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Abstract: Drought is a major disaster over the Tibetan Plateau (TP) that exerts great impacts on
natural ecosystems and agricultural production. Furthermore, most drought indices are only useful
for assessing drought conditions on a coarse temporal scale. Drought indices that describe drought
evolution at a fine temporal scale are still scarce. In this study, four machine learning methods,
including random forest regression (RFR), k-nearest neighbor regression (KNNR), support vector
regression (SVR), and extreme gradient boosting regression (XGBR), were used to construct daily
drought indices based on multisource remote sensing and reanalysis data. Through comparison
with in situ soil moisture (SM) over the TP, our results indicate that the drought index based on
the XGBR model outperforms other models (R2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by
RFR (R2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR (R2 = 0.73, RMSE = 0.11, MAE = 0.08) and
SVR (R2 = 0.66, RMSE = 0.12, MAE = 0.1). A new daily drought index, the standardized integrated
drought index (SIDI), was developed by the XGBR model for monitoring agricultural drought. A
comparison with ERA5-Land SM and widely used indices such as SPI-6 and SPEI-6 indicated that the
SIDI depicted the dry and wet change characteristics of the plateau well. Furthermore, the SIDI was
applied to analyze a typical drought event and reasonably characterize the spatiotemporal patterns
of drought evolution, demonstrating its capability and superiority for drought monitoring over the
TP. In addition, soil properties accounted for 59.5% of the model output, followed by meteorological
conditions (35.8%) and topographic environment (4.7%).

Keywords: drought monitoring; machine learning method; Tibetan Plateau

1. Introduction

Drought is one of the most widespread and costly natural disasters that not only
affects agricultural and livestock production but also leads to a series of ecological and
socioeconomic problems [1,2]. Globally, dry areas are increasing at a rate of approximately
1.74% per decade from 1950 to 2008 [3]. The Tibetan Plateau (TP) is known as the “Asian
Water Tower”. Nevertheless, the areas of the arid and semiarid regions of the TP account
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for 23% and 44%, respectively [4], and approximately 62% of the plateau area is covered by
alpine meadows and grasslands [5]. The ecosystems over the TP are fragile due to their
high elevation and unique geographical location. Meanwhile, the TP is highly susceptible
to global climate change. Zhong et al. [6] noted that the air temperature over the TP has
been 1.27 ◦C higher than normal since 2014. The average increase was 2.2 times the global
average (0.57 ◦C). Overall, it easily suffers from drought under the combined effects of
climate change and fragile ecosystems. Gao et al. [7] calculated the ratio of precipitation
to potential evapotranspiration (P/PET) at 83 stations in the TP between 1979 and 2011
and found that the eastern TP was becoming drier. Wang et al. [8] investigated the plateau
drought variation based on the self-calibrating Palmer drought severity index (scPDSI)
from 1961 to 2009 and revealed that the southern TP experienced a wetting trend even
though the northern TP became significantly drier, particularly in spring and autumn.
Feng et al. [9] calculated the standardized precipitation evapotranspiration index (SPEI)
using data from 274 meteorological stations over the TP during 1970–2017, indicating that
severe drought frequency in winter and drought risk in summer showed an increasing
trend. According to the statistics of the China Meteorological Administration, drought is
the most dominant meteorological disaster among all meteorological disasters over the
TP [10]. Therefore, a comprehensive understanding of drought characteristics on the TP is
of great importance for drought early warning, prevention, and mitigation.

