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Abstract: There are a variety of land cover products generated from remote-sensing images. However,
misclassification errors in individual products and inconsistency among them undermine their utili-
ties for research and other applications. While it is worth developing advanced pattern classifiers and
utilizing the images of finer spatial, temporal, and/or spectral resolution for increased classification
accuracy, it is also sensible to increase map classification accuracy through effective map fusion by
exploiting complementarity among multi-source products over a study area. This paper presents a
novel fusion method that works by weighting multiple source products based on their map-reference
cover type transition probabilities, which are predicted using random forest for individual map pixels.
The proposed method was tested and compared with three alternatives: consensus-based weighting,
random forest, and locally modified Dempster–Shafer evidential reasoning, in a case study, over
Shaanxi province, China. For this case study, three types of land cover products (GlobeLand30,
FROM-GLC, and GLC_FCS30) of two nominal years (2010 and 2020) were used as the base maps
for fusion. Reference sample data for model training and testing were collected following a robust
stratified random sampling design that allows for augmenting reference data flexibly. Accuracy
assessments show that overall accuracies (OAs) of fused land cover maps have been improved (1~9%
in OAs), with the proposed method outperforming other methods by 2~8% in OAs. The proposed
method does not need to have the base products’ classification systems harmonized beforehand, thus
being robust and highly recommendable for fusing land cover products.

Keywords: land cover; fusion; transition probability; error matrix; augmented sampling; accuracy;
reference classification

1. Introduction

Land cover is an important descriptor of the Earth’s surface and one of the key
variables for various research and applications. A variety of land cover products, such
as the International Geosphere-Biosphere Program Data and Information System’s land
cover (IGBP DISCover) data product [1], the Global Land Cover 2000 (GLC2000) [2], and
the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type product
MCD12Q1 [3] are generated from remote-sensing images of medium spatial resolution.
In recent years, products with finer spatial resolution have also been produced based on
Landsat series or Sentinel-2 images [4–6].

Although land cover products are often produced by applying advanced classifiers
and following sophisticated protocols, their thematic accuracies may be inadequate for
certain applications. There also exist semantic inconsistencies among multiple products.
Accuracy assessment and consistency analysis have been the topics of continuing research
(e.g., [7,8]).

For increasing accuracy, the fusion of multiple land cover products may be pursued.
This aims for the harmonization and synthesis of multiple land cover maps to produce

Remote Sens. 2023, 15, 481. https://doi.org/10.3390/rs15020481 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020481
https://doi.org/10.3390/rs15020481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9769-4277
https://orcid.org/0000-0001-6101-2070
https://doi.org/10.3390/rs15020481
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020481?type=check_update&version=1


Remote Sens. 2023, 15, 481 2 of 23

maps of improved accuracy and usability through the exploration of synergies between
source products, which usually differ in spatial resolution, classification schemes, and
accuracies among other things. We review some of the methods developed so far for
fusing multiple land cover products, including direct association, more sophisticated
harmonization, regression modeling, Dempster–Shafer evidence theory, and accuracy-
based weighting to illuminate the motivations, novelty, and focus of this research.

A method was developed to merge existing products into a desired classification
legend [9]. It follows the idea of convergence of evidence and generates a ‘best-estimate’
dataset using fuzzy agreement. The method was applied to develop a new joint 1-km
global land cover product (SYNMAP) with improved characteristics for land cover parame-
terization of the carbon cycle models in a European model intercomparison initiative of
three global vegetation models: BIOME-BGC, LPJ, and ORCHIDEE. A key feature of the
SYNMAP legend is that all classes are properly defined in terms of plant functional type
mixtures, which can be remotely sensed and include the definitions of the leaf type and
longevity for each class with a tree component.

A general framework was proposed for building a hybrid land cover map using the
synergistic combination of a number of land cover classifications with different legends
and spatial resolutions [10]. As in previous studies [11], all the legends (CORINE, GLC2000,
MODIS, and GlobCover) were compared in the context of the UN Land Cover Classification
System (LCCS) instead of performing a direct association among them [12]. This allowed for
a number of criteria mostly used in classification systems to be examined. The methodology
includes three main phases: (1) translation of legends into LCCS and definition of a set
of attributes, (2) calculation of an overlap metric, and (3) calculation of the affinity scores
(between the target labels and the assessed labels for individual products in a pixel x). The
choice of the hybrid label is therefore made according to the weighted vote for each target
class, with the weight being the conditional probabilities that pixel x belongs to target
categories given the map class labels at pixel x by individual products.

A harmonization procedure was implemented using Latent Dirichlet Allocation (LDA)
modeling [13]. The LDA model was based on the regionalized class co-occurrences from
multiple maps to output harmonized class labels at individual pixels by statistically charac-
terizing land attributes from the aforementioned class co-occurrences. Multiple harmoniza-
tion approaches were evaluated [13]: LDA modeling alone and those in combination with
error matrices and semantic affinity scores. The results were compared with the benchmark
maps generated using simple legend crosswalks showing that using LDA outputs with
error matrices performed better, with the harmonized map overall accuracy increased by
6–19% for areas of disagreement between the source maps.

A semi-automatic method was devised to generate two hybrid and static agricultural
masks—one for cropland and another for grassland, at the 250 m spatial resolution for the
nominal year 2016, based on multi-criteria analysis (MCA), complemented with manual
fine-tuning using the best-rated datasets [14]. Following a comprehensive selection of
land cover maps, each dataset was evaluated at the country level according to five criteria:
timeliness, spatial resolution, comparison with FAO statistics, accuracy assessment, and
expert evaluation. Through sensitivity analysis the impact of weight settings on the
resulting land cover was evaluated. The proposed methodology [14] improved agricultural
characterization in Africa.

The methods reviewed so far are mostly based on the quantifying votes of source map
class labels on harmonized class labels by using direct association, affinity scores, error
matrices, LDA, and MCA, combined with manual fine tuning. Another group of methods
for fusion is regression modeling, as reviewed below.

Logistic regression has been used to integrate six existing global land cover maps [15],
whereby 2100 ground truth data points were randomly selected as training data. For each
training point, they calculated the frequency with which the land cover types used in
the six original maps applied to each of the six target types (of ground truth data) was
computed. The scores (probabilities of occurrences) of target classes for a land cover map
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were calculated and used as explanatory variables, with the ground truth data used as
endogenous variables. It was found that the accuracy of the resultant harmonized map is
74.6%, being 3% higher than for existing maps. A 0.5-min latitude by 0.5-min longitude
probability map was also created, indicating the probability of agreement between the class
of the new map and the truth data. Using the map, it was found that the probabilities of
cropland and grassland are relatively low compared with other land cover types because
the definitions of cropland differ between maps. Thus, accuracy may be improved by
including pasture and idle plot categories.

Geographically weighted regression (GWR) and crowdsourced validation data from
Geo-Wiki were used to create two hybrid global land cover maps based on medium
resolution land cover products [16]. Two different methods were used: (1) the GWR was
used to determine the best land cover product at each location, and (2) the GWR was only
used to determine the best land cover at those locations where all three land cover maps
disagree, using the agreement of the land cover maps to determine land cover at the other
cells. GWR estimates model parameters at each geographical location by using a kernel,
with the observations weighted by distance. Logistic regression was used to calculate the
probability of correspondence between the validation data and the global datasets at each
pixel of a 300 m grid.

