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Abstract: Few-shot hyperspectral classification is a challenging problem that involves obtaining
effective spatial–spectral features in an unsupervised or semi-supervised manner. In recent years,
as a result of the development of computer vision, deep learning techniques have demonstrated
their superiority in tackling the problems of hyperspectral unmixing (HU) and classification. In this
paper, we present a new semi-supervised pipeline for few-shot hyperspectral classification, where
endmember abundance maps obtained by HU are treated as latent features for classification. A cube-
based attention 3D convolutional autoencoder network (CACAE), is applied to extract spectral–spatial
features. In addition, an attention approach is used to improve the accuracy of abundance estimation
by extracting the diagnostic spectral features associated with the given endmember more effectively.
The endmember abundance estimated by the proposed model outperforms other convolutional
neural networks (CNNs) with respect to the root mean square error (RMSE) and abundance spectral
angle distance (ASAD). Classification experiments are performed on real hyperspectral datasets and
compared to several supervised and semi-supervised models. The experimental findings demonstrate
that the proposed approach has promising potential for hyperspectral feature extraction and has
better performance relative to CNN-based supervised classification under small-sample conditions.

Keywords: hyperspectral; unmixing; autoencoder; deep learning; few-shot; classification

1. Introduction

In earth observation, hyperspectral technology is one of the top trends in the remote
sensing community, and it plays a significant role. The hundreds of spectral bands pro-
vided by hyperspectral images (HSIs) give them an inherent advantage in quantitative
applications such as mineral mapping, environmental monitoring and classification [1].

Earlier work mainly focused on discriminative spectral feature extraction, such as
the spectral angle mapper (SAM) [2] and spectral information divergence (SID) [3]. These
methods utilize extensive prior knowledge and typically require no sample. They do not,
however, fully use the spatial features of HSIs. Later on, some supervised spectral classifiers,
such as support vector machines (SVM) [4], random forest [5] and neural networks [6],
were proposed to achieve a more accurate classification and have since gained widespread
acceptance. Nonetheless, the curse of dimensionality is still a bottleneck for supervised
classifiers. To resolve this concern, a large number of spectral–spatial joint feature extraction
methods have been developed for HSI classification [7–11]. In addition, numerous band
selection methods [12,13] and hand-crafted feature extraction methods combined with a
learning strategy are proposed [8,14]. However, these shallow features still have limitations
regarding more precise hyperspectral classification in complex scenes.

Thanks to advances in computer vision, deep learning technology has made significant
strides in remote sensing applications in recent years. CNNs’ potent learning capabilities
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have enabled end-to-end supervised deep learning models to achieve highly competitive
hyperspectral classification results [15–18] when large amounts of labeled data are available.
The various deep leaning classification modes for HSIs are summarized in [19]. However,
since hyperspectral classification is a few-shot problem in most cases, it is challenging
to collect the large number of hand-crafted training samples required for supervised
classification models. In addition, larger models applied to scenarios with limited data tend
to result in overfitting and reduce the robustness of the model. Currently, developing an
unsupervised or semi-supervised method suitable for small-sample scenarios is a significant
challenge in hyperspectral classification.

Various deep learning-based approaches with different learning paradigms have been
proposed to address this issue [20,21], including transfer learning [22,23], few-shot learn-
ing [24,25] and self-learning [26,27]. The purpose of transfer learning is to initialize the
network weights, thereby reducing training time and improving accuracy. Few-shot learn-
ing also employs the strategy of transfer learning but focuses more on mining meaningful
representation information from labeled data [28]. However, this method has stringent
requirements for the labeled quality and diversity of the data. Unlike few-shot learning
methods, self-supervised learning can learn deep representations by reconstructing the
input completely. However, this type of data representation is regarded as the compres-
sion of all information rather than the effective screening of meaningful information, and
information with a small proportion is often disregarded [29].

Summarizing previous research, we believe that in order to solve the problem of
few-shot hyperspectral classification, three conditions are necessary: 1. Strong feature
extraction capabilities; 2. Effective representation information is obtained from data; 3. The
model is robust and less dependent on data. Therefore, the question of how to combine
self-supervised learning with traditional physical models, such as HU, to achieve effective
expression of representational information has become an important area of study.