In general, a universal objective definition of drought is impractical and does not exist
without knowledge of the climatologically expected values for the availability of stored
water for a given need [11]. Wilhite and Glantz in 1985 [12] classified droughts into four
categories: meteorological droughts, agricultural droughts, hydrological droughts, and so-
cioeconomic droughts, which have been widely recognized by the scientific community [13].
Recently, some new drought types were proposed, such as ground water droughts [14],
ecological droughts [15], agroecological droughts [16], and environmental droughts [17].
The aridity index, defined as the ratio between precipitation and evapotranspiration, is
usually used to classify climatic zones and monitor drought [18]. The aim of this study is to
develop a comprehensive index characterizing the complex drought conditions affected by
climatic, hydrometeorological, and environmental factors. Accordingly, the drought index
was adopted instead of the aridity index. To objectively quantify the onset, intensity, and
spatial extent of drought, more than one hundred drought indices have been developed
thus far. Among these indices, the Palmer drought severity index (PDSI) [19], the standard-
ized precipitation index (SPI) [20], and the standardized precipitation evapotranspiration
index (SPEI) [21] are the most popular and widely used drought indices. However, most of
these indices are developed and evaluated on a monthly time scale. Although some daily
drought indices, such as the standardized drought and flood potential index (SDFPI) [22]
and drought potential index (DPI) [23], have been developed recently, drought indices
with high resolution are generally scarce and need to be further investigated. With an
average elevation of approximately 4000 m, the TP has the largest frozen soil zone in the
mid-latitudes. In the freeze-thaw process, especially for the seasonal transitional period,
the soil water phase and energy budget have dramatic changes at the daily temporal scale,
which can affect the soil-vegetation-atmosphere interaction. Drought indices with high
resolution have been expected to reflect this variation [24]. On the other hand, drought
indices with high resolution can provide valuable drought information, such as the onset,
end, and duration of drought, which are capable of guiding vulnerable agricultural and
livestock production over the TP. In addition, some of these indices are based on a single
variable, such as the vegetation condition index (VCI) [25] and temperature condition
index (TCI) [26], which mainly reflect one specific aspect of drought. In terms of agricul-
tural drought related to meteorology, soil, and vegetation systems, they cannot adequately
capture the complex features of drought evolution. Integrating multiple drought-related
variables and indices is an effective method for addressing this issue [27]. For example,
Huang et al. [28] constructed an integrated drought index (IDI) based on precipitation,
runoff, and soil moisture using the entropy weight method. It is an objective method for
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weight determination and gives soil moisture a low weight, causing the insensitivity of IDI
to agricultural drought. Lu et al. [29] developed the integrated scaled drought index (ISDI)
based on precipitation, the normalized difference vegetation index (NDVI), soil moisture,
and land surface temperature. ISDI is a linear combination of four drought factors. It can-
not reflect the nonlinear relationships between hydrometeorological factors and drought.
Previous studies have demonstrated that these integrated drought indices improved the
capacity of drought monitoring. To date, there are three types of fusion methods: linear
combination [30], copula-based methods [31,32], and machine learning (ML). Hao and
Singh [33] noted that the former two approaches may suffer from the linearity assumption.
In comparison, the ML approach has a strong capability of extracting target information
from a large amount of random, noisy data and capturing the nonlinear characteristics of
physical processes. It has therefore recently been favored by many scholars for the construc-
tion of drought indices. For example, Liu et al. [34] proposed an integrated agricultural
drought index (IDI) based on remote sensing data and the backpropagation (BP) neural
network, and it can effectively monitor drought events on the North China Plain.

Therefore, the objectives of this study are to (1) compare daily integrated drought
indices developed by the four ML methods, namely, random forest regression (RFR),
k-nearest neighbor regression (KNNR), support vector regression (SVR), and extreme
gradient boosting regression (XGBR), based on multisource remote sensing and reanalysis
data with the in situ soil moisture and obtain the optimal drought index as the new
standardized integrated drought index (SIDI); (2) evaluate the SIDI performance in dry
and wet changes against SPI-6, SPEI-6, and European Centre for Medium-Range Weather
Forecasts Reanalysis 5 Land (ERA5-Land) soil moisture; and (3) assess the spatiotemporal
applicability of SIDI for a typical drought event. The SIDI is expected to monitor plateau
droughts with more detail and accuracy for agricultural water resource management.