Using a reference dataset and four land cover products (Globcover-2009, Land Cover-
CCI-2010, MODIS-2010, and Globeland30) for Africa, five LC map integration methods were
tested and cross-validated [17]. Comparison of the spatial correspondences showed that the
preferences for land cover maps varied spatially. Integration methods using both the maps
and reference data at their locations resulted in a 4.5–13% higher correspondence with the
reference classification than any of the input maps. An integrated land cover map and class
probability maps were computed using regression kriging, which produced the highest
correspondence (76%). The general trend of probabilities of cover types’ presence were
predicted using a multinomial logistic (MNL) regression model. These were locally adjusted
by interpolating the indicator residuals using simple kriging. A regression kriging method
was also used to integrate Globcover-2009, LC-CCI-2010, MODIS-2010, and Globeland30
maps and several publicly available reference datasets [18]. Overall correspondence of
the integrated map with reference data was 80% based on a 10-fold cross-validation using
24,681 sample sites. This is globally 10% and regionally 6–13% higher than correspondences
among the input maps.

Some of the most commonly-used methods to develop a hybrid forest cover map by
combining available land cover/forest products and crowdsourced data on forest cover
obtained through the Geo-Wiki project were compared empirically [19]. The methods
compared include: nearest neighbor, naive Bayes, logistic regression, geographically-
weighted logistic regression (GWR), and classification and regression trees (CART). The
comparison experiments were carried out using two data types: the presence/absence of
forest in a grid cell and the percentage of forest cover in a grid cell. In general, there was
little difference between the methods. However, GWR was found to perform better than
the other tested methods in areas with high disagreement between the inputs.

The Dempster–Shafer theory of evidence also provides a framework for fusing mul-
tiple land cover products. For example, to integrate five different products in China, at
a 1 km resolution, evidence theory was applied [20], with the quantity of evidence com-
puted via literature reviews and analyses of correlation between map classes from different
classification systems.

As another example for evidence-based map fusion, an improved global land cover
map for 2015 at a 30 m resolution was developed by fusing multiple existing land cover
products [21]. Firstly, more than 160,000 global point-based samples were used to locally
evaluate the reliability of the input products for each class within each 4◦ × 4◦ geographical
grid for the establishment of the basic probability assignment (BPA) function. Then, the
Dempster’s rule of combination was used for each 30 m pixel to derive the combined
probability mass of each possible land cover class. Finally, each pixel was determined
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with a land cover class based on a decision rule. Results indicate that in the areas of
inconsistency, accuracy gains in the range of 17.6–23.2% in areas of moderate inconsistency,
and 21.0–25.2% in areas of high inconsistency.

A land cover map 2015 for China was generated from multiple source products using
the theory of evidence and knowledge rule optimization [22]. The results showed the
aforementioned method can reduce the disagreement between input data. The fused map
attained a classification accuracy comparable to that of the China land use map (CNLULC),
which was based on visual image interpretation, while having more thematic detail (i.e.,
more land cover classes). Compared with Geo-Wiki observations in 2015, the overall
accuracy (OA) of the fused map is higher than the other two global land cover data.

The fourth kind of method for fusion is hereby called accuracy weighting. A global
consensus land cover product with a 1 km resolution was generated using accuracy weight-
ing [23]. Land cover classes of the consensus product at pixels with inconsistent map
classes were selected as being those registering the maximum accuracy-weighted average
of class memberships/proportions. The accuracies were estimated from the error matrices
of different base products. It was confirmed that the fusion process should be selectively
applied on heterogeneous pixels with users’ accuracies (UAs) being used for weighting in
map fusion.

Four cropland products, produced initially from multiple sensors (e.g., Landsat-8 OLI,
Sentinel-2 MSI, and PROBA–V) to cover the period (2015–2017), were integrated based
on their cropland mapping accuracy to build a more accurate cropland layer [24]. The
four cropland layers’ accuracy was assessed at agro-ecological zones units via an intensive
reference dataset (17,592 samples). The most accurate cropland layer was then identified
for each zone to construct the final cropland mask at a 30 m resolution for the nominal year
of 2016 over Africa. As a result, the new layer was produced in higher cropland mapping
accuracy (OA = 91.64% and cropland’s F-score = 0.75).

This paper presents a novel method for fusing multiple source (base) land cover prod-
ucts into a new product based on their map-reference cover type transition probabilities.
These transition probabilities are predicted locally through random forest (RF), a machine
learning approach, and serve as the basis for weighting source products. The main hy-
potheses underlying this research are: (1) transition probabilities provide fuller information
about map-reference cover type transitions, not just classification correctness as measured
by UAs in method CON, and (2) with properly estimated local transition probabilities, the
proposed method TP is expected to outperform alternative methods.

2. Materials and Methods
2.1. Study Area and Datasets

Shaanxi province, located in the middle-west of China (105◦29′~111◦15′E, 31◦42′~39◦35′N),
is the study area of the research. The total area of Shaanxi province is approximately 205,600
km2. The land cover products listed below (GlobeLand30, FROM-GLC, and GLC_FCS30)
are the base products we applied for fusion. The major land cover classes of the study
area are forest, cultivated land, and grassland, according to the base products. Figure 1a,b
shows base products in study area for 2010 and 2020, respectively.
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Figure 1. The base land cover maps of Shaanxi province, China, in 2010 (a) and 2020 (b).

GlobeLand30 (http://www.globallandcover.com/home_en.html (accessed on 10 Jan-
uary 2023)) is a 30 m spatial resolution global land cover product with three versions
developed by the National Geomatics Center of China (version 2000 and 2010) and the
Ministry of Natural Resources of China (version 2020) [25]. The classification system of
GlobeLand30 includes ten level I land cover classes (i.e., cultivated land, forest, grassland,
shrubland, wetland, water bodies, tundra, artificial surfaces, bare land, and permanent
snow and ice) [25]. There are eight level I land cover classes in the study area (except tundra
and permanent snow and ice). In this study, GlobeLand30 was taken as the baseline for
quality comparison, and its classification system was used as the classification system of
interpretation.

FROM-GLC (Fine Resolution Observation and Monitoring of Global Land Cover)
(http://data.ess.tsinghua.edu.cn/ (accessed on 10 January 2023)) is a global land cover
product derived from Landsat series sensors. In its early version, the spatial resolution

http://www.globallandcover.com/home_en.html
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of FROM-GLC was 30 m [26]. However, Sentinel-2 images based FROM-GLC 2017v1 is
a 10 m resolution global land cover product [27]. By majority voting, we resampled the
FROM-GLC 2017v1 to 30 m in the study area. We used FROM-GLC 2017v1 as a substitute
for nominal year 2020.

GLC_FCS30 (https://data.casearth.cn/en/ (accessed on 10 January 2023)) is a global
land cover product with a 30 m spatial resolution and a fine classification system that
contains 29 land cover classes [5]. Like GlobeLand30 and the early version of FROM-GLC,
Landsat TM/ETM+ images were the data source of GLC_FCS30.