Let us take a look at the HSI unmixing methods first. The HU technique is applied in
order to split the mixed pixel spectrum into materials in their purest forms (endmembers)
as well as their proportions (abundances). Generally, the common HU model can be sum-
marized in two categories: the linear mixing (LM) model and the nonlinear mixing (NLM)
model [30]. The LM model operates under the presumption that every pixel of the HSIs is
a linear combination of the pure endmembers. These methods can be further subdivided
into pure pixel-based methods [31,32], and non-pure pixel-based methods [33,34], which
concentrate on leveraging the data structure by making geometrical or sparseness assump-
tions. However, the LM model does not consider the multiple-scattering function and the
interaction between objects, which makes it unsuitable to solve the HU problem in complex
scenes [35]. In recent years, many neural network (NN) algorithms have been proposed
to handle NLM challenges [36–38]. Deep learning methods have been proven to improve
the accuracy of HU. Recently, the convolutional autoencoder (CAE) has emerged as a new
trend in HU applications [39–41]. A denoising and sparseness autoencoder is introduced
in [42,43] to estimate the abundance of endmembers. Additionally, stacked autoencoders
are further employed for HU [44,45]. Most recently, 3D-CNN autoencoders [35,46] were
employed to handle HU problems in a supervised setting. Existing research has acknowl-
edged the significance of spatial–spectral joint characteristics for classification [47]. New
advances indicate that HU theory can guide the network to learn more effective and regu-
larized representational features; thus, the robustness of the model can be enhanced. The
endmember abundance obtained through HU can provide useful spatial–spectral features
for semi-supervised classification [48–50]. This also sheds new light on solving the few-shot
classification problem.

In this research, we introduce a novel end-to-end convolutional autoencoder that we
call CACAE. Furthermore, an attention mechanism is utilized to increase the accuracy
of abundance estimation by extracting the diagnostic spectral characteristics associated
with a given endmember more precisely. In addition, a semi-supervised classification
pipeline based on CACAE that uses endmember abundance maps as classification features
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is introduced. Experiments are carried out on real hyperspectral datasets, and the outcomes
are compared using a variety of supervised and semi-supervised models.

The remaining sections of this paper are structured as follows: In Section 2, the pro-
posed method is described. The experimental dataset is described in Section 3. Experiments
and analysis are discussed in Section 4, while the final section provides the conclusion.

2. Methods
2.1. Problem Definition

The LM model typically assumes that the reflectance spectra are linearly mixed by
different endmembers. The HU formula can be expressed as:

M = EA + N (1)

where M represents a mixed pixel, E stands for the endmembers, A stands for the abun-
dances and N is the additive vector. However, considering the multiple-scattering function
and the interaction between objects, the nonlinear model is more suitable to solve the HU
problem in complex scenes. The nonlinear model is defined as:

M = g(EA) + N (2)

where g refers to a nonlinear function.
Autoencoders are unsupervised training networks that are designed to force the

learned representations to exhibit useful properties. During self-learning, input data are
compressed, and data structures are subsequently learned and utilized. The decoder can
be viewed as the reconstruction of HSIs by endmembers and abundances. The abundances
can be estimated via an autoencoder by providing the endmembers as the weight of the
rebuilt layer. Furthermore, the stacked convolutional and activation layers of CNNs can be
interpreted as a nonlinear transformation of the linear function.

2.2. Attention-Based 3D Autoencoder

The spectral dimension is redundant for hyperspectral data. Consequently, we employ
3D convolution to make the extraction of effective features more feasible. The formula is
expressed as follows:

pxyz
l f = λ

(
∑
n

Hk−1

∑
h=0

Wk−1

∑
w=0

Ck−1

∑
d=0

whwd
l f n p(x+h)(y+w)(z+d)

(l−1)n

)
+ bl f (3)

where pxyz
l f is the value at position (x, y, z) on the f th feature map in the lth layer and n is

an index of the sets on the previous (l − 1) layer before that; Hk, Wk and Ck are the kernel’s
height, width and channel, while whwd

l f n is the weight at position (h, w, d) associated with
the f th feature map; b represents the bias and λ stands for the activation function.

We use the hyperspectral cube as input to make sure that both the spatial and spectral
information is considered when estimating the abundance (Figure 1). Assume that a
hyperspectral cube has the dimensions S × S × C, where S represents the size of the spatial
window and C represents the total number of spectral bands. The spatial and spectral
information around the center pixel can be used to estimate the related abundance vector
of the central pixel. Table 1 shows the architecture of the CACAE model. An encoder
with an attention mechanism consisting of four 3D convolutional layers can further filter
the effective channel information of HSIs. In order to implement the non-negativity and
summation constraints [51,52] of HU, we add an NSC layer to the decoder part through
the use of the softmax activation function.
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Figure 1. Diagram of the proposed 3D convolutional neural network.

Table 1. The structure of the CACAE model.