2. Materials and Methods
2.1. Materials

In situ soil moisture data are obtained from the time-lapse observation dataset of soil
temperature and humidity on the Tibetan Plateau from 2015 to 2020 [35–38] and a long-term
dataset of integrated land–atmosphere interaction observations on the Tibetan Plateau from
2008 to 2016 [39]. The data were downloaded through the National Tibetan Plateau Data
Center (https://data.tpdc.ac.cn/ (accessed on 20 April 2021)). The locations of the field
observation stations can be found in Figure 1. These stations over different climates and
underlying surface conditions are representative. Soil moisture data in units of percent
with an hourly temporal resolution were converted to m3/m3 and further averaged to daily
means. Soil moisture has been one of the most direct indicators of agricultural drought.
Approximately 62% of the plateau area is covered by alpine meadows and grasslands with
shallow root systems [5]. Therefore, the depth of soil moisture data used in this study was
10 cm. Moreover, drought during the critical stage of vegetation growth is more destructive
to agricultural production. Hence, the soil moisture data collected at a 10 cm depth during
the growing season (from May to October) were selected as the “ground truth” for assessing
the performance of drought indices [34,40].

To develop the integrated drought index, we comprehensively consider the overall
effects of the meteorological conditions, vegetation information, soil properties, and to-
pographic environment. Thirteen variables in total were selected as predictor variables
and summarized as follows [34,41]: four near-surface meteorological elements, includ-
ing 2 m air temperature (TEMP), specific humidity (SHUM), 10 m wind speed (WIND),
and precipitation rate (PREC), are provided by the China meteorological forcing dataset
(CMFD) with a temporal resolution of three hours and a spatial resolution of 10 km
(http://poles.tpdc.ac.cn (accessed on 20 April 2021)). Land surface temperature (LST)
was acquired by a daily 1 km all-weather land surface temperature dataset for western
China from 2000 to 2021 (http://data.tpdc.ac.cn (accessed on 15 July 2022)). Evaporation
(EVAP) is provided by the ERA5-Land hourly reanalysis dataset at a spatial resolution

https://data.tpdc.ac.cn/
http://poles.tpdc.ac.cn
http://data.tpdc.ac.cn


Remote Sens. 2023, 15, 512 4 of 17

of 10 km from 1950 to the present (https://cds.climate.copernicus.eu (accessed on 12
July 2019)). The fraction of absorbed photosynthetically active radiation (FAPAR) was
obtained from the daily global QA4ECV FAPAR product at 5 km × 5 km during 1982–2016
(http://www.qa4ecv-land.eu (accessed on 16 February 2018)). Five soil characteristic data
are provided by the SoilGrids 250 m 2.0 product, which includes bulk density (BDOD), clay,
silt, sand, and soil organic carbon (SOC) at six depths: 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm,
60–100 cm, and 100–200 cm (https://soilgrids.org (accessed on 4 May 2020)). The 5–15 cm
soil depth characteristic data were chosen as the input variables. Digital elevation model
(DEM) data at 1 km are derived from the Resource and Environment Science and Data
Center (https://www.resdc.cn (accessed on 1 September 2008)). The final resolution of all
input data is 10 km × 10 km by using bilinear interpolation.
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Figure 1. Distribution of field observation stations: (a) TP, (b) Pali, and (c) Naqu. The contour color
represents different elevations. Pentagrams represent the station locations.

SPI-6 and SPEI-6 represent six months of rainfall and evaporation anomalies. Zhao et al.
investigated the correlations of SPI and SPEI at different timescales (1, 3, 6, and 9 months)
with NDVI at 33 stations around the Gannan region in the eastern TP and found that SPI-6
and SPEI-6 have good correlations with NDVI. SPI-6 and SPEI-6 are suitable for monitoring
the drought conditions of alpine meadows [42]. Therefore, referring to McKee et al. [20]

https://cds.climate.copernicus.eu
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and Vicente-Serrano et al. [21], the SPI-6 and SPEI-6 were calculated. SPI-6, SPEI-6, and the
ERA5-Land hourly volume of water (m3/m3) at the 7–28 cm soil layer (ERA5-Land SM)
(https://cds.climate.copernicus.eu/ (accessed on 12 July 2019)) were chosen as contrasts to
evaluate the performance of the SIDI over the entire TP. The datasets used in this study are
shown in Table 1.

Table 1. Datasets used in this study.