Basic information about the three products employed in this research, including
classification systems, spatial resolution, data sources, and classification approaches, can
be found in [5,25–27]. The number of labels, or the number of classes of the classification
systems, was defined by producers. The resolution of the GlobeLand30 and GLC-FCS30
land cover maps is the same as the resolution of Landsat series TM images (i.e., 30 m) used
in map production, while the resolution of FROM-GLC 2017v1 is 10 m, the same as its data
source, the Sentinel-2 images. The classification approaches of the three base products are
rather different. With respect to the classifiers used, the classifier used for GlobaLand30
and FROM_GLC was SVM, and the classifier applied in GLC-FCS30 was RF. More details
about the classification processes of base products are given in the references listed above.

Before fusing base products, different classification systems need to be harmonized in
the study area for accuracy assessments, although it is not a prerequisite for map fusion by
the proposed method, as mentioned in the introduction section. We selected GlobeLand30′s
classification system as the default classification system and converted other land cover
products to the default classification system in the study area. The mapping of the land
cover classes among the different land cover products is shown in Table 1 below.

Table 1. Relating base products’ classification systems. Column “Code” in the table is the integer
defined to encode class labels in the LC products concerned.

Globeland30 Classes Code FROM_GLC Classes Code GLC_FCS30 Classes Code

Cultivated land 10 Cropland 10
Rainfed cropland 10
Herbaceous cover 11
Irrigated cropland 20

Forest 20 Forest 20

Open evergreen broadleaved forest 51
Closed evergreen broadleaved forest 52
Open deciduous broadleaved forest 61

Closed deciduous broadleaved forest 62
Open evergreen needle-leaved forest 71

Closed evergreen needle-leaved forest 72
Open deciduous needle-leaved forest 81

Closed deciduous needle-leaved forest 82
Grassland 30 Grass 30 Grassland 130

Shrubland 40 Shrub 40
Shrubland 120

Evergreen shrubland 121
Deciduous shrubland 122

Wetland 50 Wetland 50 Wetlands 180
Water bodies 60 Water 60 Water body 210

Artificial surfaces 80 Impervious 80 Impervious surfaces 190

Bare land 90 Bareland 90
Sparse vegetation 150

Bare areas 200
Unconsolidated bare areas 202

2.2. Augmented Sampling and Accuracy Assessment

Samples are collections of individual sample units (i.e., pixels) for modeling and
accuracy assessment. As recommended for accuracy assessment [28], we applied stratified
random sampling design. Different land cover or land cover change classes are defined
as individual strata in conventional stratified random sampling to reduce the estimation
variance. Furthermore, setting a minimum stratum sample size guarantees sufficient
sample units for rare classes.

To reduce the workload of interpretation, we applied an augmented sampling design,
which helped to adjust the sample size of each stratum without violating the principles
of the stratified sampling. In augmented sampling design, the final sample set (for a base
product) consists of two subsets: the initial baseline sample subset and the augmented

https://data.casearth.cn/en/
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sample subset. The initial baseline subset is shared for all base products but augmented
subsets are separate for individual base products. The initial baseline sample units were
allocated to different cross-strata, defined by both climatic regions and land cover classes.
We adjusted the sample size of each cross-strata to keep the inclusion probabilities of
sample units from different cross-strata with the same land cover class equal. Some units
in the initial baseline sample subset may be randomly removed and some new units need
to be randomly added to augmented sample subsets. Therefore, most of sample units
in the initial baseline sample subset were shared for different base products in the same
year. More details about augmented sampling and sample size adjustment can be found
in Appendix A. We list the sample size allocation of the six training samples and six test
samples (for three base products in two nominal years) after adjustment in Table 2.

Table 2. Allocation of training sample size to strata of individual base products. Test sample sizes are
shown in parentheses.

Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land Total

Globeland30
2010 143 (143) 202 (201) 115 (115) 51 (50) 50 (50) 51 (50) 52 (52) 51 (51) 715 (712)
2020 138 (138) 199 (199) 112 (112) 51 (50) 50 (50) 51 (50) 54 (53) 51 (51) 706 (703)

GLC_FCS30 2010 123 (123) 209 (208) 121 (121) 51 (51) 50 (50) 51 (50) 52 (51) 51 (51) 708 (705)
2020 117 (116) 210 (210) 119 (118) 52 (51) 50 (50) 51 (50) 54 (53) 51 (51) 704 (699)

FROM-
GLC

2010 229 (228) 208 (207) 54 (53) 51 (50) 50 (50) 51 (50) 52 (52) 50 (50) 745 (740)
2020 137 (136) 217 (216) 64 (64) 51 (50) 50 (50) 51 (50) 55 (54) 60 (59) 685 (679)

Accuracy measures, such as OA, UA, and PA, were estimated following the methods
detailed in Appendix A. To estimate OA, we defined an indicator y(u) that donates the
correctness of the classification at unit (pixel) u. OA, the population mean of y, can be
estimated via the indicators of the sample units y(u) and their inclusion probabilities π(u).
The estimation of UA and PA requires another indicator x(u). By modifying the definitions
of x(u), UA and PA can be estimated via the ratio estimator, as described in Appendix A.

2.3. Methods for Multiple Land Cover Product Fusion
2.3.1. Weighting by Localized Map-Reference Cover Type Transition Probabilities (TP)

We propose a method for product fusion using per-pixel map-reference cover type
transition probabilities for weighting the source products (thus the method is named TP).
By method TP, the probabilities of the land cover class j = 1, 2, . . . , I at pixel x are calculated:

prob(x)j =
1
M

M

∑
m=1

I

∑
i=1

a(x)mi p(x)mij (1)

where M = 3 is the number of the base products, a(x)mi is the areal proportions of map
class i (i.e., probability of map class i), and p(x)mij is the transition probability (conditional
probability) that the reference class is j given the map class is i, with x indicating a pixel
being analyzed and m indicating a product incorporated for fusion. The areal proportion
a(x)mi can be treated as the ith row sum of the base product m from the perspective of a
localized error matrix at x. Therefore, the production a(x)mi p(x)mij can be viewed as the ith
row and the jth column cell of the aforementioned localized error matrix at pixel x. When
a(x)mi and p(x)mij refer to the statistics estimated over map m as a whole, we have the
consensus method of Tuanmu and Jetz [23] (named CON).

The per-pixel transition probability that each reference class occurs given a map class is
predicted using random forest (RF). For this, there were three types of explanatory variables:
map classifications, local landscape indices, and terrain variables. Map classes were the land
cover class labels extracted from each base product at the reference sample pixels. Local
landscape indices were typical landscape indices, including homogeneity, heterogeneity,
entropy, dominance, and contagion, computed in the local moving windows whose sizes
were odds varied from 3× 3 to 11× 11 [29]. Terrain variables derived from digital elevation
model (DEM), such as the elevation, aspect, and slope, are also incorporated as explanatory
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variables for modeling. We used the Shuttle Radar Topography Mission (SRTM) DEMs
(30 m resolution) (https://earthexplorer.usgs.gov (accessed on 10 January 2023)) to derive
terrain variables. Models were built with explanatory variables mentioned above. Note
that elevation, slope, and aspect were shared for all models. The training sample was
divided into different subsets (strata) based on the map class.