Layers Kernel Filter Activation Feature

3DConv (3, 3, 8) 32 LeakRelu (3, 3, C-7, 32)
3DConv (3, 3, 8) 16 LeakRelu (1, 1, C-14, 16)
3DConv (1, 1, 8) 8 LeakRelu (1, 1, C-21, 8)
3DConv (1, 1, 8) 2 LeakRelu (1, 1, C-28, 2)

Attention
Flatten - - - (C-28) × 2
Dense - 32 LeakRelu 32
Dense - N LeakRelu N
NSC - - softmax N

Dense-3 - C linear C

HSIs contain hundreds of spectral bands, but not all spectral information is useful.
The attention mechanism performs the extraction of the diagnostic spectral features that
are associated with the given endmember by reassigning the weights to the spectral band.
Figure 2 illustrates the suggested module for the channel attention mechanism, which is
described in this section.
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Figure 2. The architecture of the channel attention module.

In the first step, the dimensions of the input feature map must be transformed into
the channel-last form. Then, global average polling is utilized in the process of integrating
and compressing the data of each channel into a one-dimensional vector. The weighted
layer, which represents the importance of the feature map of each channel, is created using
a 1 × 1 convolutional layer and sigmoid activation.

s = g(z, W) = λ(W2δ(W1z)) (4)

in which W1 ∈ R C
r ×C and W2 ∈ RC× C

r . λ and δ are activation functions.

x̃c = scFc (5)
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where X̃ = [x̃1, x̃2, . . . , x̃C] represents the channel-wise multiplication of the vector sc and
the feature map Fc ∈ RH×W .

2.3. Loss Function

The spectral angle distance function (SADF) is employed for an abundance estimation
process that deals with calculating the similarity between the rebuilt spectrum and the
original spectrum. The SADF is defined as follows:

SADF = arccos

(
< V̂j, Vj >∣∣∣∣V̂j
∣∣∣∣2∣∣∣∣Vj

∣∣∣∣
2

)
(6)

where V̂j is the spectrum reconstructed by the model and the Vj is the original input.
Cross-entropy is used in the classification process to measure the discrepancy between

the predicted probability distribution and the actual probability distribution. It shows how
far the actual output is from the expected output. This means that the two probability
distributions are closer when the cross-entropy value is smaller. The equation can be
written as:

L =
1
m ∑

i
Li = −

1
N ∑i ∑

k
c=1 yiclog(pic) (7)

where m is the total number of the sample size, k denotes the number of categories and
yic is an indicator variable that can take on the values 0 or 1 (it takes on the value 1 if the
category c is the same as the category of sample i and it takes on the value 0 otherwise).
Finally, pic represents the predicted probability that the sample i is a member of category c.

3. Materials and Experimental Setup
3.1. Dataset

To test the suggested method, it was applied to two publicly available datasets with
GT. Following is a description of the datasets’ specifics.

3.1.1. Jasper Ridge Dataset

The AVIRIS sensor is responsible for the collection of the Jasper Ridge dataset, which
is now one of the most popular hyperspectral datasets utilized in hyperspectral research.
It features 224 bands ranging from 0.38 to 205 µm and a resolution of 100 by 100 pixels.
There are some bands associated with atmospheric effects that were eliminated. Experi-
mentation was conducted on the remaining 198 bands. The Jasper Ridge data include four
endmembers, namely “Tree”, “Water”, “Soil” and “Road” (Figure 3).

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

 𝑥̃𝑐 = 𝑠𝑐𝐹𝑐 (5) 

where 𝑋̃ = [𝑥̃1, 𝑥̃2, … , 𝑥̃𝐶] represents the channel-wise multiplication of the vector 𝑠𝑐 and 

the feature map 𝐹𝑐 ∈ ℝ𝐻×𝑊. 

2.3. Loss Function 

The spectral angle distance function (SADF) is employed for an abundance estima-

tion process that deals with calculating the similarity between the rebuilt spectrum and 

the original spectrum. The SADF is defined as follows: 

𝑆𝐴𝐷𝐹 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
⟨𝑽̂𝑗,𝑽𝑗⟩

∥∥𝑽̂𝑗∥∥2∥∥𝑽𝑗∥∥2

)   (6) 

where 𝑽̂𝑗 is the spectrum reconstructed by the model and the 𝑽𝑗  is the original input. 

