and satellites, SIFT only extracted three pairs of incorrect feature points
and failed in image registration. In contrast, the image center registration error of the
GLI is merely 21.24 pixels, which means that its accuracy compared to the CNN model
improved by 85.08%. In the registration experiment regarding featureless and only partially
overlapping remote sensing images, the CNN model failed to extract the right registration
point; similarly, the registration accuracy of SIFT is as low as 2.17%. Through SIFT, the
unique, successfully registered feature points’ pair error reaches 245.62 pixels. However,
GLI’s accuracy is 100% because it can calculate the range of overlapping areas. Furthermore,
GLI’s correct registration level is more optimal than 7.5 pixels, making it reliable for the
real application of featureless image registration.

As the algorithm propounded in this paper calculates the geographical position of
the registration region and pixel through imaging geometric relations, the registration
effect entirely depends on the accuracy of the calculation. A practical means of ensuring
the stability of the algorithm and improve the registration accuracy is continual research
focusing on optimizing the geographical location calculation model in the future. For
instance, distortion process flow can be added to the algorithm model so that the influence
of geometric deformation is reduced. Moreover, the location error caused by environmental
factors such as atmospheric refraction or topographic relief should also be considered in
the location calculation and registration model to further improve the registration accuracy
of heterogeneous images. The measurement precision of various sensors will also affect
the registration accuracy of this algorithm, especially the precision level of the attitude and
imaging angle.
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