2.3.2. Random Forest-Based Modeling (RF)

Using this method, reference class occurrences are modeled using reference classifica-
tions in reference sample data as response variables and input source map classifications as
explanatory variables. Specifically, the explanatory variables include map classifications,
local landscape indices computed from map classifications, and terrain variables. We built
RF models and fused three land cover products for both 2010 and 2020, using R package:
randomForest [30].

2.3.3. Modified Dempster–Shafer (D-S) Method

With this method [20], the frame of discernment θ = {C1, C2, . . . , CI} corresponded to
all candidate land cover classes defined in the classification system. The mass functions
(termed basic probability assignment, BPA) were subjected to the flowing conditions: mj(φ; x) = 0

∑
Ci⊆θ

mj(Ci; x) = 1 . (2)

where j = 1, 2, 3 denotes the models corresponding to three different products.
The mass functions in Equation (2) measure the evidence that a pixel belongs to classes

Ci’s at location x. They were predicted by the RF models built with the reference sample
data, as described in Section 2.3.1.

Through the Dempster rule of combination, the sum of all masses was the orthogonal
sum of the three mass functions and calculated via:

m1
⊕

m2
⊕

m3(C) =
1
K ∑

C1∩C2∩C3=C
m1(C1)m2(C2)m3(C3) (3)

and:
K = ∑

C1∩C2∩C3 6=∅
m1(C1)m2(C2)m3(C3) (4)

is a normalization factor. As mj(φ; x), the mass function, is localized, the orthogonal sum
was computed locally using R package: EvCombR [31].

Figure 2 shows the flowchart of the general fusion process of the study. The first step
is sampling design. We applied an augmented sampling design to select both training
samples and test samples. We applied four different methods, including RF, DS, CON, and
TP, to fuse multiple land cover products. In the accuracy assessment procedure, accuracy
measures were estimated based on test samples for evaluating fusion methods.

https://earthexplorer.usgs.gov
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Figure 2. The flowchart of fusion process of the multiple land cover products.

3. Results
3.1. Accuracy Assessment of Base Land Cover Products

Based on the six test samples (shown in Table 2), we assessed the accuracies of all
base products used in this research. The error matrices are listed in Tables 3, 5, A2, A4, A6
and A7 in Appendix B. All figures in the error matrices are reported in percentages, i.e.,
the area proportions of the study area. We summarized UAs and OAs of base products for
2010 and 2020 in Tables 3 and 4, respectively, where SEs are indicated in parentheses.

Table 3. UAs and OAs of base products for 2010.

UA(SE) (%) OA(SE) (%)

Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

GlobeLand30 79.72 (3.37) 92.54 (1.86) 60.00 (4.59) 46.00 (7.12) 44.00 (7.09) 82.00 (5.49) 61.54 (6.81) 62.75 (6.84) 80.80 (1.65)
GLC_FCS30 74.80 (3.93) 91.83 (1.90) 44.63 (4.54) 66.67 (6.67) 44.00 (7.09) 96.00 (2.80) 86.27 (4.87) 43.14 (7.00) 75.33 (1.71)
FROM-GLC 46.05 (3.31) 91.30 (1.96) 50.94 (6.93) 52.00 (7.14) 58.00 (7.05) 82.00 (5.49) 50.00 (7.00) 72.00 (6.41) 68.12 (1.78)

Table 4. UAs and OAs of base products for 2020.

UA(SE) (%) OA(SE) (%)

Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

GlobeLand30 74.64 (3.72) 92.46 (1.88) 55.36 (4.72) 50.00 (7.14) 56.00 (7.09) 78.00 (5.92) 66.04 (6.57) 74.51 (6.16) 78.41 (1.72)
GLC_FCS30 76.72 (3.94) 91.90 (1.89) 59.32 (4.54) 47.06 (7.06) 40.00 (7.00) 98.00 (2.00) 86.79 (4.70) 43.14 (7.00) 79.41 (1.69)
FROM-GLC 59.56 (4.22) 88.43 (2.18) 50.00 (6.30) 30.00 (6.55) 22.00 (5.91) 100.00 (0) 57.41 (6.79) 5.08 (2.88) 67.94 (1.74)

The error matrices indicate that the OAs of GlobeLand30 and GLC_FCS are approxi-
mately 0.77~0.81, except for GLC_FCS 2010, whose OA is 0.7533. However, FROM-GLC’s
OAs are relatively lower (approximately 0.68) compared with other base products in the
study area. UAs for the forest are generally approximately 0.90, higher than those of other
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classes. Grassland, shrubland, wetland, and bare land are classes that are relatively difficult
to classify, as their UAs are lower compared with other classes.

3.2. Accuracy Assessment of Fused Land Cover Maps

The accuracy measures were estimated via error matrices, providing the basis to
evaluate different fusion methods. The fused maps in the study area were also generated
for visualization. Figure 3a shows four fused land cover products for 2010 and 2020,
respectively. Figure 4a,b shows two 600 m × 600 m subsets centered at sample units A
(2010) and B (2020), respectively.
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Table 5. Accuracy gains in different fusion products, 2010.

UA (%) OA (%)

Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

RF 2.5 −3.88 17.77 26.33 11.73 −0.4 5.13 −16.13 2.62
D-S 2.49 1.36 17.72 25.37 32.92 8.1 2.86 15.93 4.91
TP 4.75 0.6 16.89 38.3 9.15 7.97 35.02 10.69 6.32

CON −2.7 −0.82 1.07 −4.2 10.55 −2.37 31.07 2.87 −0.05

Table 6. Accuracy gains in different fusion products, 2020.

UA (%) OA (%)

Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

RF 4.03 −2.26 15.87 6.28 2.33 −2.62 8.9 5.04 3.57
D-S 6.55 1.68 21.89 17.15 12.42 −1.68 11.99 20.25 7.34
TP 11.61 0.43 25.11 24.71 44 2.07 10.44 24.2 9.29

CON 1.34 −3.54 6.04 −22.28 44 3.5 −1.66 19.24 1.04

As shown in Tables 5 and 6, the OAs of the fused products are higher than any base
product in both 2010 and 2020, except for that by CON in 2010. The difference in the OAs
between CON and GlobeLand30 in 2010 is negligible because the standard error is 1.64%
(Table A12, Appendix B). Among these fusion methods, RF slightly increased the OAs.
Moderate improvements in the OAs were achieved using the D-S method enhanced with
local mass functions. The largest accuracy gains were achieved using TP, in which local
map-reference cover type transition probabilities were used for fusion.