Cross-entropy is used in the classification process to measure the discrepancy be-

tween the predicted probability distribution and the actual probability distribution. It 

shows how far the actual output is from the expected output. This means that the two 

probability distributions are closer when the cross-entropy value is smaller. The equation 

can be written as: 

𝐿 =
1

𝑚
∑  𝑖 𝐿𝑖 = −

1

𝑁
∑  𝑖 ∑  𝑘

𝑐=1 𝑦𝑖𝑐 𝑙𝑜𝑔(𝑝𝑖𝑐)  (7) 

where 𝑚 is the total number of the sample size, 𝑘 denotes the number of categories and 

𝑦𝑖𝑐 is an indicator variable that can take on the values 0 or 1 (it takes on the value 1 if the 

category 𝑐 is the same as the category of sample 𝑖 and it takes on the value 0 otherwise). 

Finally, 𝑝𝑖𝑐 represents the predicted probability that the sample 𝑖 is a member of cate-

gory 𝑐. 

3. Materials and Experimental Setup 

3.1. Dataset 

To test the suggested method, it was applied to two publicly available datasets with 

GT. Following is a description of the datasets’ specifics. 

3.1.1. Jasper Ridge Dataset 

The AVIRIS sensor is responsible for the collection of the Jasper Ridge dataset, which 

is now one of the most popular hyperspectral datasets utilized in hyperspectral research. 

It features 224 bands ranging from 0.38 to 205 μm and a resolution of 100 by 100 pixels. 

There are some bands associated with atmospheric effects that were eliminated. Experi-

mentation was conducted on the remaining 198 bands. The Jasper Ridge data include four 

endmembers, namely “Tree”, “Water”, “Soil” and “Road” (Figure 3). 

 

 
Figure 3. The Jasper Ridge data shown in RGB form and ground truth endmembers.



Remote Sens. 2023, 15, 451 6 of 18

3.1.2. Urban Dataset

Additionally, the Urban dataset is a widely utilized HSI dataset for unmixing research.
It consists of 307 by 307 pixels and 210 bands between 0.4 and 2.5 um. The 48 undesirable
bands were eliminated, leaving 162 bands for experimentation. The data contain six
endmembers, namely “Asphalt”, “Grass”, “Tree”, “Roof” and “Dirt” (Figure 4).
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3.1.3. Shenyang Dataset

The Shenyang dataset was captured in Shenyang, Liaoning Province, China, by a next-
generation Chinese airborne hyperspectral sensor, the airborne multi-modular imaging
spectrometer (AMMIS), which was developed by the Shanghai Institute of Technical Physics
(SITP). The spatial resolution of this dataset is 0.75 m/pixel. In experiments, 190 spectral
bands were used, and the wavelength range was 0.4–0.9 µm [53–55]. The dataset consists
of 651 × 837 pixels and five different ground objects, including “Tree”, “Grass”, “Rice”,
“Corn” and “Bare land”. GT endmembers were manually labeled with reference to the
ground investigations. A visualization image and the spectral curves of the endmembers
in the scene depicted are shown in Figure 5.
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3.2. Experiment Setting

In our experiments, all comparative CNN models used the same data and training
parameter settings as the proposed methods. For Jasper and Urban HSIs datasets, only 10%
of pixels were used for training, and all pixels of the datasets were used for evaluation. For
the Shenyang dataset, we constructed 7 sets of training datasets through random sampling
according to the sampling rates of 10%, 1%, 0.5%, 0.2%, 0.1% and 0.05%, which were used
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to test the robustness of the algorithm under small-sample conditions. During training,
experiments were run in the TensorFlow (2.9.1) environment on an NVIDIA Tesla A100
GPU resource supplied by the HeyWhale data mining platform [56] and optimized using
an adaptive moment estimate technique with an initial learning rate of 0.0005. In order
to avoid overfitting (despite the low number of training data samples), another approach
called dropout with a rate of 0.2 was used. Training consisted of a total of 100 epochs, and
the batch size was 30.

4. Experiments and Analysis
4.1. Comparison Model

To demonstrate the efficacy of the input data and the attention mechanism, we devel-
oped three additional 3DCAE-based models for comparison: PCAE, CCAE and PACAE.
They utilize the same infrastructure as CACAE but differ in specific details. The character-
istic features of CACAE are that its input is a three-dimensional image cube and it utilizes
the attention module. The difference between PACAE and CACAE is that PACAE’s input
is a central pixel rather than an image cube. The main difference between PCAE, CCAE
and CACAE is that the structures of PCAE and CCAE lack an attention module. Table 2
details the differences between the various models.

Table 2. Comparison table of the differences between all 3DCAE-based models.