Variables Temporal Interval Spatial Resolution Data Source

In situ soil moisture (SM) Hour - https://data.tpdc.ac.cn (accessed
on 20 April 2021)

2 m air temperature (TEMP),
Specific humidity (SHUM),

10 m wind speed (WIND), and
Precipitation rate (PREC)

3 h 10 km http://poles.tpdc.ac.cn (accessed
on 20 April 2021)

Land surface temperature (LST) Day 1 km http://data.tpdc.ac.cn (accessed
on 15 July 2022)

Evaporation (EVAP),
ERA5-Land SM Hour 10 km

https:
//cds.climate.copernicus.eu

(accessed on 12 July 2019)

Fraction of absorbed
photosynthetically

active radiation (FAPAR)
Day 5 km http://www.qa4ecv-land.eu

(accessed on 16 February 2018)

Bulk density (BDOD),
Clay, Silt, Sand, and

Soil organic carbon (SOC)
- 250 m https://soilgrids.org (accessed on

4 May 2020)

Digital elevation model (DEM) - 1 km https://www.resdc.cn (accessed
on 1 September 2008)

2.2. Methods
2.2.1. Machine Learning Models

RFR is an ensemble model that consists of multiple decision trees [43]. “Random”
means that the input of each tree is randomly extracted from the training dataset, and
a subset of features at each tree node is randomly selected from the available features
to expand the tree. The model’s final output is calculated as the average of predictions
created by all individual trees. Consequently, RFR decreases the overall variance and
avoids overfitting. For both small sample sizes and high-dimensional data, RFR captures
nonlinear relationships between features and target variables and hence provides reliable
results [34,44].

SVR is a supervised machine learning algorithm. SVR employs the kernel function
where the input feature is projected into a high-dimensional feature space for building
the optimal hyperplane to regress the training dataset with the minimum loss [45]. The
performance of SVR depends on the proper selection of the kernel function. Many applica-
tions have demonstrated that the Gaussian radial basis function (RBF) is an excellent kernel
function in SVR. In this study, we used SVR with the RBF kernel function.

KNNR is a nonparametric model. Its major advantage is its simplicity and efficiency.
Given a data point, KNNR searches for the closest K data points based on the distance
between that point and the remaining points in the training dataset. The model finally out-
puts the average of the target predictions for these K neighbors [46]. The target predictions
of K neighbors are equally weighted in the KNNR we used.

XGBR is an advanced ensemble model designed by Chen et al. [47] on the basis of
a gradient boosting machine (GBM). Compared with the traditional GBM, XGBR imple-
mentation adopts a regularized boosting technique and parallel processing, which help to

https://cds.climate.copernicus.eu/
https://data.tpdc.ac.cn
http://poles.tpdc.ac.cn
http://data.tpdc.ac.cn
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
http://www.qa4ecv-land.eu
https://soilgrids.org
https://www.resdc.cn
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reduce overfitting and speed up. Therefore, XGBR is a powerful machine learning model,
especially when speed and accuracy are taken into consideration.

The detailed technical framework for the development of SIDI can be found in Figure 2.

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

KNNR is a nonparametric model. Its major advantage is its simplicity and efficiency. 

Given a data point, KNNR searches for the closest K data points based on the distance 

between that point and the remaining points in the training dataset. The model finally 

outputs the average of the target predictions for these K neighbors [46]. The target predic-

tions of K neighbors are equally weighted in the KNNR we used. 

XGBR is an advanced ensemble model designed by Chen et al. [47] on the basis of a 

gradient boosting machine (GBM). Compared with the traditional GBM, XGBR imple-

mentation adopts a regularized boosting technique and parallel processing, which help to 

reduce overfitting and speed up. Therefore, XGBR is a powerful machine learning model, 

especially when speed and accuracy are taken into consideration. 

The detailed technical framework for the development of SIDI can be found in Figure 

2. 

 

Figure 2. The technical framework for the development of SIDI. Green boxes represent the input 

data; yellow boxes represent the machine learning models; red boxes represent the model output; 

blue boxes represent the validation processes. 

  

Figure 2. The technical framework for the development of SIDI. Green boxes represent the input
data; yellow boxes represent the machine learning models; red boxes represent the model output;
blue boxes represent the validation processes.