4. Discussion

We discuss the results obtained in this research first, emphasizing the advantages of the
proposed method of TP relative to the alternatives. As indicated in the error matrices of base
products (Tables A2–A7, Appendix B), more than 85% (even 90%) of the areal proportions
in the study area are occupied by cultivated land, forest (approximately 40~50%), and
grassland on the land cover maps. Shrubland, wetland, water bodies, artificial surfaces,
and bare land are rare classes. Areal proportions are different among three base products,
especially for grassland. Approximately 12.76% and 5.75% of the total area was mislabeled
as cultivated land by the FROM-GLC in 2010 and 2020, respectively. Confusion between
cultivated land and grassland seems to be the major source of commission error of cultivated
land. Because of this type of confusion, some pixels whose reference class was grassland
were labeled as cultivated land, leading to increased stratum weight but a decreased UA of
cultivated land. Equation (A4) in Appendix A implies that the OA estimate is a weighted
average of UAs. Thus, those land cover classes with large weight and low UAs would
finally reduce OAs. Similarly, forest is the stratum with the largest weight in the study area
(0.4467 for 2010 and 0.4455 for 2020), its UA tends to influence OA the most. Although
forest UAs are relatively high (approximately 90%), a minor decline in UAs might result in
a large reduction of OAs.

Tables 5 and 6 show accuracy gains obtained using different fusion methods. Although
gains in OAs were achieved in most cases, this is not the case for UAs, especially those
classes whose accuracies were already very high, such as forest and water bodies.

When mass functions were estimated locally, the D-S method appears to be a com-
petitive fusion method, with all UAs increasing except for water bodies in 2020. Since
water stratum weight is relatively small in the study area, the impact of the UA decrease is
negligible. On the other hand, the considerably increased UAs of shrubland, wetland, and
grassland contribute to increased OAs.

Method TP leads to the greatest gains in OAs. Compared with method CON, UAs are
all improved, except for forest and water bodies, as their UAs are relatively high in source
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maps. The difference in accuracy gains between CON and TP demonstrate the advantages
of localized transition probabilities for the fusion of land cover information.

In the introductory section, the existing literature on land cover map fusion has already
been extensively reviewed with respect to methodological developments. The proposed
method TP extends and improves upon the accuracy-based method [23], and the synergistic
method involving the use of conditional probabilities [10]. TP was empirically confirmed
to outperform the alternative methods. It is applicable for large-area land cover map fusion
across the world, although the accuracy gains may be geographically varied.

Further work is needed to refine the proposed method, especially with respect to the
way localized transition probabilities are predicted. Comparative performances (in terms
of UAs) of the methods compared in this research suggest that complementarity between
methods should be explored. Other competing methods for product fusion are also worth
exploring (e.g., [32–36]), though a comprehensive comparative study is beyond the scope of
this paper. Further work is also needed to overcome larger discrepancy in spatial resolution
among base products, though base products in this study are of the same or similar spatial
resolutions, given that land cover products are increasingly available with differing spatial
resolution, both fine and coarse.

5. Conclusions

This paper presents a novel method for fusing land cover products. It is based on
weighting the individual base products by map-reference cover type transition probabili-
ties, which are predicted for individual map pixels using random forest. A study using
three kinds of land cover products for Shaanxi Province, China, for 2010 and 2020 was
carried out, confirming that the proposed method achieved the greatest gains in OAs (it
outperforms other methods by 2~8% in OA gains), while the methods tested all achieved
gains in accuracy relative to base products (except for CON in 2010) (the methods lead to
gains of 1~9% in OAs). In the proposed method, a localized prediction of the transition
probabilities provides fuller information about the weighting of source products for fusion.
It is applicable for fusing products with different classification systems (though harmonized
classification systems allow for comparative accuracy assessments using error matrices as
in this research). In other words, this method is well suited for map fusion even when base
products are not produced with the same classification scheme, as transition probabilities
are conditional probabilities that candidate reference classes occur given individual map
classes, which do not have to refer to the same sets of land cover classes.
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Appendix A. Accuracy Assessment

Appendix A.1. Sampling Design and Augmented Sampling

Selecting a proper sampling design for multiple land cover products in the study
area is challenging because strata defined by any product may not be suitable for other
products. Inspired by existing works [37,38], we chose climatic regionalization as the basis
of stratification and applied an augmented sampling design because the strata would be
independent of any of the land cover products and strata sample sizes can be adjusted
flexibly. The Chinese climate map, acquired from the Resource and Environment Science
and Data Center (https://www.resdc.cn (accessed on 10 January 2023)), was the climate
map we applied. In augmented sampling design, the final sample set for a product (map)

https://www.resdc.cn
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consists of two sample subsets: the initial baseline sample subset and the augmented
sample subset. The baseline sample subset was a stratified random sample whose strata
were climatic regions. By adjusting the sample size of each cross-stratum, the combination
of the baseline and the augmented sample subsets led to a stratified random sample whose
strata were land cover classes and inclusion probabilities of units in the same stratum are
adjusted to be equal.

The first step of the sampling design is sample size estimation. Olofsson et al. [39] rec-
ommended stratified random sampling design for area estimation and accuracy assessment
and provided the general principles of sample size calculation and allocation for stratified
random sampling. Sample size can be estimated via:

n =
(∑ WiSi)

2[
S
(
Ô
)]2

+ 1/N ∑ WiS2
i

≈ (
∑ WiSi

S
(
Ô
) )

2
(A1)

as suggested [39,40]. In Equation (A1), Wi is the stratum weight of class i (i.e., the areal
proportion of class i on the map), Si =

√
Ui(1−Ui) is the standard deviation of class i,

and Ui is UA of class i. As OA and UA for GlobeLand30 are about 0.7~0.8, we estimated
the baseline sample size is approximately 953, assuming the standard deviation of overall
accuracy S(Ô) is 0.02. In this study, the reference sample data (for a product in one nominal
year) consist of two equal-size samples: the training sample and the test sample. Therefore,
we doubled the sample size estimated by Equation (A1).

After the estimation of the baseline sample size, the next step is to allocate sample
units to each stratum and apply re-stratification. Because the baseline sample is stratified by
climatic regions, few baseline sample units may be allocated to the rare classes. We supplied
and allocated augmented sample units to all rare classes to ensure that there were at least
100 sample units (50 for training, 50 for test) in each stratum. The inclusion probability
of stratum h is calculated by πh = nh/Nh, where nh is the sample size of land cover class,
and Nh is the total number of pixels belong to class h on the map. The sample size of
every cross-strata was adjusted according to πh. Table A1 shows the sample adjustments of
GlobeLand30 2010, for example.

Table A1. Sample size adjustments for GlobeLand30 2010.