Model Input Data Attention Basic Model

CACAE Cube Yes 3D-CAE
PACAE Pixel Yes 3D-CAE
PCAE Pixel No 3D-CAE
CCAE Cube No 3D-CAE

In ground object classification, in addition to PACAE, the classic spectral feature analy-
sis methods of SAM and SID are applied as comparative approaches. A traditional machine
learning method for abundance estimation, fully constrained least squares (FCLS) [57],
was also employed to assess the effectiveness of the recommended approach for feature
extraction. In order to further assess the advantages and disadvantages of the suggested
semi-supervised and supervised models, a basic CNN model with a fundamental architec-
ture similar to that of CACAE is presented (Table 3).

Table 3. The structure of the basic CNN model.

Layers Kernel Filter Activation Feature

Conv2D (3, 3) 32 Relu (3, 3, C-7)
Conv2D (3, 3) 16 Relu (1, 1, C-14)
Conv2D (1, 1) 8 Relu (1, 1, C-21)
Conv2D (1, 1) 2 Relu (1, 1, C-28)
Flatten - - - (C-28) × 2
Dense - 32 Relu 32
Dense - N softmax N

4.2. Evaluation

Due to the fact that the method proposed in this paper involves two main processes,
endmember abundance map estimation and hyperspectral classification, a quantitative
evaluation of the two processes is necessary. As mentioned earlier, the higher the accuracy of
endmember abundance map estimation, the more meaningful the extracted spatial–spectral
features are for classification. The RMSE judges the similarity between the predicted
value and the estimated value by measuring their absolute distance, whereas the ASAD
evaluates from the perspective of spectral similarity, with a smaller value indicating a
smaller difference. Both of the aforementioned metrics are appropriate for evaluating the
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gap between the estimated endmember abundance and the ground truth (GT). RMSE and
ASAD are defined as follows:

RMSE =

√
∑ i∈N(APi − ATi)

2

N
(8)

ASAD = cos−1
(

TT P
‖ T ‖‖ P ‖

)
(9)

where N denotes the dataset size, true abundance is represented by T, while predicted
abundance is represented by P.

During the hyperspectral classification process, several regularly adopted classification
accuracy evaluation criteria, including precision, recall, accuracy, F1-score and MIoU, are
used to assess the comparative approaches. A comprehensive analysis of classification
accuracy metrics is presented in [58]. These metrics have the following definitions:

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

OA =
TP + TN

TP + TN + FP + FN
(12)

F =
2

1
Recall +

1
Precision

(13)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(14)

where P, R, F, OA and MIoU represent precision, recall, F1-score, overall accuracy and
mean intersection over union, respectively. TP, TN, FP and FN represent true positive, true
negative, false positive and false negative, respectively, for each class k.

4.3. Abundance Map Estimation

In this section, the presented model is implemented to Jasper Ridge and Urban datasets
for the purposes of quantitative and visual analysis. In this step, the estimated abundances
of each endmember are compared to the corresponding GT. Several 3D-CNN autoencoders
with similar structures are also employed to evaluate the abundance estimation perfor-
mance of the proposed model. Then, classification applications based on abundance results
are carried out, using multiple semi-supervised and supervised models for classification
accuracy comparison.

4.3.1. Abundance Map Estimation for Jasper Ridge Dataset

The estimated abundance and the reference GT abundance for the Jasper Ridge dataset
are shown in Figure 6. At first glance, all algorithms work quite well in this task, indicating
that the 3D-CNN-based autoencoder has great potential for HU. However, through careful
comparison of the estimation error (EE) map, it is not difficult to find that the proposed
method has a superior visual performance when compared to the method that was used
for comparison.
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Table 4, with the best results highlighted in bold, indicates that CACAE has higher
prediction accuracy for most endmembers, with smaller RMSE and ASAD. For water
objects, both CACAE and CCAE achieved good and close estimation results for abundance.
It is worth noting that the performance of the model with HSI cube input is superior to that
with central pixels as the input. In addition, under the assumption of the same input (cube
or pixel), the performance of the attention-based model performs better in most cases, as
evidenced by and highlighted in the Urban dataset.

Table 4. RMSE and ASAD results for all endmembers of the Jasper Ridge dataset (×10−1).