2.2.2. Statistical Indicators

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of
determination (R2) were calculated to evaluate the performance of the ML models, as
defined below [48,49].

RMSE =

√
∑N

i=1(Pi −Oi)
2

N
(1)

MAE =
∑N

i=1(|Pi −Oi|)
N

(2)

R2 = 1− ∑N
i=1(Pi −Oi)

2

∑N
i=1
(

Pi − P
)2 (3)
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where N is the number of observations. Pi and Oi are the predictions and observations,
respectively. P represents the average of the predictions.

2.2.3. Shapley Additive Explanation

SHAP was first proposed by Shapley in 1953 to calculate the contribution of each
player and allocate the value created by them in a collaborative game [50]. Lundberg
and Lee in 2017 first introduced the SHAP to explain the output of machine learning
models regarded as black boxes [51]. The SHAP value can be used to interpret individual
machine learning predictions. The main idea of the SHAP value is to obtain the marginal
contribution across all the possible permutations of the features and then take the average.
The expression of the SHAP value is as follows [52]:

Øi = ∑s∈N{i}
|S|!(N − |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (4)

where, ∅i is the contribution of feature i, N is the set of features, n is the number of features
in N, S is the subset of N that contains feature i, and v(N) is the base value meaning the
predicted outcome for each feature in N without knowing the feature values.

The sum of the SHAP value of each feature for each observation is considered the
model outcome for each observation. Therefore, the explanation model g is formulated as
follows:

g(z′) = Ø0 +
M

∑
i=1

Øiz′i (5)

where, z ε {0, 1}M and M is the number of features.

3. Results
3.1. Construction and Comparison of Drought Monitoring Index with In Situ Soil Moisture
Measurements, SPI-6 and SPEI-6
3.1.1. Construction of Drought Monitoring Index

To achieve an independent assessment of the performance of ML models, we used
70% of the input data (thirteen predictor variables and in situ SM) as the training dataset to
construct the drought index, and the remaining 30% was employed as the validation dataset
to assess the performance of the drought index. Moreover, min-max standardization was
performed on the input data to eliminate the effects of dimensionality and accelerate the
convergence speed. Regarding the in situ SM during the growing season as the ground
truth, the drought indices were outputted by four ML regression models at the station scale.
Figure 3 shows the comparisons of drought indices using four machine learning models
with the in situ soil moisture in the training process. All 32,509 samples in the training
dataset were used. The drought index based on the SVR model had a poor performance
with a low R2 of 0.66 and a high RMSE of 0.12. This may be because the RBF kernel
function is not suitable for these complicated data sets. Another reason may be that SVR
hyperparameters such as C and gamma are not good, although they have been optimized
by the grid search. In contrast, the drought indices based on the RFR, XGBR, and KNNR
models performed well, with R2 values of 0.86, 0.82, and 0.78; RMSE values of 0.08, 0.09,
and 0.1; and MAE values of 0.06, 0.07, and 0.08, respectively. The results indicate that the
three ML models have good application potential in the construction of the drought index
in our study.
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3.1.2. Comparison of Drought Monitoring Index with In Situ Soil Moisture Measurements,
SPI-6 and SPEI-6

The prediction ability of the model is determined by the validation dataset because
it was not involved in its construction. Hence, comparisons of drought indices using
four machine learning models with in situ soil moisture were performed in the validation
dataset (Figure 4). There are a total of 13,933 data points in the validation dataset. The
result in the validation dataset for each model was slightly worse than that of the training
dataset, indicating a high generalization level for each model due to the independence
between the training and validation datasets [53]. In the validation process, the drought
index based on the XGBR model outperformed that based on other models (R2 = 0.76,
RMSE = 0.11, MAE = 0.08), followed by RFR (R2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR
(R2 = 0.73, RMSE = 0.11, MAE = 0.08), and SVR (R2 = 0.66, RMSE = 0.12, MAE = 0.1) [54,55].
The two ensemble models of XGBR and RFR achieve better accuracy and higher correlation
compared with other models, suggesting the superiority of ensemble learning. The primary
advantage of XGBR lies in the fact that a regularization term is added to the cost function
to control the complexity of the model (regularization boosting technique). This technique
reduces the variance and overfitting and makes the model simpler and faster [56]. The
result confirms that the optimal drought index is the XGBR-based drought index, and thus,
the XGBR model is used to construct the SIDI.
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moisture in the validation process: (a) RFR, (b) KNNR, (c) SVR, and (d) XGBR. Colors represent data
density: the redder the color, the larger the data density is.