InitialStratum (h)
Land Cover Class (j)

TOTALCultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

IIIC1 61 (−4) 41 (+7) 84 (+2) 0 (+5) 0 (+23) 0 (+13) 0 (+5) 0 (+2) 186
(−4) (+57)

IIIB3 143 (−12) 206 (+1) 27 (−6) 0 (+53) 1 (+44) 2 (+35) 15 (+74) 0 (+1) 394
(−18) (+208)

IVA2 41 (+1) 155 (−8) 12 (−3) 1 (+20) 0 (+8) 0 (+32) 0 (+5) 0 (0) 209
(−11) (+66)

IIC1 20 (+15) 0 (+1) 70 (−3) 1 (+12) 0 (+8) 1 (+9) 2 (+1) 3 (+30) 97
(−3) (+76)

IIC2 21 (0) 1 (−1) 37 (+10) 0 (+9) 0 (+16) 2 (+7) 1 (+1) 5 (+61) 67
(−1) (+104)

TOTAL 286
(−16) (+16)

403
(−9) (+9)

230
(−12) (+12)

2
(+99)

1
(+99)

5
(+96)

18
(+86)

8
(+94)

953
(−37) (+511)

Appendix A.2. Response Design and Analysis

The response design aims to establish protocols to determine the agreement between
map classifications and reference classifications. We used pixels as the basic interpret
units, and a 30 m buffer was generated for each sample pixel. Based on Google Earth
high-resolution images, the interpreter labeled reference classes without consulting the
map classifications of land cover products. The dominate class in the buffer was defined as
the reference class of the sample unit. When multiple classes were present in the buffer and
no dominated class was found, the reference condition at the center pixel was assigned as
the reference class.
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In the analysis process, we applied different estimators to estimate accuracies. When
we estimated OA, an indicator y(u) was defined as:

y(u) =
{

1, map class matches re f erence class
0, otherwise

(A2)

where u donates a sample unit. OA is estimated via:

Ŷ =
1
N ∑

u∈s

y(u)
πu

(A3)

where πu is the inclusion probability of sample unit u, N is the population size, and s
represents the sample set. For stratified random sampling, Equation (A3) can be rewritten
as:

Ŷ =
1
N

H

∑
h=1

nh

∑
u=1

y(u)
πh

=
H

∑
h=1

Whyh (A4)

where H is the number of strata, nh is the sample size of stratum h, Wh = nh/Nh is the
stratum weight and yh is the stratum mean, which is also the estimator of UA of class h
marked as Ûh. The variance estimator of OA is:

V̂ =
H

∑
h=1

W2
h Ûh

(
1− Ûh

)
/(nh − 1). (A5)

Variance and its square root, i.e., standard error, should also be reported in the accuracy
assessment for estimating 95% CI (Ŷ± 1.96

√
V̂). If the cell in the ith row and jth column of

an error matrix is the survey parameter to be estimated, Equation (A2) can be redefined as:

y(u) =
{

1, map class label is i and re f erence class label is j
0, otherwise

. (A6)

By modifying the definitions of the indicators x(u) and y(u), we can estimate the UA
and producer’s accuracy (PA) via the ratio estimator. In this study, we focus on OA and its
variance. More details about applying the ratio estimator to estimate the UA and PA (and
their variance) can be found in other research [28,41].

Appendix B. Error Matrices of Base and Fused Land Cover Products

In Appendix B, we list the error matrices of three base products (Tables A2–A7) and
fused land cover products (Tables A8–A15) in 2010 and 2020. All figures in the error
matrices are reported in percentages, i.e., the area proportions of the study area and SEs of
UAs, PAs, and OAs are indicated in parentheses, respectively.

Table A2. Error matrix of GlobeLand30 2010.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 24.91 1.53 3.06 0.44 0.00 0.44 0.66 0.22 31.25 79.72 (3.37)
Forest 1.11 41.34 2.22 0.00 0.00 0.00 0.00 0.00 44.67 92.54 (1.86)

Grassland 2.51 0.36 12.36 4.84 0.00 0.00 0.18 0.36 20.60 60.00 (4.59)
Shrubland 0.03 0.02 0.03 0.07 0.00 0.00 0.01 0.00 0.16 46.00 (7.12)
Wetland 0.02 0.00 0.00 0.01 0.05 0.03 0.00 0.00 0.11 44.00 (7.09)

Water bodies 0.00 0.02 0.02 0.00 0.04 0.33 0.00 0.00 0.41 82.00 (5.49)
Artificial surfaces 0.54 0.00 0.12 0.17 0.00 0.00 1.33 0.00 2.16 61.54 (6.81)

Bare land 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.40 0.64 62.75 (6.84)
TOTAL 29.12 43.26 17.82 5.76 0.09 0.81 2.17 0.98

PA(SE) 85.57
(2.44)

95.55
(1.37)

69.36
(4.37)

1.27
(0.27)

54.86
(11.34)

41.26
(15.84)

61.22
(12.04)

41.16
(14.26) 80.80 (1.65)
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Table A3. Error matrix of GLC_FCS30 2010.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 18.42 1.40 3.00 0.00 0.20 0.20 1.20 0.20 24.62 74.80 (3.93)
Forest 1.58 43.24 2.26 0.00 0.00 0.00 0.00 0.00 47.09 91.83 (1.90)

Grassland 5.34 1.38 10.68 5.73 0.00 0.00 0.59 0.20 23.93 44.63 (4.54)
Shrubland 0.24 0.00 0.05 0.82 0.00 0.00 0.00 0.12 1.24 66.67 (6.67)
Wetland 0.01 0.00 0.00 0.00 0.04 0.05 0.00 0.00 0.10 44.00 (7.09)

Water bodies 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.22 96.00 (2.80)
Artificial surfaces 0.13 0.03 0.00 0.00 0.03 0.00 1.42 0.03 1.65 86.27 (4.87)

Bare land 0.20 0.00 0.00 0.45 0.00 0.00 0.00 0.50 1.16 43.14 (7.00)
TOTAL 25.92 46.06 16.00 7.01 0.28 0.46 3.21 1.05

PA(SE) 71.05
(3.18)

93.87
(1.49)

66.76
(4.79)

11.76
(1.88)

15.91
(11.66)

45.89
(20.15)

44.18
(8.20)

47.45
(13.59) 75.33 (1.71)

Table A4. Error matrix of FROM_GLC 2010.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 20.62 2.95 12.76 5.50 0.00 0.00 1.77 1.18 44.77 46.05 (3.31)
Forest 2.76 43.51 1.38 0.00 0.00 0.00 0.00 0.00 47.65 91.30 (1.96)

Grassland 0.43 0.22 1.95 0.72 0.00 0.22 0.00 0.29 3.82 50.94 (6.93)
Shrubland 0.08 0.05 0.24 0.41 0.00 0.00 0.00 0.02 0.80 52.00 (7.14)
Wetland 0.00 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.05 58.00 (7.05)

Water bodies 0.01 0.02 0.01 0.00 0.03 0.38 0.01 0.01 0.46 82.00 (5.49)
Artificial surfaces 0.65 0.14 0.33 0.00 0.05 0.00 1.22 0.05 2.43 50.00 (7.00)

Bare land 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 72.00 (6.41)
TOTAL 24.56 46.88 16.67 6.63 0.11 0.61 2.99 1.55

PA(SE) 83.95
(2.93)

92.80
(1.49)

11.69
(1.74)

6.23
(1.23)

28.87
(13.42)

62.64
(12.76)

40.61
(8.55)

0.67
(0.22) 68.12 (1.78)

Table A5. Error matrix of GloabLand30 2020.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.12 3.14 3.37 0.22 0.22 0.22 0.45 0.22 30.97 74.64 (3.72)
Forest 0.90 41.20 2.46 0.00 0.00 0.00 0.00 0.00 44.55 92.46 (1.88)