Dataset Endmember Algorithms PCAE CCAE PACAE CACAE

Jasper

Tree
RMSE 0.468 0.422 0.539 0.419
ASAD 0.920 0.836 1.008 0.830

Water
RMSE 1.146 0.831 0.975 0.835
ASAD 1.915 1.365 1.594 1.380

Dirt
RMSE 1.137 0.874 1.051 0.792
ASAD 2.269 2.078 2.332 1.910

Road
RMSE 0.908 0.818 0.763 0.741
ASAD 3.392 3.046 3.392 2.657

Sum
RMSE 0.955 0.759 0.856 0.716
ASAD 2.240 1.773 2.004 1.671

4.3.2. Abundance Map Estimation for Urban Dataset

The Urban dataset, with more endmembers and a larger image size, is considered to
provide a more objective assessment compared to the Jasper Ridge dataset. Figures 7 and 8
show the GT abundance and the estimated abundance, respectively, for the Urban dataset,
for a straightforward visual comparison. When compared to the other 3D-CNN models,
the experimental results show that CACAE achieves better performance, with lower EE
and abundance estimation results that are most similar to the GT. As shown in Figure 8a,e,f,
the performance enhancement achieved by the present work is clearly apparent on the
Asphalt, road, Metal and Dirt EE maps.



Remote Sens. 2023, 15, 451 10 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

Table 4. RMSE and ASAD results for all endmembers of the Jasper Ridge dataset (×10−1). 

Dataset Endmember Algorithms PCAE CCAE PACAE CACAE 

Jasper 

Tree 
RMSE 0.468 0.422 0.539 0.419  

ASAD 0.920 0.836 1.008 0.830 

Water 
RMSE 1.146 0.831 0.975 0.835 

ASAD 1.915 1.365 1.594 1.380 

Dirt 
RMSE 1.137 0.874 1.051 0.792 

ASAD 2.269 2.078 2.332 1.910 

Road 
RMSE 0.908 0.818 0.763 0.741 

ASAD 3.392 3.046 3.392 2.657 

Sum 
RMSE 0.955 0.759 0.856 0.716 

ASAD 2.240 1.773 2.004 1.671 

4.3.2. Abundance Map Estimation for Urban Dataset 

The Urban dataset, with more endmembers and a larger image size, is considered to 

provide a more objective assessment compared to the Jasper Ridge dataset. Figures 7 and 

8 show the GT abundance and the estimated abundance, respectively, for the Urban da-

taset, for a straightforward visual comparison. When compared to the other 3D-CNN 

models, the experimental results show that CACAE achieves better performance, with 

lower EE and abundance estimation results that are most similar to the GT. As shown in 

Figure 8a,e,f, the performance enhancement achieved by the present work is clearly ap-

parent on the Asphalt, road, Metal and Dirt EE maps. 

 

Figure 7. Abundance maps estimated by CACAE and the true abundance maps from the Urban 

dataset. (a) Asphalt; (b) Grass; (c) Tree; (d) Roof; (e) Metal; (f) Dirt.  
Figure 7. Abundance maps estimated by CACAE and the true abundance maps from the Urban
dataset. (a) Asphalt; (b) Grass; (c) Tree; (d) Roof; (e) Metal; (f) Dirt.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 8. Absolute difference from the abundance of the Urban dataset estimated by different meth-

ods. . (a) Asphalt; (b) Grass; (c) Tree; (d) Roof; (e) Metal; (f) Dirt. . 

Table 5 reports the RMSE and ASAD of each endmember for the Urban dataset. It 

shows that CACAE has the lowest estimation error according to the RMSE and ASAD 

values for all endmembers, with values of 0.83 × 10−1 and 2.50 × 10−1, respectively. Once 

again, the attention-based model still outperforms the others. Additionally, it is observed 

that the models that take the HIS cube as input lead to better results in most cases. 

Table 5. RMSE and ASAD results for all endmembers of the Urban dataset (×10−1). 

Dataset Endmember Algorithms PCAE CCAE PACAE CACAE 

Urban 

Road 
RMSE 1.694 1.243 1.667 1.017 

ASAD 4.189 3.256 4.108 2.711 

Grass 
RMSE 1.456 1.071 1.136 0.981 

ASAD 2.805 2.162 2.183 1.980 

Tree 
RMSE 1.038 0.881 0.872 0.833 

ASAD 2.482 2.123 2.099 2.006 

Roof 
RMSE 0.538 0.469 0.459 0.450 

ASAD 2.463 2.171 2.143 2.100 

Metal 
RMSE 1.166 0.743 0.753 0.536 

ASAD 9.485 5.575 6.002 3.780 

Dirt 
RMSE 1.347 1.117 1.569 0.977 

ASAD 4.538 3.361 3.771 2.760 

Sum 
RMSE 1.260 0.956 1.160 0.830 

ASAD 3.850 2.893 3.532 2.503 

  

Figure 8. Absolute difference from the abundance of the Urban dataset estimated by different
methods. (a) Asphalt; (b) Grass; (c) Tree; (d) Roof; (e) Metal; (f) Dirt.