Furthermore, the SIDI from 2000 to 2016 was obtained by inputting the spatial maps
of thirteen predictor variables into the XGBR model. SIDI was switched to the monthly
average, and then the spatial and temporal distributions of the monthly averaged SIDI were
compared against ERA5-Land SM, SPI-6, and SPEI-6 in 2012, as shown in Figure 5. In terms
of four variables, a smaller value corresponds to a drier area, and vice versa. In Figure 5a–d,
the SM decreases gradually from the southeast to the northwest and exhibits obvious
seasonal variability with a small (large) value in winter (summer). The SIDI has a similar
spatial pattern and seasonal variability to the SM (Figure 5e–h). The spatial distributions
of the SPI-6 and SPEI-6 are generally consistent, and there are some differences compared
with the SM. For example, the SPI-6 and SPEI-6 display arid characteristics in the relatively
humid southeastern region. This result suggests that they are not able to capture the dry
and wet characteristics of the plateau well (Figure 5i–p). SPI-6 is formulated based on
precipitation, ignoring the impact of temperature on drought. Considering this, the SPEI-6
is calculated based on precipitation and potential evaporation. However, previous studies
found that the Thornth-waite algorithm failed to calculate the potential evapotranspiration
when the average monthly temperature was below 0 ◦C, resulting in the poor applicability
of SPEI-6 in arid and alpine regions such as the TP [57].
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at 7–28 cm ((a–d), units: m3/m3), SPI-6 (i–l), and SPEI-6 (m–p) in 2012. Colors represent drought
degree: the redder the color, the stronger the drought degree is.

3.2. Drought Monitoring Performance for Typical Drought Events

The drought monitoring ability of the SIDI was evaluated for a typical drought event.
This event occurred in the Xizang Autonomous Region in May and June of 2009 [58,59]. SIDI
classifications are divided into 9 levels using the percentile threshold method (Table 2) [57].
Figure 6 illustrates the spatial evolution characteristics of the drought process captured by
the SIDI at an interval of nine days from 22 April to 1 July 2009. As shown in Figure 6a,b, an
abnormal drought occurred over most regions of Xizang on 22 April, and then the drought
intensity rapidly increased. In particular, the central part of Xizang exhibited extreme
drought. Subsequently, the drought eased, whether in drought range or intensity, to a large
extent on 10 May (Figure 6c). The drought area constantly expanded from the northwestern
to southeastern regions of Xizang, with a higher drought magnitude on 19 May (Figure 6d).
Thereafter, the drought continued to weaken (Figure 6e–h).

Table 2. Dry and wet classifications for the SIDI.

Classification Percentile Chance k (%) SIDI

Extreme drought (Edry) k ≤ 2 0.04~0.14
Severe drought (Sdry) 2 < k ≤ 10 0.14~0.18

Moderate drought (Mdry) 10 < k ≤ 20 0.18~0.20
Abnormal drought (Adry) 20 < k ≤ 30 0.20~0.22

Normal 30 < k ≤ 70 0.22~0.33
Abnormal wet (Awet) 70 < k ≤ 80 0.33~0.38
Moderate wet (Mwet) 80 < k ≤ 90 0.38~0.48

Severe wet (Swet) 90 < k < 98 0.48~0.62
Extreme wet (Ewet) ≥98 0.62~0.84

In addition, the temporal evolution characteristics of this drought event are depicted
in Figure 7. There are two valleys (1 May and 18 May) in the SIDI. A valley indicates
drought aggravation. Compared with the SM variation, the SIDI is more sensitive and
detailed in capturing the key points of the drought process. In addition, with the increase
in precipitation, the SIDI increased gradually, revealing that the drought had been relieved.
Overall, the SIDI is capable of accurately describing the evolution process of drought events
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in space and on a daily temporal scale, owing to its combination with the meteorological,
vegetation, soil, and topographic environmental factors. Therefore, the SIDI is a reliable
and comprehensive indicator for drought assessment.
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Figure 6. Spatial evolution characteristics of the drought process captured by the SIDI in the Xizang
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(h) 24 June 2009. Colors represent drought degree: the redder the color, the stronger the drought
degree is.
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Autonomous Region from 22 April to 01 July 2009, against ERA5-Land SM and CMFD PREC.