Grassland 1.96 1.78 11.06 3.75 0.00 0.00 0.18 1.25 19.98 55.36 (4.72)
Shrubland 0.02 0.02 0.03 0.08 0.00 0.00 0.01 0.00 0.15 50.00 (7.14)
Wetland 0.02 0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.12 56.00 (7.09)

Water bodies 0.02 0.02 0.01 0.00 0.04 0.33 0.01 0.00 0.42 78.00 (5.92)
Artificial surfaces 0.66 0.00 0.24 0.12 0.00 0.00 2.11 0.06 3.19 66.04 (6.57)

Bare land 0.00 0.00 0.00 0.13 0.00 0.01 0.01 0.45 0.60 74.51 (6.16)
TOTAL 26.69 46.16 17.17 4.30 0.34 0.60 2.76 1.98

PA(SE) 86.62
(2.47)

89.24
(1.88)

64.42
(4.58)

1.77
(0.41)

20.49
(13.90)

55.45
(20.95)

76.23
(10.19)

22.54
(6.03) 78.41 (1.72)

Table A6. Error matrix of GLC_FCS 2020.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 18.34 2.47 1.44 0.21 0.00 0.41 1.03 0.00 23.90 76.72 (3.94)
Forest 0.90 43.40 2.92 0.00 0.00 0.00 0.00 0.00 47.22 91.90 (1.89)

Grassland 3.98 1.39 13.91 3.58 0.00 0.00 0.40 0.20 23.45 59.32 (4.54)
Shrubland 0.42 0.00 0.05 0.63 0.00 0.00 0.03 0.21 1.34 47.06 (7.06)
Wetland 0.00 0.00 0.00 0.00 0.06 0.07 0.00 0.00 0.14 40.00 (7.00)

Water bodies 0.00 0.00 0.00 0.00 0.01 0.25 0.00 0.00 0.26 98.00 (2.00)
Artificial surfaces 0.27 0.05 0.00 0.00 0.00 0.00 2.45 0.05 2.83 86.79 (4.70)

Bare land 0.37 0.00 0.03 0.07 0.02 0.00 0.00 0.37 0.86 43.14 (7.00)
TOTAL 24.27 47.32 18.36 4.49 0.08 0.74 3.91 0.83

PA(SE) 75.55
(3.08)

91.72
(1.66)

75.76
(4.16)

14.09
(3.12)

71.59
(16.64)

34.31
(13.45)

62.76
(8.64)

44.39
(12.25) 79.41 (1.69)
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Table A7. Error matrix of GLC_FROM 2020.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 15.03 2.23 5.75 0.93 0.00 0.37 0.56 0.37 25.23 59.56 (4.22)
Forest 2.28 43.60 3.42 0.00 0.00 0.00 0.00 0.00 49.31 88.43 (2.18)

Grassland 1.56 1.56 6.23 2.72 0.00 0.00 0.19 0.19 12.46 50.00 (6.30)
Shrubland 0.01 0.05 0.12 0.08 0.00 0.00 0.00 0.00 0.25 30.00 (6.55)
Wetland 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 22.00 (5.91)

Water bodies 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.41 100.00 (0)
Artificial surfaces 0.49 0.14 0.77 0.07 0.14 0.00 2.17 0.00 3.77 57.41 (6.79)

Bare land 2.90 0.29 2.76 1.89 0.00 0.00 0.29 0.44 8.56 5.08 (2.88)
TOTAL 22.27 47.87 19.05 5.68 0.14 0.78 3.21 1.00

PA(SE) 67.48
(3.52)

91.09
(1.60)

32.70
(3.64)

1.33
(0.35)

1.44
(17.33)

51.91
(17.33)

67.53
(9.33)

43.49
(19.87) 67.94 (1.74)

Table A8. Error matrix of fused product 2010 using random forest.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.49 0.66 2.59 0.48 0.00 0.22 0.91 0.22 28.57 82.22 (3.25)
Forest 2.86 41.55 2.18 0.05 0.00 0.23 0.00 0.00 46.87 88.66 (2.11)

Grassland 1.65 1.03 12.58 0.91 0.00 0.01 0.00 0.00 16.17 77.77 (4.48)
Shrubland 0.55 0.01 0.38 3.99 0.00 0.00 0.18 0.40 5.51 72.33 (7.92)
Wetland 0.00 0.00 0.00 0.01 0.04 0.02 0.00 0.00 0.07 55.73 (9.88)

Water bodies 0.00 0.01 0.02 0.00 0.05 0.33 0.00 0.00 0.41 81.60 (5.08)
Artificial surfaces 0.37 0.00 0.08 0.08 0.00 0.00 1.08 0.00 1.62 66.67 (7.62)

Bare land 0.18 0.00 0.00 0.24 0.00 0.00 0.00 0.37 0.78 46.62
(11.99)

TOTAL 29.12 43.26 17.82 5.76 0.09 0.81 2.17 0.98

PA(SE) 80.67
(3.09)

96.05
(1.34)

70.60
(4.54)

69.20
(7.60)

43.94
(11.10)

41.09
(15.80)

49.74
(10.67)

37.30
(13.10) 83.42 (1.61)

Table A9. Error matrix of fused product 2020 using random forest.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.00 0.67 3.85 0.29 0.22 0.22 0.75 0.22 29.24 78.67 (3.51)
Forest 1.75 43.99 3.00 0.02 0.00 0.00 0.00 0.00 48.77 90.20 (1.98)

Grassland 1.12 1.47 9.11 0.73 0.00 0.00 0.00 0.36 12.79 71.23 (5.41)
Shrubland 0.37 0.01 1.08 3.09 0.00 0.00 0.01 0.93 5.49 56.28 (8.87)
Wetland 0.01 0.00 0.00 0.00 0.05 0.02 0.00 0.00 0.09 58.33 (8.30)

Water bodies 0.02 0.02 0.01 0.00 0.06 0.34 0.01 0.00 0.45 75.38 (5.70)
Artificial surfaces 0.42 0.00 0.12 0.06 0.00 0.00 1.99 0.06 2.65 74.94 (6.58)

Bare land 0.00 0.00 0.00 0.09 0.00 0.01 0.00 0.41 0.52 79.55 (6.14)
TOTAL 26.69 46.16 17.17 4.30 0.34 0.60 2.76 1.98

PA(SE) 86.19
(2.79)

95.29
(1.33)

53.05
(4.90)

71.90
(8.67)

15.37
(10.56)

56.68
(21.41)

71.99
(10.08)

20.76
(5.64) 81.98 (1.65)

Table A10. Error matrix of fused product 2010 using modified Dempster–Shafer.