Table 5 reports the RMSE and ASAD of each endmember for the Urban dataset. It
shows that CACAE has the lowest estimation error according to the RMSE and ASAD
values for all endmembers, with values of 0.83 × 10−1 and 2.50 × 10−1, respectively. Once
again, the attention-based model still outperforms the others. Additionally, it is observed
that the models that take the HIS cube as input lead to better results in most cases.
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Table 5. RMSE and ASAD results for all endmembers of the Urban dataset (×10−1).

Dataset Endmember Algorithms PCAE CCAE PACAE CACAE

Urban

Road
RMSE 1.694 1.243 1.667 1.017
ASAD 4.189 3.256 4.108 2.711

Grass
RMSE 1.456 1.071 1.136 0.981
ASAD 2.805 2.162 2.183 1.980

Tree
RMSE 1.038 0.881 0.872 0.833
ASAD 2.482 2.123 2.099 2.006

Roof
RMSE 0.538 0.469 0.459 0.450
ASAD 2.463 2.171 2.143 2.100

Metal
RMSE 1.166 0.743 0.753 0.536
ASAD 9.485 5.575 6.002 3.780

Dirt
RMSE 1.347 1.117 1.569 0.977
ASAD 4.538 3.361 3.771 2.760

Sum
RMSE 1.260 0.956 1.160 0.830
ASAD 3.850 2.893 3.532 2.503

4.4. Classification

In this section, classification applications based on abundance results are carried out,
using multiple semi-supervised and supervised models for classification accuracy comparison.

4.4.1. Ground Object Classification for Urban Dataset

Feature extraction is crucial for hyperspectral analysis. Over the past few years, as a
result of the practical learning capabilities of CNNs, end-to-end supervised deep learning
models have shown very competitive results in hyperspectral classification. However, since
hyperspectral classification is a small-sample problem in most cases, the application of
supervised classification is more labor-intensive and prone to overfitting. The endmember
abundance obtained through HU has become an effective spatial–spectral feature source for
semi-supervised classification. The semi-supervised classification process recommended in
this paper is shown in Figure 9.
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Based on the encoder of CACAE, trained through self-supervised learning, the Urban
dataset is predicted to obtain its abundance estimation map. Then, we use a traditional



Remote Sens. 2023, 15, 451 12 of 18

classifier to calculate the maximum abundance in each abundance feature category as the
label of the classification result. Comparative experiments are performed on the classic
semi-supervised and supervised methods (Figure 10). The figure demonstrates that the
CNN-based method has visual performance comparable to the conventional method but is
improved greatly. There are obvious misclassifications in the SID results. FCLS has poor
classification performance due to inaccurate abundance estimation. SAM is slightly better
than the former two methods but misclassifies the Soil and Metal categories more seriously.
It is clear from careful observation that the visual effects of PACAE and CACAE are more
accurate than the basic CNN model.
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Figure 10. The classification results for the Urban dataset by different methods. (a) Original HSI in
RGB format; (b) SID; (c) FCLS; (d) SAM; (e) CNN; (f) PACAE; (g) CACAE; (h) Ground Truth.

Table 6 records the quantitative evaluation results of all six models. The results reveal
that the proposed method CACAE achieves the best outcomes across all metrics, and is
slightly higher than the PACAE model, indicating that using image cubes as input data can
provide rich spectral–spatial information that is more conductive to abundance estimation
and classification. It is noticed that, in the case of 1/10 sample data, the accuracy of
the proposed semi-supervised classification methods outperforms that of the CNN-based
supervised classification model. Furthermore, the MIoU metrics have improved by nearly
7%, indicating that the proposed method has better performance under the conditions of
relatively sufficient samples.

Table 6. Quantitative analysis of prediction results on the Urban dataset.

Methods Precision Recall OA MIoU F1-Score

SID 0.51 0.67 0.63 0.40 0.54
FCLS 0.62 0.80 0.75 0.51 0.66
SAM 0.85 0.81 0.83 0.68 0.80
CNN 0.84 0.86 0.90 0.75 0.85

PACAE 0.89 0.88 0.90 0.80 0.88
CACAE 0.91 0.89 0.92 0.82 0.90
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4.4.2. Ground Object Classification for Shenyang Dataset