Furthermore, the SIDI and daily SPEI were adopted to identify drought characteristics
at the BJ station, a representative station covering the alpine meadow on the central TP
based on run theory [60] (Figure 8). A short-term drought event lasting 19 days was
identified by the SIDI. However, the SPEI cannot identify it. It began on 26 March 2001, and
lasted until 13 April 2001 (Figure 8a). The SIDI detected that the drought developed quickly
and reached the intensity of extreme drought in several days. Thereafter, the drought
eased slowly. Referring to the dry and wet classifications in Table 2, this drought event
belonged to a moderate drought (I = 0.19). However, the SPEI shows wet conditions during
this period (Figure 8b). The SIDI has a superior ability to identify drought information
compared with other traditional indices, such as the SPEI.
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Figure 8. Daily drought evolution of a drought event identified by the SIDI (a) and SPEI (b) at the BJ
station based on run theory. D: drought duration; S: drought severity, which is the cumulative sum of
drought conditions on D days; I: drought intensity, which can be calculated by dividing S by D. Red
patterns represent dry conditions, and blue patterns represent wet conditions.

3.3. Importance of the Predictor Variables

The performance of ML models has significant advantages for large data volumes
with multiple predictor variables. Relationships between these predictor variables and
model output are complicated and poorly identified due to the multiple predictor variables
involved in the models and the black-box nature of ML models. How much did each
predictor variable (feature value) contribute to the model output? To explain this, the SHAP
was introduced into the XGBR model [61]. The average SHAP value of every feature and
the SHAP value of every feature for every sample in the training dataset are presented in
Figure 9. The color bar represents the feature value (red high, blue low). According to the
averaged SHAP value, soil properties contributed 59.5% to the model output, followed
by the meteorological (35.8%) and topographic environmental conditions (4.7%). The top
three features that influence the model output are bulk density (BDOD), soil organic carbon
(SOC), and silt, which are soil properties (Figure 9a). Moreover, the other two features, in
addition to bulk density, have positive impacts on the model output (Figure 9b).

To interpret the interactions among predictor variables toward the model output, the BJ
station covered by the representative alpine meadow on the central TP was chosen to apply
the SHAP for different drought conditions (Figure 10). Figure 10 is the individual SHAP force
plot, which includes three important characteristics: model output f(x), base value (the average
of model outputs), and colors. The red color pushes the model output higher, whereas the
blue color pushes the model output lower. For extreme and severe drought conditions, bulk
density, land surface temperature, and soil organic carbon were the three major contributors to
decreasing the model output (Figure 10a,b). In the case of moderate drought, abnormal drought,
and nondrought conditions (Figure 10c–e), bulk density and soil organic carbon decreased
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the model output, while specific humidity slightly increased it. Overall, bulk density (bdod)
and soil organic carbon (soc) were two major contributors influencing the model output for all
drought conditions, which is consistent with the result in Figure 9b.
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4. Discussion