Map
Reference

TOTAL UA (SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 24.04 0.84 2.33 0.55 0.02 0.24 0.99 0.23 29.24 82.21 (3.11)
Forest 1.33 41.78 1.33 0.01 0.00 0.04 0.00 0.00 44.50 93.90 (1.67)

Grassland 2.57 0.64 13.57 0.65 0.00 0.02 0.00 0.01 17.45 77.72 (4.31)
Shrubland 0.72 0.00 0.54 4.39 0.00 0.01 0.18 0.32 6.16 71.37 (7.50)

Wetland 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.03 76.92
(11.80)

Water bodies 0.00 0.00 0.01 0.00 0.04 0.49 0.00 0.00 0.55 90.10 (5.13)

Artificial surfaces 0.47 0.00 0.04 0.04 0.00 0.00 1.00 0.00 1.55 64.40
(11.31)

Bare land 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.42 0.53 78.68 (9.35)
TOTAL 29.12 43.26 17.82 5.76 0.09 0.81 2.17 0.98

PA(SE) 82.56
(3.04)

96.58
(1.26)

76.14
(4.40)

76.29
(6.88)

24.94
(7.82)

60.96
(19.87)

45.91
(10.2)

42.71
(16.62) 85.71 (1.50)
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Table A11. Error matrix of fused product 2020 using modified Dempster–Shafer.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.95 1.84 1.95 0.30 0.24 0.24 0.75 0.23 29.49 81.19 (3.22)
Forest 0.68 43.19 1.98 0.02 0.00 0.00 0.00 0.00 45.87 94.14 (1.62)

Grassland 1.39 1.12 12.58 0.57 0.01 0.02 0.06 0.54 16.28 77.25 (4.49)
Shrubland 0.36 0.00 0.54 3.34 0.00 0.00 0.00 0.74 4.97 67.15 (8.52)

Wetland 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.05 68.42
(10.77)

Water bodies 0.02 0.02 0.01 0.00 0.05 0.32 0.01 0.00 0.42 76.32 (5.83)
Artificial surfaces 0.30 0.00 0.12 0.06 0.00 0.00 1.92 0.06 2.47 78.03 (6.65)

Bare land 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.43 0.45 94.76 (4.15)
TOTAL 26.69 46.16 17.17 4.30 0.34 0.60 2.76 1.98

PA(SE) 89.72
(2.52)

93.55
(1.55)

73.25
(4.67)

77.69
(8.10)

9.51
(6.74)

53.79
(20.47)

69.62
(9.62)

21.46
(9.10) 85.75 (1.48)

Table A12. Error matrix of fused product 2010 using consensus-based method.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 26.01 1.73 3.43 0.76 0.01 0.44 0.95 0.45 33.78 77.02 (3.22)
Forest 0.89 41.52 2.77 0.02 0.01 0.05 0.00 0.00 45.27 91.72 (1.88)

Grassland 2.20 0.01 11.58 4.76 0.00 0.02 0.18 0.22 18.96 61.07 (4.74)

Shrubland 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.05 0.09 41.80
(18.45)

Wetland 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.02 54.55
(15.16)

Water bodies 0.01 0.01 0.00 0.00 0.05 0.28 0.00 0.00 0.35 79.63 (5.16)
Artificial surfaces 0.00 0.00 0.04 0.04 0.00 0.00 1.04 0.00 1.12 92.61 (5.07)

Bare land 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.26 0.40 65.62 (8.48)
TOTAL 29.12 43.26 17.82 5.76 0.09 0.81 2.17 0.98

PA(SE) 89.35
(2.38)

95.98
(1.37)

64.98
(4.69)

0.66
(0.38)

14.96
(6.10)

34.88
(13.63)

47.97
(10.46)

27.01
(9.98) 80.75 (1.64)

Table A13. Error matrix of fused product 2010 using localized transition probabilities.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 24.23 0.22 2.20 0.97 0.02 0.23 0.78 0.04 28.69 84.47 (2.99)
Forest 1.77 42.62 1.29 0.05 0.00 0.02 0.00 0.00 45.76 93.14 (1.71)

Grassland 2.93 0.42 14.10 0.79 0.00 0.02 0.04 0.04 18.34 76.89 (4.23)
Shrubland 0.18 0.00 0.00 3.93 0.00 0.00 0.18 0.37 4.66 84.30 (6.33)

Wetland 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.05 53.15
(16.47)

Water bodies 0.00 0.01 0.00 0.00 0.04 0.51 0.00 0.00 0.57 89.97 (4.83)
Artificial surfaces 0.00 0.00 0.04 0.00 0.00 0.00 1.16 0.00 1.21 96.56 (3.41)

Bare land 0.00 0.00 0.18 0.01 0.00 0.00 0.00 0.54 0.73 73.44
(20.88)

TOTAL 29.12 43.26 17.82 5.76 0.09 0.81 2.17 0.98

PA(SE) 83.23
(3.07)

98.51
(0.82)

79.14
(4.19)

68.22
(7.86)

28.98
(10.11)

63.53
(20.07)

53.71
(11.16)

54.72
(16.87) 87.12 (1.44)
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Table A14. Error matrix of fused product 2020 using consensus-based method.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.30 1.90 3.54 0.38 0.02 0.23 0.83 0.46 30.67 75.98 (3.41)
Forest 1.80 43.91 3.64 0.02 0.00 0.01 0.00 0.00 49.37 88.92 (2.06)

Grassland 1.12 0.36 9.65 3.69 0.00 0.02 0.06 0.82 15.72 61.40 (5.14)

Shrubland 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.52 0.73 27.72
(20.36)

Wetland 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 100.00 (0)
Water bodies 0.01 0.00 0.00 0.00 0.06 0.32 0.00 0.00 0.40 81.50 (5.14)

Artificial surfaces 0.47 0.00 0.34 0.00 0.22 0.00 1.87 0.00 2.90 64.38
(10.23)

Bare land 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.18 0.19 93.75 (6.11)
TOTAL 26.69 46.16 17.17 4.30 0.34 0.60 2.76 1.98

PA(SE) 87.31
(2.84)

95.11
(1.41)

56.21
(4.85)

4.70
(4.09)

5.85
(4.35)

53.87
(20.51)

67.66
(9.32)

8.90
(2.98) 79.45 (1.70)

Table A15. Error matrix of fused product 2020 using localized transition probabilities.

Map
Reference

TOTAL UA(SE)Cultivated
Land Forest Grassland Shrubland Wetland Water

Bodies
Artificial
Surfaces Bare Land

Cultivated land 23.30 1.68 1.09 0.09 0.02 0.24 0.59 0.00 27.02 86.25 (2.85)
Forest 1.13 44.08 2.16 0.02 0.00 0.00 0.06 0.00 47.46 92.89 (1.72)

Grassland 2.01 0.40 13.25 0.41 0.00 0.00 0.00 0.38 16.47 80.47 (4.28)
Shrubland 0.00 0.00 0.54 3.70 0.00 0.01 0.00 0.70 4.95 74.71 (7.84)
Wetland 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 100.00 (0)

Water bodies 0.01 0.00 0.01 0.00 0.06 0.34 0.01 0.00 0.43 80.07 (5.32)
Artificial surfaces 0.24 0.00 0.12 0.06 0.22 0.00 2.10 0.00 2.75 76.48 (8.53)

Bare land 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.90 0.91 98.71 (1.37)
TOTAL 26.69 46.16 17.17 4.30 0.34 0.60 2.76 1.98

PA(SE) 87.30
(2.84)

95.49
(1.37)

77.18
(4.45)

86.10
(5.97)

6.59
(4.82)

57.26
(21.71)

75.99
(8.47)

45.40
(13.27) 87.70 (1.42)
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