To further analyze the benefits of the proposed method for few-shot hyperspectral
classification, we employ a real hyperspectral dataset from Shenyang, acquired by the
airborne hyperspectral sensor AMMIS, for testing purposes. In the experiment, the clas-
sification performances of supervised classification methods (Basic-CNN and SVM) and
semi-supervised classification methods (CACAE and PACAE) were compared at various
sampling rates. In the supervised classification method, the performance of Basic-CNN is
superior to that of the traditional machine learning method SVM, particularly under the
condition of relatively sufficient samples, but both are controlled by the sample size, which
is consistent with our prior knowledge (Figure 11). The superior performance of CACAE
and PACAE proposed in this paper (Table 7) validates the earlier conclusion. In addition,
their performance did not degrade significantly as the sampling rate decreased, suggesting
that the proposed method is more robust. The MIoU value of the CACAE drops by only
1.7% when the sampling rate is decreased from 1/10 to 1/2000.
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Table 7. Comparison table of MIoU predicted by all models at different sampling rates.

Methods
MIoU at Different Sample Rates

Mean
1/2000 1/1000 1/500 1/200 1/100 1/50 1/10

SVM 0.659 0.683 0.701 0.726 0.751 0.801 0.848 0.752
Basic-CNN 0.665 0.687 0.750 0.739 0.795 0.843 0.893 0.784

PACAE 0.874 0.873 0.880 0.883 0.887 0.890 0.890 0.884
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Figure 12 illustrates the classification outcomes predicted by each of the four methods
at varying sampling rates. It is evident that the prediction results of CACAE and PACAE
are essentially unaffected by the sampling rate, and that the overall results are relatively
consistent with the GT. With a higher sampling rate, the supervised classification method
is more competitive, but as the sample size decreases, errors and omissions gradually
appear, resulting in a decline in classification performance. Since CACAE uses more spatial
information as input, the classification results are smoother and less noisy than those of
other methods.
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5. Conclusions

In this contribution, we present a new semi-supervised pipeline for few-shot hyperspec-
tral classification, where endmember abundance maps obtained by HU are treated as latent
features for classification. It includes two main processes. First, it uses 3D-CNN to build a
self-supervised learning model and realizes the non-negativity and summation constraints
through the NSC layer and realizes the extraction of endmember abundance information
with given endmembers. Secondly, the abundance map can be treated as a diagnostic
spatial–spectral feature, enabling claffication with only a small number of samples.

The first experiment is designed to verify the effectiveness of the proposed model
for abundance map extraction. In this experiment, the performance of CACAE and other
3D-CNN methods (including PCAE, CCAE and PACAE) for HU is assessed (Section 4.3).
The results suggest that the proposed model is capable of accurately estimating the abun-
dance map of a given endmember with the lowest RMSE and ASAD. Additionally, the
two strategies of utilizing the attention mechanism and taking an image cube as input are
useful for improving the estimation accuracy. The second experiment tests the performance
of proposed methods and other algorithms (including SID, FCLS, SAM, Basic-CNN and
PACAE) for HSI classification (Section 4.4.1). The experimental results demonstrated that
the performance of the proposed model not only outperformed traditional unsupervised
and semi-supervised classification methods but also exceeded that of CNN-based super-
vised classification models, even when samples were relatively sufficient. It also illustrates
the effectiveness of the abundance maps for HSI classification. The last experiment is
designed to assess the robustness of the proposed model with a small sample size. The
traditional machine learning algorithms SVM and Basic-CNN are employed as comparison
models (Section 4.4.2). The proposed model shows advantages over the supervised classi-
fication model at all levels of sampling rates and shows stable and robust characteristics
such that the model’s performance is not restricted by the number of samples. These three
experiments fully prove the potential of the proposed method in few-shot classification.

The advantage of the proposed method is that it combines a 3D-CNN with HU
theory and uses the estimated endmember abundance as the input diagnostic feature for
classification, which effectively improves the classification accuracy and robustness of
the model. Because sufficient data are required to train a model with a large number of
parameters, which tends to result in overfitting problems with small sample sizes, the
suggested model employs a lightweight architecture design. The CNN model used for
comparison also uses a similar backbone structure to make the comparison more fair and
to avoid the difference in network structure affecting the reliability of the experiment.

The primary limitation of this method is that it is still dependent on the precision of
the given endmembers. Although there are methods such as N-FINDR and VCA that can
estimate endmembers, there is still room for improvement in accuracy. On the other hand,
however, the current loss design makes it difficult to distinguish targets with very small
spectral differences. Future research will focus on utilizing the autoencoder network for
unsupervised endmember abundance estimation and developing a new loss function for
more accurate classification. The hyperspectral datasets used in this paper and example
code are available in the GitHub repository via https://github.com/lichunyu123/3DCAE_
Hyper (accessed on 1 December 2022).
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