The aforementioned results showed that the XGBR-based SIDI can serve as an efficient
drought index for TP drought monitoring. Traditional vegetation-based remote sensing
indices at 8 days or 16 days are capable of monitoring agricultural drought. However,
these vegetation-based indices usually identify drought characteristics through vegetation
conditions, which reflect one specific aspect of drought. In fact, agricultural drought is
related to meteorology, soil, and vegetation systems. In comparison, the new drought
index, SIDI, comprehensively considered multiple factors. Nevertheless, detailed drought
information, such as the onset, end, and intensity of drought, can be identified by the SIDI,
which is capable of guiding vulnerable agricultural and livestock production, particularly
for the growing season over the TP. The time span of the SIDI is from 2000 to 2016 and, thus,
can be used to analyze drought change characteristics over a long time scale. However,
there remain some issues with the construction of the SIDI. First, in the process of building
the ML model, the model input is only from several stations in the central and western
parts of the plateau. Moreover, some special underlying surfaces, such as deserts and
glaciers, were not included in the model input. In the future, it is expected that more
newly collected in situ data will be added to optimize the model, especially data at new
stations where no data have been collected before. On the other hand, this new data can
be used for model precision evaluation. Second, despite the development of SIDI, which
considers multivariate factors, the mutual response relationship between factors is ignored.
For example, the memory of soil moisture leads to a time lag effect between soil moisture
and meteorological factors. Liu et al. [34] considered the lagging effect of NDVI on LST
and precipitation changes in the newly developed integrated agricultural drought index
(IDI). Qing et al. [62] constructed a comprehensive agricultural drought index (CADI)
that comprehensively integrated the lagging times of soil moisture with precipitation
and evapotranspiration. It is also worthwhile to further investigate whether the time
lag effect will improve the prediction accuracy. In addition, many drought indices were
developed under the assumption of a statistically stationary distribution of meteorological
variables. In fact, the meteorological variables are not stationary due to the influences
of climate change and human activities. Considering this, some nonstationary drought
indices, such as the standardized nonstationary precipitation index (SnsPI) [63] and the
nonstationary standardized runoff index (SRINS) [64] have been developed. Therefore, the
nonstationarity of meteorological variables should be taken into account when optimizing
the drought index. Third, the definition of the drought threshold level is a crucial step for
drought severity categorization. However, drought studies currently focus on drought
identification rather than categorization, resulting in various drought categorizations [65].
Fixed threshold levels and the percentile method are the two commonly used drought
categorizations, which are not applicable to every region. Standardization of drought
categorization is still an issue.

It is worth discussing the interesting finding revealed by the SHAP results: soil
characteristics are more important than some meteorological variables in modeling drought.
The climatological point is striking due to the negligence of soil in previous studies and
deserves more attention. In addition, it remains unclear whether the inclusion of soil bulk
density and soil organic content is what makes this model an improvement over others,
which needs to be validated in future work.

5. Conclusions

In this study, based on multisource remote sensing and reanalysis data, daily drought
indices developed by four machine learning methods, including RFR, KNNR, SVR, and
XGBR, were compared. The optimal drought index was selected as the SIDI. Furthermore,
the drought monitoring ability of the SIDI was investigated based on the SPI-6, SPEI-6,
ERA5-Land SM, and a typical drought event. In addition, the impact of predictor variables
on the model output was also explored. The main conclusions are as follows.
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(1) By comparing drought indices from four ML models with in situ SM data during
the growing season, the drought index based on the XGBR model outperformed that
based on other models (R2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by RFR (R2 = 0.74,
RMSE = 0.11, MAE = 0.08), KNNR (R2 = 0.73, RMSE = 0.11, MAE = 0.08), and SVR (R2 = 0.66,
RMSE = 0.12, MAE = 0.1). The result proves the superiority of the XGBR model, and this
model is used to develop the SIDI.

(2) Compared with the spatial and seasonal distributions of SPI-6, SPEI-6, and ERA5-
Land SM, the SIDI reflects the spatial characteristics of the plateau, which is dry in the
northwest and humid in the southeast. It also depicts obvious seasonal variability, with
large values in winter and small values in summer. For a typical drought event that occurred
in the Xizang Autonomous Region in May and June of 2009, the SIDI accurately describes
the evolution process of drought spatial evolution on a daily timescale, demonstrating its
application potential in drought detection.

(3) Of the thirteen prediction variables, the contribution of 59.5% to model output
was from soil properties, 35.8% was from meteorological conditions, and 4.7% was from
the topographic environment. The top three variables that influence the model output are
bulk density, soil organic carbon, and silt. Moreover, except for bulk density, the other two
features have positive impacts on the model output. This suggests that soil information is
an important factor affecting drought evolution, which should be taken into account in the
construction of the drought index in the future.
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